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Abstract Understanding shallow magma transfer and the related vent distribution is crucial for volcanic
hazard. Here we investigate how the stress induced by topographic scarps linked to normal faults affects
the distribution of monogenic volcanoes at divergent plate boundaries. Our numerical models of dyke
propagation below a fault scarp show that the dykes tend to propagate toward and erupt on the footwall
side. This effect, increasing with the scarp height, is stronger for dykes propagating underneath the hanging
wall side and decreases with the distance from the scarp. A comparison to the East African Rift System, Afar
and Iceland shows that (1) the inner rift structure, which shapes the topography, controls shallow dyke
propagation; (2) differential loading due to mass redistribution affects magma propagation over a broad
scale range (100–105m). Our results find application to any volcanic field with tectonics- or erosion-induced
topographic variations and should be considered in any volcanic hazard assessment.

1. Introduction

Understanding eruption site distribution inmonogenic fields is important for volcanic hazard, as eruptions occur
over a wide area in contrast to central polygenetic volcanoes that have a main vent. The distribution of the
monogenic volcanoesmay be related to the availability ofmagma at depth, presence of discontinuities, the con-
figuration of far– or near–stress field, as well as topographic loads [e.g.,Gudmundsson, 2006; Valentine and Krogh,
2006; Le Corvec et al., 2013]. In particular, topography may play an important role in creating a near–stress field
capable of deflecting propagating dykes [Fiske and Jackson, 1972; Acocella and Tibaldi, 2005]. At the large scale, it
has been suggested that crustal loading due to a volcanic edifice attracts ascending propagating dykes, creating
the conditions for a polygenic edifice [Dahm, 2000; Watanabe et al., 2002; Kervyn et al., 2009; Bonaccorso et al.,
2010;Maccaferri et al., 2011]. Moreover, unloading forces due to the creation of a graben depression were shown
to have the potential to deflect ascending dykes to off-rift eruptions [Maccaferri et al., 2014]. In all cases, the
competition between loading/unloading forces and the driving pressure of the dykes controls howmuch dykes
are deflected [Watanabe et al., 2002]. These studies looked at large compressions/decompressions (several
hundreds of meters to >1 km of added or missing topography) and spatial scales of the order of tens of
kilometers. As for now, there are no studies focusing on small-scale topographic variations of 1 to 100m.

Here we examine how shallow dyke propagation is affected by overlying topographic scarps created by
tectonic extension within rift zones. These models are complementary to those of Maccaferri et al. [2014],
as they provide a clue on the balance of the driving factors in the last few kilometers of the dykes’ trajectory,
where small-scale elements (1–100m), such as individual fault scarp segments, may affect the location of
vents. To this aim, we calculate the trajectories for shallow (<2 km) dykes ascending toward normal fault
scarps. We simulate the stress field beneath the scarp by computing the stress change due to a step-like
topography. We consider a lithostatic pressure proportional to the rock density ρ and include an extensional
tectonic stress of intensity increasing with depth to simulate the weakness of the shallowest rock layers. The
model results, and their consistency with several tens of natural examples, suggest that the control on dyke
propagation exerted by loading and unloading is important for a broad range of process scales, and it should
be considered in any evaluation of vent opening. Given the likely location of a magma reservoir, vent
probability maps may be proposed depending on the scarp height.

2. Observations

We first consider the distribution of monogenic cones from the divergent plate boundaries within the southern
part of the Kenya Rift, the Main Ethiopian Rift (MER), Afar, and Iceland (Reykjanes Peninsula and Northern
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Volcanic Zone). We define the distance D of 54 monogenic basaltic volcanoes with regard to the closest normal
fault scarp of height H: positive values of D refer to vents on the footwall side of the fault, whereas negative
values to vents on the hanging wall side (downthrown part of the fault). In order to remove or minimize any
effect from other fault scarps or topographic variations induced by volcanic activity, sedimentation, or erosion,
we selected only the monogenic volcanoes nearby isolated active normal faults with sharp scarps, in areas of
regular subhorizontal relief. Volcanic activity in these areas commonly postdates fault activity, as suggested
by the volcanic deposits of the monogenic field usually overflowing the fault scarps (Figure 1a). The maximum
distance considered for a volcano and the “nearby” scarp was of ±1 km, whereas the fault scarp height was
between a few and 100 m. The data have been taken from field measurements (especially for fault scarps with
smallerH; Figure 1b), topographic mapsmergedwith high-resolution satellite images (especially for fault scarps
with larger H) (Figure 1a). The error associated in evaluating the scarp height H is estimated as <30% of the
measurement (this error is largely due to along-strike variations in the fault displacement) and that associated
with the lateral distance D is <10% of the measurement (Figure 1a).

The considered natural cases of monogenic volcanoes nearby scarps show an overall proportion between the
height of the fault scarp H and the distance from the fault D at which the monogenic cone is located, with the
more distant volcanoes associated to larger fault scarps and predominantly located on the footwall
(Figures 1c and 1d); this implies that the more distant volcanoes are associated to larger fault scarps. In
addition, there is a predominant clustering on the fault footwall (74% of the data), peaking at a distance D

Figure 1. (a) Map view example of the spatial and temporal relationships between two major normal faults downthrowing
to the west (black arrows) and volcanic vents (red triangles) through satellite images (Google Earth) along the central Main
Ethiopian Rift (MER); the reported ages of the volcanoes relative to the faults have been evaluated considering any burial
of the faults by the volcanic deposits. The distance D between a fault and the vent (positive if the vent is on the footwall FW,
negative if vent is on the hanging wall HW) and the fault scarp height H are also included. (b) Field example of a monogenic
vent developed on the footwall of a major normal fault with scarp height of ~50m in the central MER. (c) Distribution of
all monogenic cones as a function of the distance from a fault scarp D and the height of the scarp H (positive values are
for cones on the footwall, negative for cones on the hanging wall). (d) Distribution of all monogenic cones on both the
footwall and hanging wall as a function of the absolute distance from a fault scarp D and the height of the scarp H.
(e) Frequency-distance D distribution of the cones regardless of the scarp height (derived from Figure 1c).
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between 100 and 200m from the fault scarp and gradually decreasing in frequency with distance (Figure 1e).
The remaining 26% of the data peak at a distance<100m from the fault scarp, gradually decreasing with the
distance (Figure 1e).

3. Modeling

We investigate such a selective distribution of monogenic cones near fault scarps using a two-dimensional
boundary element model [Dahm, 2000; Maccaferri et al., 2010, 2011] to compute the trajectories of ascending
dykes of initial cross-sectional area of 3 × 10�4 km2 (equivalent to a volume ~6×10�4 km3) from a depth
z=2 km. The dykes are nucleated perpendicular to the minimum compressive stress σ3. The trajectories are
calculated by testing incremental elongations of the dykes in different directions and selecting the one
maximizing the elastic and gravitational energy release [Dahm, 2000; Maccaferri et al., 2010, 2011]. The dykes’
initial position varies within a 1 kmwide segment below the scarp, or�0.5>Din> 0.5 kmwhereDin is the initial
horizontal distance from the scarp (Figure 2a). The dykes are boundary element mixed mode cracks in plain
strain approximation composed by N contiguous and interacting dislocations, propagating in an elastic half
space. The shear modulus of the host rocks is G=12MPa and the Poisson’s ratio v=0.25. The dykes open under
assigned normal and shear stress given by the internal overpressure and by the shear component of the
tectonic plus topographic stresses, respectively. The overpressure within the dyke is the difference between
the magma pressure and the confining stress, which is the superposition of the lithostatic pressure (isotropic
and depth dependent), the normal component of the topographic stress, and a far-field extensional tectonic
stress. The fluid pressure is given by a magmastatic (linear) profile and accounts for magma compressibility,
with a magma-rock density contrast of 300 kg/m3. Such a density contrast guarantees the upward buoyant
propagation of magma up to the surface. Lower buoyancy contrasts (~100 kg/m3), possibly more realistic for
basaltic magma intruding in Iceland, would have required either a larger volume of magma or additional over-
pressure from an active magma source in order for the dykes to reach the surface.

A fundamental input for the boundary element model is the state of stress of the crust, since dyke tends to
orient perpendicular to σ3. The tectonic stress, σT, increases linearly in the shallower 2 km, reaching a maxi-
mum value of 5MPa at 2 km depth (Figure 2a). Such an assumption is meant to account for a progressively
weaker shallow crust expected to be less and less capable of storing tension closer to the surface. Due to the
high epistemic uncertainties in the values of the tectonic extension in nature, we additionally tested the
effect of a constant tension with different magnitudes in the range of 0.5 to 5MPa (see Figure 2c). The stress
induced by the scarp topography is computed by applying unloading forces of intensity ρgH on the scarp
hanging wall (Figure 2a). In such a way, we account for the local contribution of the scarp to the overall stress
change linked to the formation of a wide graben-like structure [Maccaferri et al., 2014]. In other words, the
scarp topography represents a discontinuity in the unloading forces linked to the surface mass redistribution
induced by tectonic extension. Therefore, the fault scarp can be seen as the boundary of a depression of
depth H, and the unloading forces at the boundary determine the local stress field beneath the scarp.
Such a stress change involves both a rotation of the principal stresses and a variation of their relative ratio.

a b c

Figure 2. Results from numerical models; (a) dykes ascending from 2 km depth are driven toward the footwall of a 60m scarp. Grey dashes represent the direction of
σ3 (minimum compressive axis) due to the unloading forces applied on the hanging wall (vertical arrows). Triangles represent the arrival position of dyke tips (D) at
surface. The black curve in the right subplot represents the vertical profile assumed for the tectonic extension. (b) Distribution of dyke arrivals as a function of
the distance from a fault scarp D and the height of the scarp H. (c) Same as Figure 2b with different values of uniform tectonic extension.
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We compute this by using analytical formulas for a uniform surface unloading acting over the scarp base
[Davis and Selvadurai, 1996; Dahm, 2000, Appendix A]. In general, this stress field depends on the depth, H,
and width, W of a topographic feature. For the present application H corresponds to the scarp height, while
W is large enough that the local stress field in the vicinity of the scarp (±1 km) remains stable. We find stability
for W> 5 km, and therefore, we fix W= 10 km. In the model we do not consider the presence of multiple
scarps, as the observations have been collected nearby isolated active normal faults.

In our model runs, we vary the unloading force as ρgH and test different distributions of the initial horizontal
distances of the dyke upper tips from the scarp (Din). We test the following: (1) symmetric distribution at con-
stant intervals: Din = [�0.5; �0.25; 0; 0.25; 0.5] km (five dykes for each of the six tested scarp heights,
Figures 2b and 2c); (2) uniform random distribution in the range �0.5<Din< 0.5 km (10 dykes for each of
the 54 measured scarp heights, 540 dykes in total, Figures 3a–3c); (3) Gaussian random distribution with
mean μ=0 and standard deviation σ = 0.25 km (10 dykes for each observation, Figures 3d–3f). For the first
case—symmetric initial distribution of dykes at depth—we also test different values of a constant uniform
far-field tectonic extension (0.5, 1, 2, and 5MPa). In each model run, the dykes were not interacting with each
other or with previous dykes. We also tested the influence of the initial dip of the dyke, forcing the intrusions
to start as perfectly vertical dykes. The results do not change significantly; see Figure S1 in the supporting
information. We find that the dykes tend to systematically deviate toward the footwall. The deflection
depends on the amount of rotation of σ3 induced by the unloading forces in the vicinity of the scarp
(Figure 2a). The effect is stronger for higher scarps and for dykes that start closer to the scarp (Figure 2b),
while it tends to vanish for lower scarp heights and at large offset from the scarp. For higher scarp heights
and lower extensional tectonic stresses, the distribution of dyke arrivals at the surface is progressively dis-
placed toward the footwall side (D> 0), and the dykes emerge at the surface closer to each other (Figure 2c).

In order to compare directly the numerical results with the observations from Figure 1c, we set H equal to the
value of each of the 54 observations and for each H we run 10 models uniformly (case 2, Figure 3a) and nor-
mally distributed (case 3, Figure 3d). We also plot D and D�Din as a function of H (Figures 3b and 3e), finding

a b c

d e f

Figure 3. (a) Frequency-distance distributions. In red the distribution of initial dyke positions (Din) and in grey the distribution of dyke arrival positions at surface (D).
The distribution used for Din is uniform. (b) Initial distances Din (red circles) and distances from the scarp after arrival at surface (grey circles) for dykes propagating
under the effect of different scarp heights H; the light grey area bounded by two black dashed lines represents the maximum and minimum horizontal deviations
(Din�D) exhibited by dykes for different scarp height H. Only 20% of the numerical results have been plotted as grey and red circles for reasons of clarity. (c)
(Din�D) color coded as function of Din and H. (d–f) The same as Figures 3a–3c with a Gaussian distribution for Din. For each case (uniform and Gaussian Din) we
considered a sample of propagating dykes equal to 10 times the observations (540 dykes propagating under the 54 scarp heights measured in the field).
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a trend similar to the observations (Figure 1b). Finally, the deviation D�Din as a function of Din/H (Figures 3c
and 3f) shows that dykes originated under the hanging wall are deviated more than those originated under
the footwall. These plots confirm that the amount of deviation decreases for increasingly positive and
increasingly negative Din.

4. Discussion and Conclusions

The distribution of monogenic cones at divergent plate boundaries resulting from several tens of measure-
ments collected in ideal conditions (isolated scarps) highlights clustering of cones on the fault footwall. In
particular, the higher the fault scarp, the more distant the cone from the fault scarp on the footwall. This
selective distribution suggests that the propagation path of the dykes feeding the cones may be deflected
in the vicinity of fault scarps and that fault scarps do not necessarily represent a preferential pathway for
ascending dykes, at least toward the surface.

The similarities between the observations and the model results suggest that the stress field induced by
crustal unloading applied at the hanging wall of the scarp is the primary explanation for the clustering of
the studied volcanic cones at the footwall. Particularly, we find notable agreement in the comparison
between Figures 3a–3d and Figure 1c (numerical and observed frequency-distance distributions).
Moreover, it seems that the Gaussian distribution for Din (Figure 3d) fits better than the uniform one, repro-
ducing a peeked maximum in the frequency at about 0.1–0.2 km and a fast decay for higher (positive) and
lower (negative) D (as in Figure 1c). The uniform distribution of Din (Figure 3a) does reproduce the maximum
at 0.2 km, but themaximum is less peeked and the decay slower than in Figure 1c. We repeated the numerical
experiments several times, in order to appreciate how random perturbations of the initial dyke distribution
affect the final result (some examples are given in Figure S2, supporting information). The uniform distribu-
tion of Din resulted in more variability in the results, producing frequency-distance histograms that visually
reproduce the observations as well as histograms looking quite different.

We find an overall good agreement between models and observations in the trend of D as a function of H
(Figures 3b–3e and Figure 1c). The main difference between observations and numerical experiments is
the scatter of D for low values of H: from the numerical results we would expect scattered arrivals
(Figure 3e) while the observations show more focused arrivals close to low scarps (Figure 1c). Fault planes
or preexisting structures may induce additional stresses and capture dykes [e.g., Valentine and Krogh,
2006], possibly explaining the higher clustering of the vents near low fault scarps in nature. Moreover, any
high-angle fault plane increases the extent of the footwall at depth, enhancing any capturing effect of the
fault plane on the dyke [Gaffney et al., 2007]. These two factors have not been considered in our models
(where, in order to isolate the effect of the scarp topography on the dyke propagation, we do not consider
any structural discontinuity) and could possibly explain the slight discrepancy between numerical results
and observations. Additionally, the discrepancy may reflect an initial distribution of Din more concentrated
around Din = 0, with respect to what we tested. Indeed, we can better reproduce the lack of scattering in D
for low H just by reducing our numerical samples close to the number of observations, in the hypothesis
of an initial Gaussian distribution. The resulting distribution of D versus H for this case is shown in
Figure S3 (supporting information). Because of the reduced numerical sample, these distributions are more
subjected to statistical fluctuations, so that some random generations result in a better match with the obser-
vations (e.g., Figure S3a) and others in a larger scattering of D for low H (e.g., Figures S3b and S3c).

The numerical results, overall well consistent with the observations, suggest that shallow dyke propagation in
areas characterized at a large scale by a relatively regular, flat surface may be affected by the presence of
scarps. The degree of this capturing effect depends mainly on the height of the scarp, so that higher scarps
deflect dykes more efficiently toward the footwall side of the fault.

This relationship, which is valid at the 1–100m scale complements what was previously found at the 10 to
100 km scale, explaining the presence of off-rift volcanoes [Maccaferri et al., 2014]. This indicates that the crustal
loading or unloading due to the activity of one or more sets of normal faults is an efficient mean to control the
shallowpropagation ofmagma, in the form of dykes, at several scales of observations. More supporting evidence
can be found also at the intermediate scale (200–700m) of the Limagne fault, Chaine de Puys, where the
increased frequency of vents on the fault footwall correlates with the better developed fault scarp (Figure S4).
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Our results are applied to monogenic cones within divergent plate boundaries along the East African Rift
System, Afar, and Iceland, chosen because of the presence of active and sharp fault scarps on a generally
subhorizontal surface. However, as loading and unloading processes have been proven to result from sharp
topographic variations, we suggest that a similar mechanismmay also affect the propagation of dykes in any
area characterized by important scarps within volcanic areas. These include monogenic cones in strike-slip or
contractional settings, where the fault scarp may be still related to a significant dip-slip (normal or reverse for
strike-slip faults, reverse for contractional faults) component of motion. Flat areas characterized by selective
erosion or deposition, producing clear, straight, and isolated scarps, independently of any tectonic activity,
may also deflect propagating dykes accordingly to our models. Therefore, our results may also widely apply
to convergent plate boundaries and intraplate magmatism characterized by important tectonic structures, or
simply to flat areas characterized by deposition or sedimentation.

Our results, of wide applicability, testify the general importance of topography in controlling the shallow
transfer of magma, complementing previous studies highlighting the importance of volcanic ridges in focus-
ing volcanic activity [e.g., Fiske and Jackson, 1972] of calderas in reorienting dykes [Munro and Rowland, 1996]
and of sector collapse in attracting [McGuire et al., 1990; Tibaldi, 2003] or deflecting radial dykes [e.g., Acocella
and Tibaldi, 2005; Walter et al., 2005; Delcamp et al., 2012].

Finally, our results may be helpful in volcanic hazard assessment, to consider the possible opening of vents
during the rise of a dyke toward the surface, especially in volcanic areas characterized by the lack of a central
edifice with strong topographic expression. Dyke-induced seismicity could be used to pinpoint the position
of the intrusion and asses whether the dyke is most likely to erupt in a certain area. The most promising areas
to apply our results include flat zones of monogenic volcanism, caldera complexes largely filled by deposits or
water, and shield volcanoes with very gentle slopes.
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