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Abstract One of the unanswered questions of climate change is how the biospheric uptake of carbon
responds to events such as droughts and floods. Especially, semiarid regions have received interest recently,
as they can respond very rapidly to changing environmental conditions. Here we report on a large enhanced
carbon sink over Australia from the end of 2010 to early 2012 detected using the Greenhouse Gases
Observing SATellite (GOSAT). This enhanced sink coincides with the strong La Niña episode, accompanied
by record-breaking amounts of precipitation. This precipitation led to an enhanced growth of vegetation,
resulting in large increases in biospheric carbon uptake in line with increased levels of vegetation
fluorescence. An inversion based on the satellite retrievals confirms this strong anomaly in the sink of
roughly 0.77 ± 0.10 Pg C yr−1 or 1.5 ± 0.2 Pg C in total for the April 2010 to December 2011 period, which
corresponds to 25% of the multiyear annual average gross primary production of the Australian biosphere.

1. Introduction

Variability in the observed growth rate of atmospheric carbon dioxide (CO2) has recently been linked mostly
to variations in the terrestrial ecosystem uptake [Cox et al., 2013]. These interannual variations can be up to
1–2 ppm (Dr. Pieter Tans, NOAA/ESRL (www.esrl.noaa.gov/gmd/ccgg/trends/)) and even larger on regional
scales. What drives these variations is not entirely clear yet, as drought/flooding, temperature, fire emissions,
and land use changes can all play a significant role in changing the carbon land sink of a region [Keppel-Aleks
et al., 2014]. The focus of most studies has previously been on tropical rainforests as the main driver for changes
in the land carbon uptake [Cox et al., 2013; Wang et al., 2013]. Recently, however, several studies have shown
the importance of semiarid regions in the CO2 interannual variability [Rotenberg and Yakir, 2010; Poulter et al.,
2014]. Due to the soil moisture-limited nature of these regions, the response to drought and flooding condi-
tions can be fast and large. An anomaly in the carbon uptake of 1.3 ± 0.6 Pg C yr−1 was estimated for 2011 in
Poulter et al. [2014], driven almost purely by uptake in semiarid regions of the Southern Hemisphere.

Dynamic global vegetation models that describe these processes, such as Organizing Carbon and Hydrology
in Dynamic Ecosystems (http://orchidee.ipsl.jussieu.fr) or the Lund-Potsdam-Jena (LPJ) model [Sitch et al.,
2003], still contain many uncertainties and can differ significantly between each other [Keenan et al., 2012].
Satellite remote sensing, with its global coverage, can be a valuable tool to study the carbon cycle either
by observing the CO2 concentration directly or by deriving other indirectly related parameters (e.g., plant
fluorescence). Greenhouse Gases Observing Satellite (GOSAT) and the recently launched Orbiting Carbon
Observatory-2 are the only two satellites currently capable of providing total column measurements of CO2

[Butz et al., 2011; Yoshida et al., 2011; Crisp et al., 2012; Frankenberg et al., 2015]. By combining these total
column observations with additional measurements such as soil moisture and normalized difference vege-
tation index (NDVI) and inserting these observations in an inversion system, such as the TM5-4DVAR system
[Meirink et al., 2008; Basu et al., 2011], we can better understand the underlying processes and adjust or
possibly improve the biochemical models.

An important semiarid region from a carbon perspective is Australia, where most of the vegetation in the inte-
rior consists of grasses and shrubs (see Figure 1). In the past few decades a general decrease in precipitation
in parts of Southern Australia has been observed [Delworth and Zeng, 2014]. Also, 2009 and early 2010 were
very dry years due to a strong El Niño. At the end of 2010, however, this shifted dramatically as the combined
effect of a strong La Niña with enhancing influences from the Indian Ocean Dipole and Southern Annular
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Figure 1. Vegetation map of Australia, with the central region marked in blue. Source: Australian Bureau of Agricultural
and Resource Economics and Sciences.

Mode causing record-breaking precipitation over large parts of Australia. This lasted well into 2012 and has
been associated with a global 7 mm drop in the ocean levels [Fasullo et al., 2013]. This led to a large increase
in observed net primary production (NPP) in 2011 [Bastos et al., 2013]. As NPP is tightly coupled to the carbon
land sink, this should have a strong effect on the carbon uptake in Australia, especially in the central region,
where the effect of enhanced soil moisture is expected to be strongest.

We analyzed GOSAT total column average dry-air mole fraction of atmospheric carbon dioxide for CO2 (XCO2)
measurements over Australia from the period 2009–2013, in order to investigate the effects of the large
precipitation anomalies during that period on the carbon cycle. These data were then correlated against sev-
eral parameters that connect to the underlying processes (soil moisture and fluorescence) and compared
to model data. The corresponding anomaly in the CO2 exchange flux has been quantified by means of the
satellite-based TM5-4DVAR inversion system. Our paper is organized in the following way: Section 2 describes
the data and methods we used to perform our analysis. Our results are presented in section 3, followed by a
discussion in section 4.

2. Data and Methods
2.1. GOSAT XCO2 Retrievals
We use GOSAT short-wave infrared Fourier transform spectrometer (FTS) data from June 2009 to December
2013 (see http://www.esa-ghg-cci.org), using the v161 version of the L1B calibrated spectral radiance.
To retrieve the CO2 total column mixing ratios for these observations, we use the RemoTeC retrieval code
v2.3.5 (see http://www.esa-ghg-cci.org) [Butz et al., 2011]. First, a nonscattering retrieval is performed after
which a first initial filtering for clouds is performed based on the retrieved ratios of the CO2, H2O, and O2

columns in different retrieval windows. With these filtered data, Full Physics (FP) retrievals are performed to
obtain the retrieved XCO2 total columns. These retrievals are then more strictly filtered, and a bias correc-
tion is applied based on a comparison with ground-based FTS data from the Total Carbon Column Observing
Network (TCCON) [Guerlet et al., 2013]. In short this bias correction contains a constant, global offset, and a
correction based on the retrieved aerosol parameters. More detailed information regarding the filters used
and the comparison with respect to TCCON can be found in the Product User Guide and System Verification
Report on the European Space Agency Greenhouse Gases Climate Change Initiative (ESA GHG CCI) website
(http://www.esa-ghg-cci.org). We then detrend the GOSAT XCO2 data by correcting for the year-to-year
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average global XCO2 increase. The XCO2 interannual variability (IAV) per month is then calculated by compar-
ing the XCO2 in each month with the corresponding monthly average during the full period (2009–2013).

2.2. Supporting Data
To investigate possible correlations of the XCO2 IAV with the effects of droughts and floods, we use equiv-
alent water level derived from Gravity Recovery and Climate Experiment (GRACE) observations as a proxy
for drought or flooding conditions in the region. These data are based on the Global Land Data Assimilation
System to derive equivalent water level from GRACE observations [Rodell et al., 2004]. Equivalent water level
has been averaged to a 1 by 1∘ spatial resolution and 3 h temporal resolution for each month and region of
interest. The time-averaged grid for January 2003 to December 2007 has been subtracted from the individual
grids to derive interannually varying water levels for the period under study (2009–2013).

In addition to the GRACE equivalent water level data, we also use the ESA soil moisture CCI product version
2 [Liu et al., 2011, 2012; Wagner et al., 2012]. This product is a combination of both active and passive sensors
(i.e., scatterometers and radiometers). These data span the period from November 1978 to December 2013,
but we only use data from the beginning of 2009 to December 2013.

In recent years, satellite remote sensing of solar-induced chlorophyll fluorescence (SIF) has become feasible
[Krause and Weis, 1991; Joiner et al., 2011]. As a positive correlation between SIF and CO2 assimilation exists
[Flexas and Medrano, 2002; Damm et al., 2010; van der Tol et al., 2009], remote sensing of SIF allows for a more
direct measurement of GPP globally. Here we use the SIF product derived from Global Ozone Monitoring
Experiment (GOME-2) measurements for June 2009 to January 2012 [Köhler et al., 2014].

Biomass burning is another important component in the carbon cycle of Australia, since relatively large areas
of grasslands in the remote interior burn every year. We use the Global Fire Emissions Database (GFED) v3.1
data [van der Werf et al., 2010] to estimate CO2 emissions from biomass burning. GFED combines satellite
observations of burned area and vegetation productivity from the Carnegie-Ames-Stanford approach (CASA)
biogeochemical model to calculate fire emissions. Fire emission data have been used for January 2009 to
December 2011.

In addition, we also use LPJ model data from the Poulter et al. [2014] study. These data consist of
monthly global net biome production fluxes on a 0.5 by 0.5∘ grid. We use the data for January 2009 to
December 2012.

2.3. Regions of Interest
We divide Australia in two regions in order to probe the effects of the enhanced soil moisture. The first one
covers the whole continent of Australia in order to better compare our results to Poulter et al. [2014], while the
second one encompasses Central Australia (30∘S–20∘S,130∘E–140∘E), which is covered primarily with shrubs
and grasslands. Figure 1 shows a vegetation map of Australia with the central region of Australia marked in
blue. As can be seen, multiple types of vegetation exist in the central semiarid part of Australia.

3. Results

The XCO2 interannual timescale is useful for studying the origin of observed anomalies in XCO2 that are related
to El Niño. Figure 2 a shows the observed XCO2 IAV for Central Australia. As mentioned before, midway 2010 a
transition from El Niño to strong La Niña conditions occurred. This transition caused exceptionally high rainfall
in most of Australia from the end of 2010 to early 2012 and is expected to have a significant effect on the
biospheric carbon uptake.

3.1. Central Australia
This region comprises the most arid region of Australia, where the vegetation mostly consists of grasses and
shrubs. During most of 2009, the XCO2 IAV is around +0.50 ± 0.12 ppm. Figure 2 shows that in 2010 the CO2

emission shifted from a positive IAV to a negative IAV with a minimum XCO2 IAV of −1± 0.13 ppm in October
2010 and an average negative XCO2 IAV of −0.50 ± 0.11 ppm in the period of September 2010 to July 2012.
This variation in XCO2 shows a consistent anticorrelation with soil moisture. In 2009 the soil moisture content
is lower than average (as expected during El Niño conditions). During 2010 the soil moisture starts increasing
rapidly, which coincides with the transition from an El Niño to a strong La Niña phase. Late 2010 and early
2011 we see two large peaks in the soil moisture, coinciding with the strong La Niña conditions at that time.
The soil moisture shows the opposite pattern to the XCO2 IAV.
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Figure 2. Interannual variability of XCO2 (both GOSAT FP 2.3.5 and prior, TM5 4DVAR), soil moisture, biomass burning
emissions (GFED 4.1), SIF (GOME-2), and retrieved XCO2∕XCH4 ratio for Central Australia. The gray area indicates the
period during which La Niña conditions were prevalent.

Figure 2 also shows SIF as retrieved from GOME-2, which correlates with vegetation greenness and was
recently shown to be a good tracer of gross primary production (GPP) [Parazoo et al., 2014]. The SIF data show
a similar pattern as the soil moisture data. In 2009 and early 2010 the SIF IAV signal is negative, rises in the
second half of 2010, and peaks at the end of 2010, coinciding with the minimum of the XCO2 IAV. To rule out
the possibility that the observed XCO2 IAV signal is caused by aerosol-induced retrieval errors, we also plot
in Figure 2 (bottom) the XCO2∕XCH4 ratio from the nonscattering (proxy) retrieval, because this quantity is
virtually insensitive to aerosol scattering. The XCO2∕XCH4 ratio shows the same trend as the retrieved XCO2

column, which confirms the observed trend of decreasing XCO2 during the strong La Niña phase in the FP
data. In Figure 2 (top), red shows a TM5-4DVAR forward model run using CASA-GFED fluxes. This forward run
does not show the strong XCO2 sink in 2010–2012 as seen in the GOSAT data.

Apart from the XCO2 variation discussed above, a sharp peak is visible in October 2011 of the GOSAT data
showing a large increase to almost +1± 0.13 ppm. As can be seen from Figure 2 (middle), this peak coincides
with a maximum in GFED biomass burning CO2 emissions. As shown in Giglio et al. [2013], the year of 2011
was a record year for Australian bush fires (see Figure 9 of that paper). This can be explained by a period with
a strong buildup of vegetation in the region before the start of the fire season. The strong peak in biomass
burning emissions is therefore additional proof for the strong carbon uptake by the biosphere that took place
from the second half of 2010 onward.

3.2. Biosphere Model Comparison
The results of the previous subsection raise the question whether the GOSAT-derived carbon flux IAV can
be reproduced by biochemical models, such as CASA-GFED. If so, the GOSAT measurements, while still
interesting, would add little to our knowledge of the interannual variability of the biosphere in Australia.
In order to translate the observed XCO2 variations to actual fluxes, we use the TM5-4DVAR inversion system.
We perform two runs with this system: a forward TM5 simulation with CASA-GFED fluxes and a TM5-4DVAR
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Figure 3. Correlation between land surface parameters and carbon flux IAV derived from inverse modeling of
(left column) GOSAT XCO2 data, (middle column) biosphere fluxes from CASA-GFED, and (right column)
LPJ-derived NBP IAV for Central Australia.

inversion using the GOSAT XCO2observations to constrain the biosphere fluxes. We also quantified the corre-
lations of each of the land surface variables with the GOSAT-derived carbon fluxes IAV and the LPJ-derived NBP,
using Pearson’s squared correlation coefficient. The resulting correlation coefficients can be seen in Figure 3.
In the middle column the correlations with CASA-GFED carbon fluxes are shown as well. These correlations
were calculated by taking monthly averages of the carbon flux IAV and the corresponding variable of inter-
est. As can be seen the GRACE water level, ESA soil moisture, and SIF all show strong anticorrelations with the
GOSAT flux IAV (−0.89, −0.54, and −0.73, respectively), as well as the LPJ flux IAV (−0.77, −0.43, and −0.81,
respectively). For the CASA-GFED fluxes and SIF the anticorrelation is also significant, but for the soil moisture
and GRACE water level the correlations are not significant.

Figure 4 shows the biosphere fluxes of both runs. The IAV fluxes have been smoothed using a 12 month run-
ning mean and then binned to a 3 month resolution for clarity. As can be seen the IAV of these biosphere
fluxes shows significant differences between the two. The run based on the CASA-GFED model only shows
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Figure 4. Carbon flux IAV for a TM5-4DVAR GOSAT-based inversion and a CASA-GFED TM5 forward model run.

very limited variability in the 3 monthly biosphere fluxes, while the GOSAT-based one shows a strong drop
starting in 2010 and lasting until early 2012. Based on the calculated 3 monthly fluxes in Figure 4, we estimate
the strength of the enhancement of the carbon sink to be roughly 0.77 ± 0.10 Pg C yr−1 or 1.5 ± 0.2 Pg C
for the whole period of April 2010 to December 2011, which corresponds to 25% of the total multiyear
(1990–2011) average GPP of the Australian biosphere and 1000% of the average annual net ecosystem pro-
duction [Haverd et al., 2013]. Compared to the enhanced LPJ sink reported in Poulter et al. [2014], we derived
a 2011 enhancement in the sink of 0.86 ± 0.15 Pg C, which is very similar to the 0.79 Pg C quoted in that
publication.

4. Discussion

Our results show a strong carbon uptake in Australia from the end of 2010 to mid-2012. This uptake coincided
with record-breaking rainfall and consequent soil moisture increase that lead to increased growth of vegeta-
tion as shown by the increased SIF and the observed peak in biomass burning emissions, as well as the large
increased flux uptake shown in the inversion results. Here we discuss these results in more detail.

Atmospheric CO2 variability is driven by a wide range of processes, such as temperature, drought/flooding,
and fire emissions. Recent studies [Keeling et al., 1995; Rafelski et al., 2009; Keppel-Aleks et al., 2014] have shown
a positive correlation between land temperature anomalies and the atmospheric CO2 growth rate (in regions
where vegetation growth is not limited by temperature). The latter study also showed that temperature
anomalies are not the only driver and that drought/flooding events and fire emissions all contribute to net
ecosystem exchange anomalies. In the case of Central Australia the main driver of vegetation growth is soil
moisture content. This was already shown in Chen et al. [2014], who compared a long time series of soil mois-
ture and satellite-derived NDVI and found that in arid, moisture-limited regions with low vegetation cover,
NDVI strongly correlates with soil moisture, with a typical lag time of 1 month. This is also what is shown in the
SIF signal, which lags behind soil moisture. This enhanced growth of the vegetation is also what led to the sig-
nificant increase in biomass burning emissions in the dry season of 2011. Although these emissions are very
large compared to earlier years, they do not fully offset the carbon uptake due to the enhanced vegetation
growth during the analyzed years (see Figure 4).

What is clear from the inversion results is that the observed sink by GOSAT is much stronger than that from
CASA-GFED, even though the CASA-GFED model also incorporates actual MODIS observations. The enhance-
ment in the sink is comparable to that of the LPJ model in Poulter et al. [2014]. The difference between
CASA-GFED and LPJ might be due to the higher sensitivity of the LPJ model to precipitation. This result demon-
strates the added value that satellites such as GOSAT can make to the quantification of carbon flux estimates
in semiarid regions. Despite the nonideal coverage of the GOSAT satellite (gaps in between sampling points),
the number of high-quality, clear-sky data in this region is sufficient to detect changes in the carbon land
sink. Combining these GOSAT data with a TM5-4DVAR-like inversion system and supplementary important
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biospheric data, such as soil moisture, water level, SIF, and biomass burning emissions, allows us then to link
and to quantify the observed changes in the XCO2 total column, with actual changes in the biosphere.

5. Conclusions

Our results show a significant change in the carbon uptake in Australia during the La Niña phase from the
end of 2010 to early 2012. Due to the record-breaking rainfall, large-scale vegetation growth occurred in the
arid central region, leading to a strong carbon uptake by the land biosphere of roughly 0.77 ± 0.10 Pg C yr−1

or 1.5 ± 0.2 Pg C for the whole period of April 2010 to December 2011, corresponding to 1000% of the total
annual net ecosystem production. The vegetation provided ample fuel for the biomass burning in the dry
season of 2011, leading to a large increase in biomass burning emissions in Central Australia, also detected
in the GOSAT XCO2 IAV. After this 2 year period of increased carbon uptake, drought conditions once again
returned at the end of 2012 (see Figure 2), leading to a loss of carbon uptake by the land. Semiarid regions such
as the inland of Australia are very sensitive to the effects of drought/flooding conditions, usually driven by El
Niño/La Niña cycles. As shown in recent work [Poulter et al., 2014], the effects of climate extremes are the most
severe in semiarid regions. Our results show that XCO2 satellite observations such as by GOSAT have the ability
to detect these changes in XCO2. Combining these changes with other key variables such as soil moisture
and SIF. Using inverse modeling systems allows us to link the XCO2 changes with changes in net ecosystem
exchange of carbon. Monitoring these ecosystems in the coming years provides promising opportunities for
investigating how they will adapt to climate extremes in the future.
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