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S U M M A R Y
We examined the mathematical and computational aspects of the magnetic potential, vector
and gradient tensor fields of a tesseroid in a geocentric spherical coordinate system (SCS).
This work is relevant for 3-D modelling that is performed with lithospheric vertical scales and
global, continent or large regional horizontal scales. The curvature of the Earth is significant
at these scales and hence, a SCS is more appropriate than the usual Cartesian coordinate
system (CCS). The 3-D arrays of spherical prisms (SP; ‘tesseroids’) can be used to model
the response of volumes with variable magnetic properties. Analytical solutions do not exist
for these model elements and numerical or mixed numerical and analytical solutions must be
employed. We compared various methods for calculating the response in terms of accuracy
and computational efficiency. The methods were (1) the spherical coordinate magnetic dipole
method (MD), (2) variants of the 3-D Gauss–Legendre quadrature integration method (3-D
GLQI) with (i) different numbers of nodes in each of the three directions, and (ii) models
where we subdivided each SP into a number of smaller tesseroid volume elements, (3) a
procedure that we term revised Gauss–Legendre quadrature integration (3-D RGLQI) where
the magnetization direction which is constant in a SCS is assumed to be constant in a CCS and
equal to the direction at the geometric centre of each tesseroid, (4) the Taylor’s series expansion
method (TSE) and (5) the rectangular prism method (RP). In any realistic application, both
the accuracy and the computational efficiency factors must be considered to determine the
optimum approach to employ. In all instances, accuracy improves with increasing distance
from the source. It is higher in the percentage terms for potential than the vector or tensor
response. The tensor errors are the largest, but they decrease more quickly with distance from
the source. In our comparisons of relative computational efficiency, we found that the magnetic
potential takes less time to compute than the vector response, which in turn takes less time to
compute than the tensor gradient response. The MD method takes less time to compute than
either the TSE or RP methods. The efficiency of the (GLQI and) RGLQI methods depends
on the polynomial order, but the response typically takes longer to compute than it does for
the other methods. The optimum method is a complex function of the desired accuracy, the
size of the volume elements, the element latitude and the distance between the source and
the observation. For a model of global extent with typical model element size (e.g. 1 degree
horizontally and 10 km radially) and observations at altitudes of 10s to 100s of km, a mixture
of methods based on the horizontal separation of the source and observation separation would
be the optimum approach. To demonstrate the RGLQI method described within this paper, we
applied it to the computation of the response for a global magnetization model for observations
at 300 and 30 km altitude.

Key words: Numerical solutions; Numerical approximations and analysis; Magnetic anoma-
lies: modelling and interpretation; Magnetic field; Satellite magnetics.
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1 I N T RO D U C T I O N

Forward modelling the magnetic potential and its derivatives caused by a magnetized source is a basic issue in geophysics (e.g. Hall 1959).
Among all the models with different geometric shapes, such as point and line sources (Henderson & Zietz 1948), laminae (Talwani 1965),
polyhedral bodies (Bott 1963; Barnett 1976; Hansen & Wang 1988) and vertical right cylinder (Singh & Sabina 1978), the prism body is
very important as it provides a practical method for approximating a more complex source by the principle of superposition, saturating the
source volume without ‘holes’. Analytical formulas for the total magnetic field and its derivatives of a prism-shaped body were first presented
by Bhattacharyya (1964) and later simplified by Rao & Babu (1991). Sharma (1986) gave expressions for the magnetic potential and vector
field components of the Cartesian prism. However, the calculation is very time consuming due to several logarithmic and arctan functions.
A significant reduction of computation time can be achieved by applying fast Fourier transform techniques (e.g. Bhattacharyya 1966; Parker
1972; Pedersen 1985; Parker et al. 1987; Tontini et al. 2009). The price to be paid is a decreasing accuracy when the bounding surface is
too rough. An alternative approach is provided by approximate solution of prism integrals, such as the adoption of Gauss–Legendre cubature
(e.g. Ku 1977).

Using prisms is especially beneficial for local applications, where height information is generally related to planar Cartesian coordinates
referenced to a map projection. However, in regional and even global applications, the curvature of the Earth should be taken into consideration.
Traditionally in the SCS, the magnetic field can be calculated both in the frequency domain by spherical harmonic approaches (e.g. Arkani-
Hamed & Strangway 1985; Nolte & Siebert 1987; Jackson 1990; Gubbins et al. 2011) or spherical cap harmonic approaches (e.g. An &
Guan 1990) and in the space domain flexibly by the MDs (e.g. von Frese et al. 1981a,b; Dyment & Arkani-Hamed 1998a; Langel & Hinze
1998; von Frese 1998) or Green’s function (e.g. Parker et al. 1987; Whaler & Langel 1996) and the tesseroids (e.g. Asgharzadeh et al. 2008).
These methods, especially in the space domain, have been widely used. For examples, forward modelling (e.g. Dyment & Arkani-Hamed
1998b; Hemant & Maus 2005; Masterton et al. 2013), inverse modelling (e.g. Whaler & Langel 1996; Purucker et al. 1998, 2002; Whaler
& Purucker 2005; Carley et al. 2012), surface heat flux modelling (e.g. Fox Maule et al. 2005), magnetic field transformations, such as
altitude normalization, spatial derivatives, continuations, pseudo-gravity anomaly and differential magnetic pole reductions (e.g. von Frese
et al. 1981b, 1982; Purucker et al. 2000; Asgharzadeh et al. 2008). Such methods are available for satellite altitudes, but for the calculation
at a low altitude, for example downward continuation (e.g. Whaler 1994), joint modelling with surface data or aeromagnetic data (e.g. Kim
et al. 2013), and also the 3-D inversion for lithospheric magnetization structure (e.g. Du et al. 2013, 2014), an efficient forward modelling
algorithm to calculate the magnetic effects for any observation point outside the Earth caused by regionally or locally magnetized bodies in
the SCS is particularly necessary (e.g. von Frese et al. 1981a; Lane 2009).

Being similar to the rectangular prism (RP) in the Cartesian coordinate system (CCS), as a simple and popular approach, the tesseroid is
the best choice for the basic magnetized element in the SCS. According to Anderson (1976), the tesseroid is bounded by geographic grid lines
and surfaces of constant ellipsoidal height. Generally, the ellipsoidal body is approximated by corresponding spherical prism (SP), which is
bounded by geocentric spherical coordinates. Even though spherical tesseroids are considered in the following, the Earth’s ellipticity can be
taken into account by fixing these bodies on an ellipsoidal reference surface with a latitude-dependent Earth radius (e.g. Heck & Seitz 2007).
However, there is no analytic solution for the tesseroid in the SCS (e.g. Grüninger 1990). Therefore, many approximate solutions have been
proposed. For example, the Gauss–Legendre quadrature integration method (GLQI) is utilized to forward model the magnetic effects of the
SP in the SCS (von Frese et al. 1981a,b; Asgharzadeh et al. 2008).

In contrast, the gravity effects of the tesseroid in the SCS have been widely studied. Heck & Seitz (2007) and Wild-Pfeiffer (2008)
derived the fourth-order approximations which applied the Taylor’s series expansion (TSE) of the integral kernel. While Heck & Seitz (2007)
originally derived formulas for the tesseroid potential and the first radial derivative, and Wild-Pfeiffer (2007, 2008) extended the approach to
all components of first- and second-order derivatives. Furthermore, also Gauss–Legendre cubature is applied to gravity and its gradient fields
proposed by Asgharzadeh et al. (2007) and Wild-Pfeiffer (2007, 2008). For global computations, another alternative consists of analytically
solving the 1-D integral with respect to the geocentric distance and calculating the remaining 2-D surface integral numerically (e.g. Martinec
1998; Heck & Seitz 2007). Especially, Grombein et al. (2010, 2013) derived the new tesseroid formulas based on the Cartesian integral
kernels but not the spherical integral kernels. The optimized formulas allow an efficient numerical evaluation with a significantly reduced
runtime and the polar singularity is also overcome. Alternatively, Lane (2009) used a set of the equivalent point masses as approximation of
the SP to compute the vertical gravity and its vertical gradient and investigate the differences between the fields by the SP in the spherical
frame and by the RP in the Cartesian frame. The results show that the differences become larger as the computing points far away the sources.

In this study, based on the work in the gravity field, we present three kinds of forward modelling methods for the magnetic effects (i.e.
magnetic potential, vector and gradient tensor fields) caused by the tesseroid in the geocentric SCS. First, in Section 2, we give the optimized
formulas by the TSE, the revised Gauss–Legendre quadrature integration (RGLQI) and the frame of approximations by Cartesian elements.
Then, in Section 3, the subdivision technique and the necessary transforms of coordinates and fields in different coordinate systems are
introduced. In Section 4, we analyse the accuracies and computational efficiencies of all methods. Besides, as an actual numerical example,
the magnetic potential, vector and gradient tensor fields are computed globally using tesseroids by the 3-D RGLQI on the basis of a global
vertical integrated magnetization (VIM) vector model of the Earth’s lithosphere. At last, in Section 5, discussion and some conclusions are
given and main topics of future work about this issue are also suggested.
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Magnetic fields of a tesseroid 1979

Figure 1. Geometry of the tesseroid and view of the spherical source-centred local CCS (xQ, yQ, zQ), spherical observation-centred local CCS (xP, yP, zP),
global geocentric SCS (r, ϕ, λ) and global geocentric CCS (X, Y, Z). Q0 is the geometric centre of the tesseroid, and r, ϕ and λ are the radius, latitude and
longitude, respectively.

2 M E T H O D O L O G Y

In Section 2.1 the tesseroid and the required coordinate systems are introduced, while Section 2.2 focuses on the basic formulas for the
magnetic potential and its partial derivatives. Then in Sections 2.3–2.5, the optimized formulas by the 3-D TSE, the 3-D RGLQI approaches
and the approximations by Cartesian elements are presented, respectively.

2.1 Tesseroid and coordinate systems

The RP, the most common cell, is often used in the forward modelling, inversion and interpretation in CCS. Alternatively, in the geocentric
SCS, the SP or so-called the tesseroid (e.g. Anderson 1976; Heck & Seitz 2007; Fig. 1), is chosen as basic element for forward modelling,
which is bounded by (i) a pair of surfaces with the constant spherical radius r1 = const, r2 = const, that are ‘parallel’ to the reference sphere;
(ii) a pair of meridional planes with λ1 = const, λ2 = const and (iii) a pair of coaxial circular cones (ϕ1 = const, ϕ2 = const). The point
Q0(r0, ϕ0, λ0) is the geometric centre of the tesseroid, where r0 = (r1 + r2)/2, ϕ0 = (ϕ1 + ϕ2)/2 and λ0 = (λ1 + λ2)/2.

We first define the spherical source-centred CCS (xQ, yQ, zQ) to describe the magnetization vector MQ(r′, ϕ′, λ′) for the tesseroid (Fig. 1),
where the Q(r′, ϕ′, λ′) denotes any point inside the magnetic source. The xQ-axis of the right-handed system as used in the following points
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1980 J. Du et al.

north, the yQ-axis points east, and the zQ-axis points towards into the geocentric radial direction. Thus, the magnetization vector can be
expressed as:

MQ = MQ,x xQ + MQ,yyQ + MQ,zzQ, (1)

where xQ, yQ, zQ are the unit vectors in the spherical source-centred CCS.
We then define the spherical observation-centred CCS to describe the magnetic effects by the tesseroid (Fig. 1). This CCS (xP, yP, zP) is

located at the observation point P(r, ϕ, λ). The xP-axis of the right-handed system as used in the following points north, the yP-axis points
east and the zP-axis points towards into the geocentric radial direction. Thus, the magnetic vector B = −∇V and the complete gradient tensor
∇B can be expressed as:

B = BxxP + ByyP + BzzP = (−∂V/∂xP xP ) + (−∂V/∂yP yP ) + (−∂V/∂zP zP ), (2)

∇B =

⎡
⎢⎢⎢⎣

Bxx Bxy Bxz

Byx Byy Byz

Bzx Bzy Bzz

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−∂2V/∂xP∂xP −∂2V/∂xP∂yP −∂2V/∂xP∂zP

−∂2V/∂yP∂xP −∂2V/∂yP∂yP −∂2V/∂yP∂zP

−∂2V/∂zP∂xP −∂2V/∂zP∂yP −∂2V/∂zP∂zP

⎤
⎥⎥⎥⎦ , (3)

where xP, yP, zP are the unit vectors in the spherical observation-centred CCS and V is the magnetic scalar potential. Since in source-free
space the magnetic potential field is irrotational, that is ∇ × (∇V ) = 0, and the potential is a harmonic function outside the tesseroid, the
Marussi tensor is symmetric and trace-free due to the Laplace equation, that is Bxx + Byy + Bzz = 0, therefore, only five out of nine elements
are independent.

2.2 Basic formulas

The magnetic potential V(r, ϕ, λ) of a magnetized element with magnetization vector MQ(r′, ϕ′, λ′) can be described as (e.g. Blakely 1995)

V (r, ϕ, λ) = μ0

4π

∫
�

MQ

(
r ′, ϕ′, λ′) · ∇Q

1

l
d�, (4)

where l = l(P, Q) =
√

r 2 + r ′2 − 2rr ′ cos ψ denotes the Euclidean distance function between the computational point P(r, ϕ, λ) /∈ � and
the running integration point Q(r ′, ϕ′, λ′) ∈ �. � := [r1, r2] × [ϕ1, ϕ2] × [λ1, λ2] ⊂ R3 is the integration domain. d� = r ′2 cos ϕ′dr ′dϕ′dλ′

is the spherical volume element and μ0 is the permeability (4π × 10−7N · A−2). The spherical angle distance ψ between the position vectors
of P(r) and Q(r′) is given by

cos ψ (P, Q) = sin ϕ sin ϕ′ + cos ϕ cos ϕ′ cos
(
λ′ − λ

)
. (5)

According to Grombein et al. (2013), the Cartesian coordinates of the running integration point Q in the observation-centred CCS can
be expressed as:

x ′ = r ′ sin ψ cos α, (6a)

y′ = r ′ sin ψ sin α, (6b)

z′ = r − r ′ cos ψ, (6c)

where α denotes the azimuth angle at P(r) in direction to Q(r′). Based on the relations of spherical trigonometry (e.g. Heiskanen & Moritz
1967)

sin ψ cos α = cos ϕ sin ϕ′ − sin ϕ cos ϕ′ cos
(
λ′ − λ

)
, (7a)

sin ψ sin α = cos ϕ′ sin
(
λ′ − λ

)
, (7b)

therefore, eq. (6) can be written as:

x ′ = r ′ [cos ϕ sin ϕ′ − sin ϕ cos ϕ′ cos
(
λ′ − λ

)]
, (8a)

y′ = r ′ cos ϕ′ sin
(
λ′ − λ

)
, (8b)

z′ = r − r ′ cos ψ. (8c)
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Magnetic fields of a tesseroid 1981

By making use of the derived functional relations in eq. (8), the Euclidean distance between P and Q can be expressed in the spherical
observation-centred CCS by

l (P, Q) =
√

x ′2 + y′2 + z′2. (9)

In the spherical observation point P-centred CCS, eq. (4) can be expressed as:

V (r, ϕ, λ) = μ0

4π

∫
�

MP

(
r ′, ϕ′, λ′) · ∇Q

1√
x ′2 + y′2 + z′2 d�, (10)

where MP(r′, ϕ′, λ′) = R(r, ϕ, λ, r′, ϕ′, λ′)[MQ(r′, ϕ′, λ′)] is the magnetization vector expressed in the spherical observation-centred CCS
(the transformation matrix R will be given in Section 3.2) and the term of ∇Q is also operated in the spherical observation-centred CCS.
Asgharzadeh et al. (2008) introduced the angle β between the magnetization vector and the gradient tensor of the 1/l in the geocentric CCS
to express the magnetic potential as:

V (r, ϕ, λ) = μ0

4π

∫
�

− |M| cos β

l2
d�. (11)

According to the definition of the spherical source-centred CCS for the magnetization vector M, a homogeneous magnetization means
that the amplitude of the M is constant but also the directions of the M, those are the magnetized inclination I and declination D, are actually
variable in a fixed CCS. In this case, the problem becomes complicated. In fact, for a SP with a general geometric scale in a fixed CCS, such as
0.5◦ × 0.5◦ on spherical surface, relative to the direction of the M in the geometric centre of the SP, the maximum variation of the directions
is 0.25◦, the difference between the cos(β + 0.25◦) and the cos β is so small that can be ignored. Especially, with the aid of the subdivision,
which will be presented in Section 3.1, will make the difference much smaller. Therefore, to simplify the forward problem, the homogeneous
magnetization vector is approximated by the vector at the geometric centre Q0(r0, ϕ0, λ0) of the SP. Thus, the eq. (10) can be written as:

V (r, ϕ, λ) = μ0

4π

∫
�

MP (r0, ϕ0, λ0) · ∇Q
1√

x ′2 + y′2 + z′2 d�. (12)

Further, assuming the i, j, k = 1, 2, 3 denote x, y and z, respectively, and assuming the x1, x2 and x3 denote x′, y′ and z′, respectively, the
magnetic effects can be expressed as:

V (r, ϕ, λ) = μ0

4π

∫
�

3∑
i=1

MP,i (r0, ϕ0, λ0) Ti d�, (13)

and

Ti = 1

l
·
(
− xi

l2

)
. (14)

In the spherical observation-centred CCS, ∇P V is equivalent to −∇Q V and ∇P B is equivalent to −∇QB based on the eq. (8) and the eq.
(12). Therefore, according to eqs (2) and (3), the magnetic vector B and the complete gradient tensor ∇B can be expressed as:

Bi (r, ϕ, λ) = μ0

4π

∫
�

3∑
j=1

MP, j (r0, ϕ0, λ0) Ti j d�, (15)

Bi j (r, ϕ, λ) = μ0

4π

∫
�

3∑
k=1

MP,k (r0, ϕ0, λ0) Tki j d�, (16)

and

Ti j = 1

l3

(
3xi x j

l2
− δi j

)
, (17)

Tki j = 1

l5

[
15xi x j xk

l2
− 3xk

(
δi j + δki + δk j

)]
, (18)

where δi j , δki and δk j denote the Kronecker delta functions, taking the δi j for example, δi j = 1 if i = j and δi j = 0 otherwise.
In eqs (13), (15) and (16), these formulas comprise elliptic integrals that have to be evaluated numerically. If considering the Earth’s

ellipticity, the radii r1 and r2 of the lower surface and the upper surface can be replaced, roughly by the surfaces with geocentric latitude-
dependent Earth’s radii of the reference ellipsoid in the geocentric SCS, or more preferably by the surfaces with geographic latitude-dependent
Earth’s radii in the geographic SCS (e.g. Heck & Seitz 2007) where some extra transformations for the coordinates and the magnetic effects
are required. Providing the magnetic effects are expressed in the ellipsoidal local CCS, the magnetic vector and its tensor should be rotated
on the yP axis further because of the difference between the geocentric latitude and the geographic latitude.
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1982 J. Du et al.

2.3 Taylor’s series expansion

Equivalently to Heck & Seitz (2007) and Grombein et al. (2013), we integrate the TSE of the Cartesian integral kernels in eqs (13), (15) and
(16) at the tesseroid’s geometrical centre point Q0(r0, ϕ0, λ0), where the magnetization vector is treated as a constant vector. Here because the
terms of odd order and mixed terms in the Taylor’s series vanish after integration, the corresponding integrals can be expanded as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
�

Ti d�∫
�

Ti j d�∫
�

Tki j d�

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= �r�ϕ�λ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ki (P, Q)

Li j (P, Q)

Nki j (P, Q)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∣∣∣∣∣∣∣∣∣

r ′ = r0

ϕ′ = ϕ0

λ′ = λ0

+�r�ϕ�λ

24

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(�r )2 ∂2
r ′ Ki (P, Q) + (�ϕ)2 ∂2

ϕ′ Ki (P, Q) + (�λ)2 ∂2
λ′ Ki (P, Q)

(�r )2 ∂2
r ′ Li j (P, Q) + (�ϕ)2 ∂2

ϕ′ Li j (P, Q) + (�λ)2 ∂2
λ′ Li j (P, Q)

(�r )2 ∂2
r ′ Nki j (P, Q) + (�ϕ)2 ∂2

ϕ′ Nki j (P, Q) + (�λ)2 ∂2
λ′ Nki j (P, Q)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∣∣∣∣∣∣∣∣∣

r ′ = r0

ϕ′ = ϕ0

λ′ = λ0

+

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O
[
�4/ l6 (P, Q0)

]
O

[
�4/ l7 (P, Q0)

]
O

[
�4/ l8 (P, Q0)

]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (19)

where �r = r2−r2, �ϕ = ϕ2−ϕ1 and �λ = λ2−λ1, and O[�4] indicates that terms of fourth-order and higher terms in �r, �ϕ and �λ are
omitted. The term of zero-order is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ki (P, Q)

Li j (P, Q)

Nki j (P, Q)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 1

l3

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−xi

3xi x j

l2
− δi j

15xi x j xk

l4
+ 3

(
δi jk − xkδi j

)
l2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

τ, (20)

where τ = r ′2 cos ϕ′ factors the spherical volume element d�. While the required second-order derivatives in eq. (19) can be represented in
the general form as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2
m Ki (P, Q)

∂2
m Li j (P, Q)

∂2
m Nki j (P, Q)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
∂2

m Ku

)
Kv + 2 (∂m Ku) (∂m Kv) + Ku

(
∂2

m Kv

)
(
∂2

m Ku

)
Lv + 2 (∂m Ku) (∂m Lv) + Ku

(
∂2

m Lv

)
(
∂2

m Ku

)
Nv + 2 (∂m Ku) (∂m Nv) + Ku

(
∂2

m Nv

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, m = r ′, ϕ′, λ′, (21)

where the detailed expressions in eq. (21) are presented in Appendix A. Inserting these expressions into eq. (21) and then inserting
eqs (21) and (20) into eq. (19), at last inserting eq. (19) into eqs (13), (15) and (16), the magnetic potential, vector and gradient tensor fields
of the tesseroid can be calculated approximately. In theory, modelling error by the TSE depends on the approximation of the magnetization’s
direction and also the truncation terms. If the subdivision given in Section 3.1 is applied, these two kinds of errors will be both suppressed.
Besides, the truncated terms l−6, l−7 and l−8 for V, Bi and Bij in eq. (19), respectively, suggest that as l increasing the error of V decays most
slowly and most quickly for Bij.

2.4 3-D Gauss–Legendre quadrature integration

Based on the eq. (13), eq. (15) and eq. (16), the magnetic potential, vector and gradient tensor fields caused by the tesseroid can be expressed
as

V = μ0

4π

∫ λ2

λ1

∫ ϕ2

ϕ1

∫ r2

r1

fV dr ′dϕ′dλ′, (22)

Bi = μ0

4π

∫ λ2

λ1

∫ ϕ2

ϕ1

∫ r2

r1

fBi dr ′dϕ′dλ′, (23)

Bi j = μ0

4π

∫ λ2

λ1

∫ ϕ2

ϕ1

∫ r2

r1

fBi j dr ′dϕ′dλ′, (24)

where i, j = x, y, z, and the integrals are, respectively, as
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Magnetic fields of a tesseroid 1983

fV

(
r, ϕ, λ, r ′, ϕ′, λ′) = τ

3∑
i=1

MP,i

(
r ′, ϕ′, λ′) Ti , (25)

fBi

(
r, ϕ, λ, r ′, ϕ′, λ′) = τ

3∑
j=1

MP, j

(
r ′, ϕ′, λ′) Ti j , (26)

fBi j

(
r, ϕ, λ, r ′, ϕ′, λ′) = τ

3∑
k=1

MP,k

(
r ′, ϕ′, λ′) Tki j . (27)

Note here at each Gaussian point, the magnetization vector should be first transformed from the spherical source-centred CCS to
the spherical observation-centred CCS. According to the GLQI decomposition (Stroud & Secrest 1966; Ku 1977; von Frese et al. 1981a;
Asgharzadeh et al. 2007, 2008; Wild-Pfeiffer 2008; Grombein et al. 2010; Li et al. 2011), the integrals in eqs (22)–(24) have the least squares
numerical solutions as

V = μ0

4π

(r2 − r1) (ϕ2 − ϕ1) (λ2 − λ1)

8

L∑
nr =0

M∑
nϕ=0

N∑
nλ=0

Anr Anϕ
Anλ

fV

(
r, ϕ, λ, r̂nr , ϕ̂nϕ

, λ̂nλ

)
, (28)

Bi = μ0

4π

(r2 − r1) (ϕ2 − ϕ1) (λ2 − λ1)

8

L∑
nr =0

M∑
nϕ=0

N∑
nλ=0

Anr Anϕ
Anλ

fBi

(
r, ϕ, λ, r̂nr , ϕ̂nϕ

, λ̂nλ

)
, (29)

Bi j = μ0

4π

(r2 − r1) (ϕ2 − ϕ1) (λ2 − λ1)

8

L∑
nr =0

M∑
nϕ=0

N∑
nλ=0

Anr Anϕ
Anλ

fBi j

(
r, ϕ, λ, r̂nr , ϕ̂nϕ

, λ̂nλ

)
, (30)

where the Gauss–Legendre coefficients (Anr , Anϕ
, Anλ

) are functions of the coordinates (r̂nr , ϕ̂nϕ
, λ̂nλ

) of the (nrth, nϕ th, nλth) Gaussian
node with maximum (L, M, N) in the open interval (−1, +1). Each node is the coordinate for a zero of the nth order Legendre polynomial
that orthogonally spans the unit interval. In the application (e.g. eqs 28–30), however, the nodes must be scaled to the actual coordinates
(rnr , ϕnϕ

, λnλ
) within the tesseroid by

rnr = r̂nr (r2 − r1) + (r2 + r1)

2
, (31a)

ϕnϕ
= ϕ̂nϕ

(ϕ2 − ϕ1) + (ϕ2 + ϕ1)

2
, (31b)

λnλ
= λ̂nλ

(λ2 − λ1) + (λ2 + λ1)

2
. (31c)

These expressions, such as the eqs (25)–(27), are relatively simple compared with the formulas derived by Asgharzadeh et al. (2008).
The remaining issue is to select an appropriate number of Gaussian nodes so that a better result is obtained in an acceptable time. The studies
by Ku (1977) and von Frese et al. (1981a) show that the error of the solution remains essentially unchanged for different numbers of nodes
as long as the node spacing is smaller than the distance to the observing point. However, purely increasing the number of the Gaussian nodes
will result into a time-consuming process, and aspect of computational efficiency will be discussed further in Section 4.

2.5 Approximations by Cartesian elements

In this section, we employ the Cartesian elements with same volume to approximate the tesseroid. There are many kinds of the traditional
Cartesian elements, such as the point, sphere, ellipsoid, RP, layer, line and vertical cylinder etc., but in this study we just present the popular
methods of the magnetic dipole (MD) and the RP.

In the spherical source-centred CCS defined in Section 2.1, the magnetic effects at any observation point P(xQ,yQ,zQ) by the MD point
Q (ξ, η, ζ ) can be expressed as:

V = μ0

4π

(m · r

r 3

)
, (32)

Bi = μ0

4π

[
3 (m · r) ri

r 5
− mi

r 3

]
, (33)

Bi j = μ0

4π

[−15m · r

r 7
i j + 3mi · j

r 5
+ 3m j · i

r 5
+ 3δi j (m · r)

r 5

]
, (34)

where the magnetic moment m = MQ · �, r = (xQ − ξ )xQ + (yQ − η)yQ + (zQ − ζ )zQ , r = ‖r‖ is the Euler distance between the points
P(xQ,yQ,zQ) and Q (ξ, η, ζ ), and the accurate volume of the tesseroid is � = 1

3 (r 3
2 − r 3

1 )(sin ϕ2 − sin ϕ1)(λ2 − λ1), and i, j = x, y, z.
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1984 J. Du et al.

Providing the sides of the RP are parallel to the three Cartesian coordinate axis, the magnetic effects at any observation point P(xQ,yQ,zQ)
by the RP whose geometric centre is Q (ξ, η, ζ ) can be expressed as:

V = μ0

4π

(
MQ,x Ax + MQ,y Ay + MQ,z Az

)∣∣∣ξ+a/2

ξ−a/2

∣∣∣∣
η+b/2

η−b/2

∣∣∣∣∣
ζ+c/2

ζ−c/2

, (35)

Bx = μ0

4π

(
MQ,x Axx + MQ,y Axy + MQ,z Axz

)∣∣∣ξ+a/2

ξ−a/2

∣∣∣∣
η+b/2

η−b/2

∣∣∣∣∣
ζ+c/2

ζ−c/2

, (36a)

By = μ0

4π

(
MQ,x Ayx + MQ,y Ayy + MQ,z Ayz

)∣∣∣ξ+a/2

ξ−a/2

∣∣∣∣
η+b/2

η−b/2

∣∣∣∣∣
ζ+c/2

ζ−c/2

, (36b)

Bz = μ0

4π

(
MQ,x Azx + MQ,y Azy + MQ,z Azz

)∣∣∣ξ+a/2

ξ−a/2

∣∣∣∣
η+b/2

η−b/2

∣∣∣∣∣
ζ+c/2

ζ−c/2

, (36c)

Bxx = μ0

4π

(
MQ,x Axxx + MQ,y Axyx + MQ,z Axzx

)∣∣∣ξ+a/2

ξ−a/2

∣∣∣∣
η+b/2

η−b/2

∣∣∣∣∣
ζ+c/2

ζ−c/2

, (37a)

Bxy = Byx = μ0

4π

(
MQ,x Axxy + MQ,y Axyy + MQ,z Axzy

)∣∣∣ξ+a/2

ξ−a/2

∣∣∣∣
η+b/2

η−b/2

∣∣∣∣∣
ζ+c/2

ζ−c/2

, (37b)

Bxz = Bzx = μ0

4π

(
MQ,x Axxz + MQ,y Axyz + MQ,z Axzz

)∣∣∣ξ+a/2

ξ−a/2

∣∣∣∣
η+b/2

η−b/2

∣∣∣∣∣
ζ+c/2

ζ−c/2

, (37c)

Byy = μ0

4π

(
MQ,x Ayxy + MQ,y Ayyy + MQ,z Ayzy

)∣∣∣ξ+a/2

ξ−a/2

∣∣∣∣
η+b/2

η−b/2

∣∣∣∣∣
ζ+c/2

ζ−c/2

, (37d)

Byz = Bzy = μ0

4π

(
MQ,x Ayxz + MQ,y Ayyz + MQ,z Ayzz

)∣∣∣ξ+a/2

ξ−a/2

∣∣∣∣
η+b/2

η−b/2

∣∣∣∣∣
ζ+c/2

ζ−c/2

, (37e)

Bzz = μ0

4π

(
MQ,x Azxz + MQ,y Azyz + MQ,z Azzz

)∣∣∣ξ+a/2

ξ−a/2

∣∣∣∣
η+b/2

η−b/2

∣∣∣∣∣
ζ+c/2

ζ−c/2

, (37f)

where the detailed expressions for Ai, Aij and Aijk, i, j, k = x, y, z are presented in Appendix B; r = √
(ξ ′ − xQ)2 + (η′ − yQ)2 + (ζ ′ − zQ)2

in the Appendix B is the Euclidean distance between computing point and integrating point; a, b and c are the length of sides in xQ, yQ and
zQ directions of the RP and the lengths can be calculated by the ‘equivalent volume’ RP defined by Heck & Seitz (2007) as:

a = r0 (ϕ2 − ϕ1) , (38a)

b = r0 cos ϕ0 (λ2 − λ1) , (38b)

c = r2 − r1. (38c)

Note that all the points, magnetization vector and gradient tensor are expressed in the spherical source-centred CCS. These mean that
in any observing point P(r, ϕ, λ), we should first translate the coordinates from the geocentric spherical coordinates (r, ϕ, λ) to the spherical
source-centred Cartesian coordinates (xQ, yQ, zQ) and then translate the calculated magnetic effects from the spherical source-centred CCS
to the spherical observation-centred CCS (the transformations will be presented in Section 3.2). The solutions by the Cartesian elements are
analytical and thus the computational accuracy only depends on the geometric approximation to the tesseroid and also the approximation of
the magnetization’s direction. However, adopting the subdividing technique (Section 3.1), both two kinds of errors will be suppressed.
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Magnetic fields of a tesseroid 1985

Figure 2. Sketch map of the subdivision of 2 × 2 × 2 for a spherical prism.

3 S U B D I V I S I O N T E C H N I Q U E A N D T R A N S F O R M AT I O N S B E T W E E N D I F F E R E N T
C O O R D I NAT E S Y S T E M S

3.1 Subdivision technique

To obtain a more accurate result, we can subdivide the tesseroid into a number of tesseroids with small geometric scales (a subdivision of
2 × 2 × 2 for a SP is shown in Fig. 2). Assuming the numbers of subdivided tesseroids in latitude, longitude and radial are nx, ny and nz,
respectively, due to the principle of superposition, we can summarize the magnetic effects of each tesseroid to obtain the total magnetic effects
as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V

Bi

Bi j

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=
nx ×ny×nz∑

m=1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

V (Mm)

Bi (Mm)

Bi j (Mm)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (39)

In this case, the direction of Mm in each subdivided tesseroid is constant in each subdivided tesseroid-centred Cartesian coordinates but
variable in the whole tesseroid-centred Cartesian coordinates. Therefore, the subdivision technique can reduce the approximate error of the
actually constant magnetized direction in the whole tesseroid-centred spherical coordinates. In general, the ratio among nx, ny and nz can be
determined by the geometric ratio of the ‘equivalent’ lengths in the three directions in eq. (38) approximately.

3.2 Coordinates and magnetic fields transformations

From the study above, there is the necessity to transform the magnetization vector, magnetic field vector and its gradient tensor from one
local centred CCS to another local centred CCS. Here, supposing there are two local CCSs (x, y, z) and (x∗, y∗, z∗) shown in Fig. 3, where
the origins are points P(r, ϕ, λ) and Q(r∗, ϕ∗, λ∗), respectively. With the aid of a conventional global geocentric CCS (X, Y, Z), we first give
the position vector of point P in the point Q centred local CCS as:⎡
⎢⎢⎢⎣

x

y

z

⎤
⎥⎥⎥⎦ = W

⎡
⎢⎢⎢⎣

r cos ϕ cos λ − r∗ cos ϕ∗ cos λ∗

r cos ϕ sin λ − r∗ cos ϕ∗ sin λ∗

r sin ϕ − r∗ sin ϕ∗

⎤
⎥⎥⎥⎦ , (40)

where the complete transformation matrix W is given by (Uieda 2012)

W =

⎡
⎢⎢⎢⎣

− sin (ϕ∗) cos (λ∗) − sin (ϕ∗) sin (λ∗) cos (ϕ∗)

− sin (λ∗) cos (λ∗) 0

− cos (ϕ∗) cos (λ∗) − cos (ϕ∗) sin (λ∗) − sin (ϕ∗)

⎤
⎥⎥⎥⎦ . (41)

Besides, the magnetic vector and gradient tensor in the spherical source point Q-centred local CCS are required to be expressed in the
spherical observation point P-centred local CCS. According to the studies by Heck & Seitz (2007), Wild-Pfeiffer (2008) and Uieda (2012),
these transformations can be performed as

B = R (B∗) , (42)

∇B = R (∇B∗) RT, (43)
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1986 J. Du et al.

Figure 3. Sketch map of two spherical local CCSs (x, y, z) and (x∗, y∗, z∗) in the global geocentric SCS (r, ϕ, λ) and the global geocentric CCS (X, Y, Z).

where the superscript T stands for the transpose and corresponding transformation matrix is

R =

⎡
⎢⎢⎢⎣

cos ϑ sin ϕ sin ϕ∗ + cos ϕ cos ϕ∗ sin ϑ sin ϕ cos ϑ sin ϕ cos ϕ∗ − cos ϕ sin ϕ∗

− sin ϑ sin ϕ∗ cos ϑ − sin ϑ cos ϕ∗

cos ϑ cos ϕ sin ϕ∗ − sin ϕ cos ϕ∗ sin ϑ cos ϕ cos ϑ cos ϕ cos ϕ∗ + sin ϕ sin ϕ∗

⎤
⎥⎥⎥⎦ , (44)

and ϑ = λ∗ − λ. Likewise, the transformations for the magnetization vectors can be obtained as same as the procedure in eq. (42). Based
on these transforms and the subdivision above, we can approximate both the actual variations of the magnetization’s direction and also the
geometric shape of the SP, so that the solutions with any required level of modelling accuracy will be obtained.

4 N U M E R I C A L I N V E S T I G AT I O N S

There are no theoretical values to directly evaluate the accuracy of all the methods. Therefore, first we compare the results at satellite altitude
by our MD formulas and the RGLQI with those by previous method revised by Dyment & Arkani-Hamed (1998a) and GLQI by Asgharzadeh
et al. (2008) to investigate the validity of our methods in Sections 2.4 and 2.5. Then with the aid of subdivided technique to obtain the
approximated theoretical values, we evaluate the accuracies and computational efficiencies of all the forward methods without the subdivision
with the computing points at different altitudes and the tesseroids at different locations, respectively. Finally, our 3-D RGLQI method is
applied to calculate the magnetic effects based on a global lithospheric magnetization model.

4.1 Comparison with previous methods

A tesseroid with the geometric size of 0.25◦ × 0.25◦ × 30 km (i.e. about 28 km × 28 km × 30 km) and with the susceptibility of 0.05 SI,
the magnetization declination and inclination of DQ = 45◦ and IQ = 45◦ and the strength of 50 000 nT for the inducing field is utilized here,
which locates at equator and the upper surface of the tesseroid coincides with the Earth’s magnetic reference sphere with radii of 6371.2 km
(e.g. Finlay et al. 2010). We use the formulas (Dyment & Arkani-Hamed 1998a) of the MD to calculate the magnetic potential and vector
at an altitude of 300 km in the region of 10◦S–10◦N and 10◦W–10◦E with data spaces of 0.125◦ and 0.125◦. Then the magnetic potential
and vector by the MD method in Section 2.5 is utilized to compare with those by previous method. The results by these two methods are
completely same, which suggests the validity of the algorithms by Cartesian elements in Section 2.5 and further our MD method is extended
to the magnetic gradient tensor fields. Besides, we also compare our revised GLQI method with that by Asgharzadeh et al. (2008) and the
forward results by these two kinds of formulas are also completely same but our expressions are concise and thus the computational times
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Magnetic fields of a tesseroid 1987

are decreased by our RGLQI method about 14 per cent for magnetic potential, 6 per cent for magnetic vector and 19 per cent for magnetic
tensor, respectively.

4.2 Analysis of forward modelling error and computational efficiency

Adopting the same model as described in Section 4.1 but with the magnetized declination DQ = 0◦ and the magnetized inclination IQ =
90◦, we choose the magnetic potential V, Bz and Bzz components on behalf of all the magnetic effects above the geocentric axis of the
tesseroid at the altitude of 300 km to investigate the convergences of all methods as the number of subdivision increasing. The results in
Fig. 4 show that, as the number of subdivision increasing, the magnetic effects by all methods tend to the constant values, but the speeds of
the convergences are different. The results in Fig. 4 show that the convergence rate of 3-D RGLQI with fist- and higher order node is the
highest, which indicates that computational efficiencies of 3-D RGLQI with first- and higher order node are better than others. Based on
the convergences in Fig. 4, the results by the 3-D RGLQI method with the subdividing numbers of 20 (in latitude) × 20 (in longitude) ×
20 (in radial) in three directions and Gaussian nodes of 10 are utilized as the theoretical values. Using the approximated theoretical values,
we investigate the relative errors of all methods without the subdivisions. The corresponding results of V, Bz and Bzz components along
the latitudinal profiles with a constant longitude of 0◦ over the centre of the tesseroid are shown in Fig. 5, which suggest that the MD and
3-D RGLQI with zero-order node will lead to relatively large errors at the altitude of 300 km to higher than 0.01 per cent for magnetic
potential and about 1 per cent for magnetic vector and gradient tensor. Besides, due to the difference of the calculation for the volume of
each subdivided tesseroid, there is little difference between the results by MD and 3-D RGLQI with zero-order node, where the volume of
former is accurate but the latter is approximated by integration. In addition, based on the Fig. 5, we find that the modelling accuracies of TSE
are better than those by the MD and the 3-D RGLQI with zero-order node but a little worse than those by the RP and the 3-D RGLQI with
first-order node. As same as the theoretical analysis in the Section 2.3, the error of V decays most slowly as l increasing but most quickly
for Bij for the TSE method. The errors of the magnetic potential by all methods are lower than those of the magnetic vector and gradient
tensor and those of the gradient tensor is the highest, and all the maximum errors appear above and around the sources. In addition, there are
some ‘dips’ in the Fig. 5. These ‘dips’ of the forward modelling errors are caused by the geometric differences between the tesseroid and its
approximation by the dipole(s) or the RP. The similar ‘dips’ also exists in the forward modelling errors for gravity effects (e.g. Lane 2009;
Li et al. 2011).

To analyse the forward modelling errors of all methods when the computing points are at a low altitude, the same model as described
above in Section 4.2 but with the altitude of 30 km for the observations is adopted here. Similarly with Fig. 4, the Fig. 6 shows the convergences
of all methods as the number of subdivision increasing but the speeds of the convergences become slower than those in Fig. 4. According
to the convergences in Fig. 6, the forward modelling results by the 3-D RGLQI method with the subdividing numbers of 20 (in latitude) ×
20 (in longitude) × 20 (in radial) in three directions and Gaussian nodes of 10 are still utilized as the theoretical values. The profiles of the
relative errors in Fig. 7 show that all the errors at the altitude of 30 km are higher than those at the altitude of 300 km and the theoretical
values are also increased at the same time. As the Gaussian nodes increasing, the modelling accuracies of RGLQI become better and better
but are improved very slowly near the sources. Modelling by the RP also shows the relatively accurate results but becomes worse when the
tesseroid get close to the Earth’s pole (Fig. 8, where the tesseroid is located at 86◦N and 0◦E). In fact, all the methods are influenced by the
shape of the source but the RP is the worst. This indicates that the RP method is relatively worse to be utilized when the source located at
the high latitude. However, the geometric shape of the tesseroid almost has relatively little impacts on the modelling errors by TSE and 3-D
RGLQI. Because of the volume of the source is decreased when the tesseroid get close to the Earth’s pole, there is a better accuracy. Both
Figs 7 and 8 show that the modelling errors will be deduced when the computing points far away the source. Thus to understand the speed
of error’s decay with distance increasing, we use the same model located at the equator to calculate the relative errors by all methods as the
altitudes of computing points increasing. The corresponding results in Fig. 9 depict that (i) the errors of 3-D RGLQI with the Gaussian node
of higher than second-order decay very quickly and (ii) there are the differences between the errors by odd-order and even-order 3-D GLQI
methods because of the different distribution of Gaussian nodes (e.g. Wild-Pfeiffer 2008). The errors of the TSE being similar with first-order
3-D RGLQI decay more quickly than those of the MD method and the zero-order GLQI method. Besides, the errors of the RP method is
lower than those by the first-order 3-D RGLQI at the low altitude and tend to be constant from a higher altitude.

To investigate the computational efficiency, we first obtained the relative time of all methods using the same model and the same
number of subdivision (nx, ny and nz). As the number (M, N, L) of the Gaussian nodes increasing, the error by the 3-D RGLQI de-
creases, however, at the same time, the computing time rises at a high rate nearly proportional to (M + 1)nx (N + 1)ny (L + 1)nz (shown
in Table 1 and Fig. 10). Nevertheless, the subdivision technique can be used to improve the accuracy and reduce the computational bur-
den of each method in an actual application. If the maximum relative error is given to be 0.01 per cent at the altitude of 30 km, we
statistically analyse the required subdivision numbers and relative computing times of all methods shown in Table 2. The results show
that (i) the computing time of the magnetic potential is generally lower than those of the magnetic vector and the gradient tensor and
(ii) the required number of subdivision is reduced as the order of Gaussian node increasing but the corresponding computational time
is not always decreased, which indicates that choosing a reasonable numbers of the Gaussian node and the subdivision will produce the
highest efficiency. In this example, the reasonable numbers of Gaussian node and subdivision should be in the range of 3–4 and 1–2,
respectively.
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Figure 4. Convergence of forward modelling V, Bz and Bzz components by the different method as the numbers of subdivisions increasing along the latitudinal
profiles with constant longitude of 0◦ over the centre of the tesseroid. Magnetic fields caused by a tesseroid at an altitude at 300.0 km relative to the Earth’s
magnetic reference sphere (i.e. 6371.2 km). The tesseroid with the size of 0.25◦ × 0.25◦ × 30 km and with the susceptibility of 0.05 SI, the magnetization
declination and inclination of DQ = 0◦ and IQ = 90◦ and the strength of 50 000 nT for the inducing field is utilized. The tesseroid is located at (0◦, 0◦).
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Magnetic fields of a tesseroid 1989

Figure 5. Profiles of the relative percentage errors in the form of a log-plot for the magnetic potential V, vector component Bz and tensor element Bzz at the
altitude of 300 km along the longitude of 0◦ by different forward modelling method. The parameters of the model are same as those in Fig. 4.

 at B
ibliothek des W

issenschaftsparks A
lbert E

instein on Septem
ber 1, 2015

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


1990 J. Du et al.

Figure 6. Convergence of forward modelling V, Bz and Bzz components at the altitude of 30 km by the different method as the numbers of subdivisions
increasing along the latitudinal profiles with constant longitude of 0◦ over the centre of the tesseroid. The parameters of the model are same as those in Fig. 4.
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Magnetic fields of a tesseroid 1991

Figure 7. Profiles of the relative percentage errors in the form of a log-plot for the magnetic potential V, vector component Bz and tensor element Bzz at the
altitude of 30 km along the longitude of 0◦ by different forward modelling method. The parameters of the model are same as those in Fig. 6.
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Figure 8. Profiles of the relative percentage errors in the form of a log-plot for the magnetic potential V, vector component Bz and tensor element Bzz at the
altitude of 30 km along the longitude of 0◦ by different forward modelling method. The parameters of the model are same as those in Fig. 6 but the tesseroid is
located at (89.6◦N, 0◦).
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Magnetic fields of a tesseroid 1993

Figure 9. Relative percentage errors in the form of a log-plot changing with altitudes of computing points for the magnetic potential V, vector component Bz

and tensor element Bzz by different forward modelling methods. The parameters of the model are same as those in Fig. 7. The computing points are just above
the centre of the tesseroid. Data space is 0.5 km in altitude direction.
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Table 1. Relative computational times for different forward modelling methods
without any subdivision.

Method Relative time of V Relative time of Bz Relative time of Bzz

MD 69.2 86.5 103.8
RP 207.6 259.5 173.0
TSE 86.6 103.8 138.4
RGLQI_0-0-0 34.6 34.6 51.9
RGLQI_1-1-1 224.9 294.1 311.4
RGLQI_2-2-2 761.2 1003.5 1003.5
RGLQI_3-3-3 1851.2 2370.2 2370.2
RGLQI_4-4-4 3529.4 4636.7 4654.0
RGLQI_5-5-5 6003.5 7906.6 8114.2
GLQI_5-5-5 6989.6 8373.7 10 000.0∗

MD, magnetic dipole; RP, rectangular prism; TSE, Taylor’s series expansion;
RGLQI_0-0-0, revised Gauss–Legendre quadrature integration with Gaussian node
of zero; GLQI_5-5-5, Gauss–Legendre quadrature integration with Gaussian node
of five. ∗The time corresponding to 10 000.0 is utilized as the maximum to calculate
the relative times for all the magnetic effects.

Figure 10. Relative computational times for different forward modelling methods without any subdivision. The parameters are the same as those of the model
in Fig. 7.

4.3 Application to a global lithospheric magnetization model

To demonstrate the actual application of the 3-D RGLQI method, the magnetic potential, vector and gradient tensor fields at 300 and 30 km
altitudes above the Earth’s magnetic reference sphere, respectively, are computed globally using a global lithospheric magnetization model.
Meanwhile, the results by the traditional MD method based on the same magnetization model are calculated and compared with those by the
3-D RGLQI method.

The global lithospheric magnetization model with a resolution 0.25◦ × 0.25◦ is constructed by combing the oceanic remanent magneti-
zation model of Masterton et al. (2013) and the induced magnetization model of Hemant & Maus (2005). This VIM model is multiplied by

Table 2. Required numbers of subdivisions and the corresponding relative computational times for
different forward modelling methods providing the maximum error is lower than 0.01 per cent.

Method Required number of subdivision Relative time

V Bz Bzz V Bz Bzz

MD 13 × 13 × 13 26 × 26 × 26 32 × 32 × 32 1388.9 3777.8 10 000∗
RP 8 × 8 × 8 3 × 3 × 3 3 × 3 × 3 85.5 2.7 1.7
TSE 13 × 13 × 13 5 × 5 × 5 6 × 6 × 6 85.5 7.5 16.8
RGLQI_0-0-0 13 × 13 × 13 26 × 26 × 26 32 × 32 × 32 79.4 1555.6 4000
RGLQI_1-1-1 3 × 3 × 3 4 × 4 × 4 5 × 5 × 5 2.9 9.3 25.2
RGLQI_2-2-2 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 2.7 2.9 2.9
RGLQI_3-3-3 1 × 1 × 1 1 × 1 × 1 2 × 2 × 2 0.6 0.8 6.7
RGLQI_4-4-4 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 1.2 1.5 1.5
RGLQI_5-5-5 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 2.2 2.6 2.6
GLQI_5-5-5 1 × 1 × 1 1 × 1 × 1 1 × 1 × 1 2.6 2.8 3.2
∗The time corresponding to 10 000.0 is utilized as the maximum to calculate the relative times for
all the magnetic effects providing the maximum error is lower than 0.01 per cent. Note here that the
reference value 10 000 in Table 2 is different from the reference value 10 000 in Table 1.
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Magnetic fields of a tesseroid 1995

an averaged thickness of global magnetized lithosphere to derive a global ellipsoidal single layer model. In this paper, the average thickness
of 26.5 km (Vervelidou & Thébault 2014) and the WGS84 reference ellipsoid as the top surface of the VIM are adopted.

According to the analysis in Section 4.2, the necessary numbers of the Gaussian nodes and subdivisions are determined to be 1×1×1 and
1 × 1 × 1 at the altitude of 300 km and 4 × 4 × 4 and 1 × 1 × 1 at the altitude of 30 km, respectively. However, for every computing point,
because of the horizontal decay of the magnetic effects, there may be no necessity to calculate the global contributions. Fig. 11 demonstrates
the decay features of the V, Bx, Bz and Bxx, Bzx, Bzz components (representatives for all the magnetic effects), where the inclination and the
declination of the inducing field are 0◦ and 0◦ since in this case the horizontal decay is slowest than those with other inclinations. The profiles
of amplitude normalized curves are along the longitude of 0◦ from the central axis of the SP at the equator. The results in Fig. 11 show that
the magnetic potential V decays more slowly than those of other components, and the decay at the altitude of 30 km is more quickly than that
at the altitude of 300 km. Based on these decay features, to improve the computational efficiency but not affect the accuracy too much, as
expected, only the magnetic sources inside the spherical angles of 35◦ at the altitude of 300 km and 5◦ at the altitude of 30 km are roughly
taken into the computation. Adopting the MD method, in this case, the accuracy is expected to be ensured because of the long distance
between the sources and the computing point. The magnetic effects by the magnetic sources beyond the spherical angles of 35◦ at the altitude
of 300 km and 5◦ at the altitude of 30 km are shown in Figs 12 and 13, respectively, which are dominated by the long wavelength components
but the amplitudes are not very low. Furthermore, because of the different decay features, the effect of the magnetic potential is the strongest
and that of the gradient is the weakest. Therefore, if modelling the relatively long wavelengths field (e.g. Meyer et al. 1985) or 3-D inversion
(Du et al. 2014), these magnetic effects from outside should be reasonably considered.

Utilizing the forward parameters above, the magnetic effects of the global VIM at the altitudes of 300 and 30 km are calculated and
shown in Figs 14 and 15, respectively. The results in Figs 14 and 15 suggest that, (i) the magnetic potential, vector and gradient tensor are
in the range of about −1.242 × 107–+1.148 × 107 nT·m, −31.549–+36.743 nT and −0.162–+0.187 pT m−1 at the altitude of 300 km and

Figure 11. The horizontal decay features of the V, Bx, Bz and Bxx, Bzx, Bzz components at the altitudes of 30 km (a) and 300 km (b), where the inclination
and the declination of the inducing field are 0◦ and 0◦. The profiles of amplitude normalized curves are along the longitude of 0◦ from the central axis of the
spherical prism. The other parameters are the same as those in Figs 7 and 8.

 at B
ibliothek des W

issenschaftsparks A
lbert E

instein on Septem
ber 1, 2015

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


1996 J. Du et al.

Figure 12. The magnetic effects of the VIM beyond the spherical angles of 35◦ at the altitudes of 300 km by the MD method. (a) is the magnetic potential V,
(b), (c) and (d) are the Bx, By and Bz components of the magnetic vector and (e)–(j) are the Bxx, Bxy, Bxz, Byy, Byz and Bzz elements of the magnetic gradient
tensor. The dark green lines are the plate boundaries by Bird (2003). All maps are shown on a Hammer projection centred at 90◦E.

about −3.659 × 107–+3.684 × 107 nT·m, −427.309–+352.048 nT and −11.020–+10.800 pT m−1 at the altitude of 30 km and (ii) the
values of Bxx + Byy + Bzz are almost equal to be zeros if ignoring the computing round-off errors which indirectly indicates the validity of
our methods. Meanwhile, we also employ the MD method to compute the magnetic effects by the global VIM. The differences between the
magnetic effects by the 3-D RGLQI and the MD method at the altitude of 300 km are very weak. As illustrated in Fig. 16, at the altitude of
30 km these differences are very strong relative to the results at the altitude of 300 km, especially in the low/middle latitudes. The relative
errors of the magnetic potential, vector and gradient tensor are about 0.25 per cent, 1 per cent and 10 per cent, respectively. These levels of the
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Figure 13. The magnetic effects of the VIM beyond the spherical angles of 5◦ at the altitudes of 30 km by the MD method. (a) is the magnetic potential V, (b),
(c) and (d) are the Bx, By and Bz components of the magnetic vector and (e)–(j) are the Bxx, Bxy, Bxz, Byy, Byz and Bzz elements of the magnetic gradient tensor.
The dark green lines are the plate boundaries by Bird (2003). All maps are shown on a Hammer projection centred at 90◦E.

relative errors coincide with the results in Fig. 9. The relative errors of the magnetic potential and vector are lower than that of the gradient
tensor, which is caused by the ‘dips’ in Fig. 9. If the tesseroids with larger geometric size but not the size of 0.25◦ × 0.25◦ are used here, the
relative errors in Figs 9 and 16 will increase. Therefore, the error analysis suggests that the MD method is more valid at the high altitude of
the computing point and will introduce relatively large errors when the computing points at the low altitudes.
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Figure 14. The magnetic effects of the global VIM at the altitudes of 300 km by the 3-D RGLQI with 1 × 1 × 1 as the number of Gausian nodes and 1 × 1
× 1 as the number of subdivision. (a) is the magnetic potential V, (b), (c) and (d) are the Bx, By and Bz components of the magnetic vector and (e)–(j) are the
Bxx, Bxy, Bxz, Byy, Byz and Bzz elements of the magnetic gradient tensor. The dark green lines are the plate boundaries by Bird (2003). All maps are shown on a
Hammer projection centred at 90◦E.

5 D I S C U S S I O N A N D C O N C LU S I O N S

As the simple and popular volume discretization in geodetic or geocentric spherical coordinate system (SCS), the tesseroid directly incorporate
the curvature of the Earth and thus is chosen naturally to process and interpret the regional and global magnetic anomaly field data. However,
the magnetic effects of the tesseroid comprise elliptical integrals that cannot be solved analytically. Referring to the forward methods for
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Magnetic fields of a tesseroid 1999

Figure 15. The magnetic effects of the global VIM at the altitudes of 30 km by the 3-D RGLQI with 4 × 4 × 4 as the number of Gausian nodes and 1 × 1
× 1 as the number of subdivision. (a) is the magnetic potential V, (b), (c) and (d) are the Bx, By and Bz components of the magnetic vector and (e)–(j) are the
Bxx, Bxy, Bxz, Byy, Byz and Bzz elements of the magnetic gradient tensor. The dark green lines are the plate boundaries by Bird (2003). All maps are shown on a
Hammer projection centred at 90◦ E.

gravity effects in the literature, we systematically present three kinds of forward modelling methods for the magnetic effects of the tesseroid
in the geocentric SCS, including the TSE method, the revised GLQI approach and the approximations by traditional Cartesian elements, such
as the MD and RP. The nature of our formulas is same with that by Asgharzadeh et al. (2008), but based on the Cartesian integral kernels
(Grombein et al. 2013) and the assumption that the magnetized direction is constant our derived formulas are simpler and thus the computing
time is reduced. The MD method is also naturally same with that by Dyment & Arkani-Hamed (1998a), but based on the general frame by
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Figure 16. The differences between the magnetic effects of the global VIM at the altitudes of 30 km by the 3-D RGLQI and those by the MD method. (a) is
the magnetic potential V, (b), (c) and (d) are the Bx, By and Bz components of the magnetic vector and (e)–(j) are the Bxx, Bxy, Bxz, Byy, Byz and Bzz elements of
the magnetic gradient tensor. The dark green lines are the plate boundaries by Bird (2003). All maps are shown on a Hammer projection centred at 90◦ E.

the Cartesian elements, we extend the MD method to forward modelling the magnetic gradients and other elements such as lines and layers
can be easily utilized. Besides, the magnetic effects caused by a 2-D geological source can also be obtained through this frame. However, it
is difficult to balance the computing accuracy and the time if any single forward modelling method is employed. Therefore, we utilize the
subdivision technique, which makes it available to forward model the magnetic potential, vector and gradient tensor fields at any position on
the globe caused by the tesseroid with any geometric scale.
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By numerical tests, we compared the computing accuracy of the forward modelling methods and some conclusions are summarized as
follows:

(i) The accuracy of the presented approaches is mainly sensitive to the distance between the source point and the computation point and
also the tesseroid’s geometrical shape and size changing with the latitude and depth of the source.

(ii) The accuracy of the magnetic potential is higher than that of the vector or tensor response. The tensor errors are the largest but they
decrease more quickly with distance from the source.

(iii) Since the geometrical differences of the dipole, a set of the dipoles and the RP with the tesseroid, there are some ‘dips’ in the forward
modelling errors. The locations of these ‘dips’ are mainly dependant on the geometrical shape of the source.

(iv) The GLQI with zero-order node has an almost same accuracy with that of the MD method. The difference between them just is the
calculation for the volume of the prism. The volume for the MD is accurate but for the GLQI is approximated by integration.

(v) The accuracy of TSE is better than that by the MD or the 3-D RGLQI with zero-order node but a little worse than those by the 3-D
RGLQI with first- and higher-order nodes.

(vi) If the source located in a low latitude region, the modelling accuracy by RP is relative better than those of the MD, TSE and the 3-D
RGLQI with zero- and first-order nodes in the near zone but becomes more and more worse when the source towards the polar regions.

(vii) The numbers of the Gaussian node in the radial, latitude and longitude directions are better to be determined by the geometrical ratio
of the ‘equivalent volume’ RP. As the number of the Gaussian node increases, the accuracy of the 3-D GLQI becomes better and better.
However, at the short distance from the source, the rate of convergence is very slow.

(viii) Due to the subdivision technique, the accuracies of all methods are improved but the rates of convergence are different, where the
RP and the 3-D GLQI with second- and higher-order nodes have the fastest convergence speed as the number of the subdivision increasing.

We also numerically investigate the computing efficiency of the forward modelling methods and some points come in mind below:

(i) Purely considering the computing time for all methods without any subdivision, in general, the magnetic potential is fastest and the
gradient tensor is slowest. The computing times of the 3-D GLQI with zero-order node, the MD, the TSE, the RP and the 3-D GLQI with
first- and higher order nodes successively increase. As the number (M, N, L) of the Gaussian nodes increasing, the computing time rises at a
high rate nearly proportional to (M + 1)(N + 1)(L + 1). If the number (nx, ny, nz) of the subdivision is used, the computing time of the 3-D
GLQI rises at a high rate nearly proportional to (M + 1)nx (N + 1)ny (L + 1)nz .

(ii) Providing the maximum error is given, the required number of the subdivision and the corresponding computing time of each method
are different. The MD and the 3-D GLQI with zero-order node are the most time-consuming. As the number of the Gaussian node increasing,
the required number of the subdivision reduces but the corresponding computing time is not always decrease. There is the most optimal
number of Gaussian node but will vary if the source and location of the observation changing. Combined with the suitable number of
subdivisions, the GLQI method with reasonable number of Gaussian nodes is the best forward modelling method. Therefore, in the actual
applications, the optimal numbers of the subdivision and Gaussian node should be investigated in advance.

In the actual applications using the tesseroids with the geometrical size of 0.25◦ × 0.25◦, we obtain some conclusions as follows:

(i) At the satellite altitude such as 300 km, the relative errors of the magnetic potential, vector and gradient tensor by the MD method are
lower than 0.1, 2 and 2 per cent, respectively. However, at the low altitude such as 30 km, the relative errors of the magnetic potential, vector
and gradient tensor by the MD method are higher than 1, 10 and 10 per cent, respectively.

(ii) For one tesseroid, the magnetic effects will decay to a very low value close to zero as the distance from the source increasing. Therefore,
in traditional, only the contributions of the sources inside a special region are considered. However, our results show that the contributions of
the sources out the region are not very low and dominated by long wavelengths, which should not be ignored.

The derived formulas and their calculating algorithms in this paper will sever the purpose that the 3-D magnetization structure modelling
with lithospheric vertical scales and global, continent or large regional horizontal scales (Du et al. 2013, 2014). Meanwhile, this work is also
helpful into magnetic field modelling, data processing and interpretations by inversing approaches (e.g. Whaler 1994; Purucker et al. 2002;
Kim et al. 2013). Nevertheless, in this paper, the numbers of Gaussian nodes and the subdivisions are uniform, which results into much price
to pay for the computing time. Therefore, in the near future, based on the error attenuation feature of the magnetic effects, an adaptive frame
will be developed according to the distance between the source point and the computation point, for example the approach performed by
Dransfield (1994), Li et al. (2011) and Uieda et al. (2011) for gravity effects.
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A P P E N D I X A : E X P R E S S I O N S F O R TAY L O R ’ S S E R I E S E X PA N S I O N

The detailed expressions in eq. (21) are presented as follows:

Ku = τ

l3
, (A1)

Kv = xi , (A2)

Lv = 3xi x j

l2
− δi j , (A3)

Nv = 3

l4

(
5xi x j xk + δi jkl2 − xkδi j l

2
)
, (A4)

∂r ′ Ku = ∂Ku

∂r ′ = 1

l5

[
2r ′ cos ϕ′l2 − 3τ

(
r ′ − r cos ψ

)]
, (A5)

∂ϕ′ Ku = ∂Ku

∂ϕ′ = 1

l5

(
−r ′2l2 sin ϕ′ + 3τrr ′ cos(ϕ′) ψ

)
, (A6)

∂λ′ Ku = ∂Ku

∂λ′ = 3τrr ′ cos(λ′) ψ

l5
, (A7)

∂2
r ′ Ku = ∂2 Ku

∂r ′2 = cos ϕ′

l6

[
2l3 − 6r ′l(r ′)l2 − 9r ′2l + 15r ′3l(r ′) + 3rr ′ cos ψ

(
2l − 5r ′l(r ′)

)]
, (A8)

∂2
ϕ′ Ku = ∂2 Ku

∂ϕ′2 = r ′2

l6

[
− cos ϕ′l3 + 3 sin ϕ′l(ϕ

′)l2 + 3rr ′
(
−l sin ϕ′ cos(ϕ′) ψ + l cos ϕ′ cos(ϕ′2) ψ − 5 cos ϕ′l(ϕ

′) cos(ϕ′) ψ
)]

, (A9)

∂2
λ′ Ku = ∂2 Ku

∂λ′2 = 3τrr ′

l6

(
l cos(λ′2) ψ − 5l(λ

′) cos(λ′) ψ
)

, (A10)

∂m Kv = (xi )
(m)

, ∂2
m Kv = (xi )(

m2) , m = r ′, ϕ′, λ′, (A11)

∂m Lv = ∂Lv

∂m
= 3

l3

[(
xi x j

)(m)
l − 2xi x j l

(m)
]
, m = r ′, ϕ′, λ′, (A12)

∂2
m Lv = ∂2 Lv

∂m2
= 3

l4

[(
xi x j

)(m2) l2 − 4
(
xi x j

)(m)
l (m)l − 2xi x j l(

m2)l + 6xi x j

(
l (m)

)2
]
, m = r ′, ϕ′, λ′, (A13)
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∂m Nv = ∂ Nv

∂m

= 3

l5

{
5(xi x j xk)(m)l − 20xi x j xkl (m), m = r ′, ϕ′, λ′, + [

(δi jk)(m) − δi j (xk)(m)
]

l3 + 2(xkδi j − δi jk)l (m)l2,
}

(A14)

∂2
m Nv = ∂2 Nv

∂m2

= 3

l6

[
5
(
xi x j xk

)(m2) l2 − 40
(
xi x j xk

)(m)
l (m)l

− 20xi x j xkl(m2)l + 100xi x j xk

(
l (m)

)2

− δi j (xk)(m2) l4 + 4δi j (xk)(m) l (m)l3 + 2δi j xkl(m2)l3 − 6xkδi j

(
l (m)

)2
l2

− 2δi jkl(m2)l3 + 6δi jk

(
l (m)

)2
l2 − 4

(
δi jk

)(m)
l (m)l3 + (

δi jk

)(m2) l4
]

, m = r ′, ϕ′, λ′, (A15)

l(r ′) = ∂l

∂r ′ = r ′ − r cos ψ

l
, (A16)

l(ϕ
′) = ∂l

∂ϕ′ = −rr ′ cos(ϕ′) ψ

l
, (A17)

l(λ
′) = ∂l

∂λ′ = −rr ′ cos(λ′) ψ

l
, (A18)

l(r ′2) = ∂2l

∂r ′2 = 1

l

[
1 −

(
l(r ′)

)2
]

, (A19)

l(ϕ
′2) = ∂2l

∂ϕ′2 = rr ′

l2

(
−l cos(ϕ′2) ψ + l(ϕ

′) cos(ϕ′) ψ
)

, (A20)

l(λ
′2) = ∂2l

∂λ′2 = rr ′

l2

(
−l cos(λ′2) ψ + l(λ

′) cos(λ′) ψ
)

, (A21)

(
xi x j

)(m) = ∂

∂m

(
xi x j

) = (xi )
(m) x j + xi

(
x j

)(m)
, m = r ′, ϕ′, λ′, (A22)

(
xi x j

)(m2) = ∂2

∂m2

(
xi x j

) = (xi )(
m2) x j + 2 (xi )

(m) (x j

)(m) + xi

(
x j

)(m2)
, m = r ′, ϕ′, λ′, (A23)

(
xi x j xk

)(m) = ∂

∂m

(
xi x j xk

) = (xi )
(m) x j xk + xi

(
x j

)(m)
xk + xi x j (xk)(m)

, m = r ′, ϕ′, λ′, (A24)

(
xi x j xk

)(m2) = ∂2

∂m2

(
xi x j xk

)

= (xi )(
m2) x j xk + 2 (xi )

(m) (x j

)(m)
xk

+ 2 (xi )
(m) x j (xk)(m) + xi

(
x j

)(m2) xk

+ 2xi

(
x j

)(m)
(xk)(m) + xi x j (xk)(m2)

, m = r ′, ϕ′, λ′, (A25)

(
δi jk

)(m) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− (xi )
(m)

, i 
= j, j = k

− (
x j

)(m)
, j 
= i, i = k

−2 (xi )
(m)

, i = j, j = k

0, else

, m = r ′, ϕ′, λ′, (A26)
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(
δi jk

)(m2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− (xi )(
m2) , i 
= j, j = k

− (
x j

)(m2)
, j 
= i, i = k

−2 (xi )(
m2) , i = j, j = k

0, else

, m = r ′, ϕ′, λ′, (A27)

(xn)(m) = ∂

∂m
xn, (xn)(m2) = ∂2

∂m2
xn, m = r ′, ϕ′, λ′, n = i, j, k, (A28)

cos(ϕ′) ψ = ∂

∂ϕ′ cos ψ = sin ϕ cos ϕ′ − cos ϕ sin ϕ′ cos
(
λ′ − λ

)
, (A29)

cos(ϕ′2) ψ = ∂2

∂ϕ′2 cos ψ = − sin ϕ sin ϕ′ − cos ϕ cos ϕ′ cos
(
λ′ − λ

)
, (A30)

cos(λ′) ψ = ∂

∂λ′ cos ψ = − cos ϕ cos ϕ′ sin
(
λ′ − λ

)
, (A31)

cos(λ′2) ψ = ∂2

∂λ′2 cos ψ = − cos ϕ cos ϕ′ cos
(
λ′ − λ

)
, (A32)

∂

∂r ′ x1 = cos ϕ sin ϕ′ − sin ϕ cos ϕ′ cos
(
λ′ − λ

)
, (A33)

∂

∂r ′ x2 = cos ϕ′ sin
(
λ′ − λ

)
, (A34)

∂

∂r ′ x3 = − cos ψ, (A35)

∂2

∂r ′2 x1 = ∂2

∂r ′2 x2 = ∂2

∂r ′2 x3 = 0, (A36)

∂

∂ϕ′ x1 = r ′ [cos ϕ cos ϕ′ + sin ϕ sin ϕ′ cos
(
λ′ − λ

)]
, (A37)

∂

∂ϕ′ x2 = −r ′ sin ϕ′ sin
(
λ′ − λ

)
, (A38)

∂

∂ϕ′ x3 = −r ′ cosϕ′
ψ, (A39)

∂2

∂ϕ′2 x1 = r ′ [− cos ϕ sin ϕ′ + sin ϕ cos ϕ′ cos
(
λ′ − λ

)]
, (A40)

∂2

∂ϕ′2 x2 = −r ′ cos ϕ′ sin
(
λ′ − λ

)
, (A41)

∂2

∂ϕ′2 x3 = −r ′ cos(ϕ′2) ψ, (A42)

∂

∂λ′ x1 = r ′ sin ϕ cos ϕ′ sin
(
λ′ − λ

)
, (A43)
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∂

∂λ′ x2 = r ′ cos ϕ′ cos
(
λ′ − λ

)
, (A44)

∂

∂λ′ x3 = −r ′ cos(λ′) ψ, (A45)

∂2

∂λ′2 x1 = r ′ sin ϕ cos ϕ′ cos
(
λ′ − λ

)
, (A46)

∂2

∂λ′2 x2 = −r ′ cos ϕ′ sin
(
λ′ − λ

)
, (A47)

∂2

∂λ′2 x3 = −r ′ cos(λ′2) ψ. (A48)

A P P E N D I X B : E X P R E S S I O N S F O R R E C TA N G U L A R P R I S M

The detailed expressions in eqs (35)–(37) are presented as follows:

Ax = η′ ln
(
ζ ′ + r

) + ζ ′ ln
(
η′ + r

) − ξ ′ arctan
η′ζ ′

ξ ′r
, (B1)

Ay = ζ ′ ln
(
ξ ′ + r

) + ξ ′ ln
(
ζ ′ + r

) − η′ arctan
ξ ′ζ ′

η′r
, (B2)

Az = ξ ′ ln
(
η′ + r

) + η′ ln
(
ξ ′ + r

) − ζ ′ arctan
ξ ′η′

ζ ′r
, (B3)

Axx = arctan

(
ξ ′ − xQ

) (
η′ − yQ

)
(
ξ ′ − xQ

)2 + r
(
ζ ′ − zQ

) + (
ζ ′ − zQ

)2
, (B4)

Axy = ln
[
r + (

ζ ′ − zQ

)]
, (B5)

Axz = ln
[
r + (

η′ − yQ

)]
, (B6)

Ayx = Axy, (B7)

Ayy = − arctan

(
ξ ′ − xQ

) (
η′ − yQ

)
(
η′ − yQ

)2 + r
(
ζ ′ − zQ

) + (
ζ ′ − zQ

)2
, (B8)

Ayz = ln
[
r + (

ξ ′ − xQ

)]
, (B9)

Azx = Axz, (B10)

Azy = Ayz, (B11)

Azz = − arctan

(
ξ ′ − xQ

) (
η − yQ

)
r
(
ζ ′ − zQ

) , (B12)

Axxx = ∂ Axx

∂xQ
=

(
η′ − yQ

) [(
ξ ′ − xQ

)2 − r
(
ζ ′ − zQ

)]

r
[(

ξ ′ − xQ

)2 + (
ζ ′ − zQ

)2
] [

r + (
ζ ′ − zQ

)] , (B13)

Axxy = ∂ Axx

∂yQ
= − (

ξ ′ − xQ

)
r
[
r + (

ζ ′ − zQ

)] , (B14)

Axxz = ∂ Axz

∂zQ
=

(
ξ ′ − xQ

) (
η′ − yQ

)
r
[(

ξ ′ − xQ

)2 + (
ζ ′ − zQ

)2
] , (B15)

Axyx = ∂ Axy

∂xQ
= − (

ξ ′ − xQ

)
r
[
r + (

ζ ′ − zQ

)] , (B16)
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Axyy = ∂ Axy

∂yQ
= − (

η′ − yQ

)
r
[
r + (

ζ ′ − zQ

)] , (B17)

Axyz = ∂ Axy

∂zQ
= −1

r
, (B18)

Axzx = ∂ Axz

∂xQ
= − (

ξ ′ − xQ

)
r
[
r + (

η′ − yQ

)] , (B19)

Axzy = ∂ Axz

∂yQ
= −1

r
, (B20)

Axzz = ∂ Axz

∂zQ
= − (

ζ ′ − zQ

)
r
[
r + (

η′ − yQ

)] , (B21)

Ayyx = ∂ Ayy

∂xQ
= − (

η′ − yQ

)
r
[
r + (

ζ ′ − zQ

)] , (B22)

Ayyy = ∂ Ayy

∂yQ
=

(
ξ ′ − xQ

) [(
η′ − yQ

)2 − r
(
ζ ′ − zQ

)]

r
[(

η′ − yQ

)2 + (
ζ ′ − zQ

)2
] [

r + (
ζ ′ − zQ

)] , (B23)

Ayyz = ∂ Ayy

∂zQ
=

(
ξ ′ − xQ

) (
η′ − yQ

)
r
[(

η′ − yQ

)2 + (
ζ ′ − zQ

)2
] , (B24)

Ayzx = ∂ Ayz

∂xQ
= −1

r
, (B25)

Ayzy = ∂ Ayz

∂yQ
= − (

η′ − yQ

)
r
[
r + (

ξ ′ − xQ

)] , (B26)

Ayzz = ∂ Ayz

∂zQ
= − (

ζ ′ − zQ

)
r
[
r + (

ξ ′ − xQ

)] , (B27)

Azzx = ∂ Azz

∂xQ
= − (

η′ − yQ

) (
ζ ′ − zQ

)
r
[(

ξ ′ − xQ

)2 + (
ζ ′ − zQ

)2
] , (B28)

Azzy = ∂ Azz

∂yQ
= − (

ξ ′ − xQ

) (
ζ ′ − zQ

)
r
[(

η′ − yQ

)2 + (
ζ ′ − zQ

)2
] , (B29)

Azzz = ∂ Azz

∂zQ
= −

(
ξ ′ − xQ

) (
η′ − yQ

) [
r 2 + (

ζ ′ − zQ

)2
]

r
[(

ξ ′ − xQ

)2 + (
ζ ′ − zQ

)2
] [(

η′ − yQ

)2 + (
ζ ′ − zQ

)2
] . (B30)
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