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• Andreas Güntner3
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Abstract Quantification of spatially and temporally resolved water flows and water

storage variations for all land areas of the globe is required to assess water resources, water

scarcity and flood hazards, and to understand the Earth system. This quantification is done

with the help of global hydrological models (GHMs). What are the challenges and pro-

spects in the development and application of GHMs? Seven important challenges are

presented. (1) Data scarcity makes quantification of human water use difficult even though

significant progress has been achieved in the last decade. (2) Uncertainty of meteorological

input data strongly affects model outputs. (3) The reaction of vegetation to changing

climate and CO2 concentrations is uncertain and not taken into account in most GHMs that

serve to estimate climate change impacts. (4) Reasons for discrepant responses of GHMs to

changing climate have yet to be identified. (5) More accurate estimates of monthly time
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series of water availability and use are needed to provide good indicators of water scarcity.

(6) Integration of gradient-based groundwater modelling into GHMs is necessary for a

better simulation of groundwater–surface water interactions and capillary rise. (7)

Detection and attribution of human interference with freshwater systems by using GHMs

are constrained by data of insufficient quality but also GHM uncertainty itself. Regarding

prospects for progress, we propose to decrease the uncertainty of GHM output by making

better use of in situ and remotely sensed observations of output variables such as river

discharge or total water storage variations by multi-criteria validation, calibration or data

assimilation. Finally, we present an initiative that works towards the vision of hyperres-

olution global hydrological modelling where GHM outputs would be provided at a 1-km

resolution with reasonable accuracy.

Keywords Global hydrological model � Climate data � Water abstraction � Model

uncertainty � Calibration � Remote sensing data

1 Introduction

Water flows as well as water storage at and below the land surface of the Earth affect water

availability for humans and ecosystems, result in hazards such as floods and affect

atmospheric processes, sea level and global biogeochemical cycles. They have been

increasingly altered by human actions including emissions of greenhouse gases, land use,

water abstractions and the construction of dams and dykes (e.g., Vörösmarty and Sahagian

2000; Sterling et al. 2013). Ecosystems suffer from these alterations and, in many regions,

human development is constrained by water scarcity. Freshwater systems including their

natural and human components need to be characterized regarding both water quantity and

quality to support a sustainable land and water management and a better understanding of

the Earth system. Global-scale quantification of water flows and storage in freshwater

systems under current and future conditions is of particular interest in a globalized world

and can support the wise development of global-scale water management and governance

(Vörösmarty et al. 2015).

Quantification is best achieved by combining in situ and remote sensing data with

physical modelling. Global hydrological modelling serves to estimate water flows on the

land areas of the globe such as evapotranspiration, river discharge or groundwater recharge

as well as water storage (or only water storage variations) in different compartments, e.g.,

in soil or in groundwater and surface water bodies. It uses data on precipitation and other

climate variables over land areas as input and computes water flows from the land areas to

the oceans (or into internal sinks on the continents), thus covering the terrestrial part of the

global water cycle. While global hydrological modelling has been refined and extended

with respect to modelled processes (in particular regarding human impacts on natural water

flows and storages) and computed indicators in the last decade, modelling uncertainties

have not become less albeit better known. These uncertainties are generally categorized

into uncertainties due to model inputs (e.g., climate variables or soil properties), parameter

values and model structure, but uncertainty of observations used for model validation or

calibration also has to be considered (Sood and Smakhtin 2015). Different models compute

contradictory estimates of, for example, mean annual evapotranspiration and low, mean

and high flows in river basins (Gudmundsson et al. 2012) or groundwater depletion (Döll
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et al. 2014a). They result in strongly varying projected impacts of climate change on river

discharge (Schewe et al. 2014) or irrigation water requirements (Wada et al. 2013). Even

global mean annual evaporation estimates as derived from global hydrological modelling

(or satellite observations) differ by almost a factor of 2 (Jiménez et al. 2011), which is an

important obstacle for the detection and attribution of changes in evapotranspiration due to

global warming (Douville et al. 2012). Reasons for the discrepant model output have not

been sufficiently analysed.

With this paper, the authors wish to share their perspectives on important challenges of

and prospects for modelling continental water flows and storages at the global scale. In the

next section, we briefly present existing modelling approaches. In Sect. 3, we discuss seven

challenges and illustrate them with results of two global hydrological models (GHMs),

WaterGAP (Döll et al. 2003; Müller Schmied et al. 2014) and PCR-GLOBWB (Wada et al.

2014). In Sect. 4, we present three advancements that may help to better characterize

freshwater flows and storages at the global scale in the future. Finally, we draw our

conclusions.

2 Approaches for Modelling Global Hydrology

To understand and quantify natural and human-induced water flows and storage changes

across large scales, a number of models that simulate the continental part of the hydro-

logical cycle on a regional to global scale have been developed in recent decades. Models

developed to simulate global hydrology can be roughly classified into GHMs, land surface

models (LSMs) and dynamic global vegetation models (DGVMs). Most DGVMs, how-

ever, do not include lateral water flows or surface water bodies, and can therefore only be

used to assess runoff but not discharge. GHMs focus on simulation of water resources; they

have a comprehensive representation of continental hydrological processes and often take

into account human water use as well as man-made reservoirs. LSMs serve as a module of

global climate models (GCMs) and therefore model both water and energy balances at the

land surface. Due to this, they often represent the soil with a higher vertical resolution than

GHMs and represent evapotranspiration and snow melt in a less conceptual manner than

GHMs. LSMs often lack a groundwater reservoir, lateral routing or consideration of sur-

face water bodies, and in most cases, they do not model the impact of human water use or

man-made reservoirs. Finally, some LSMs are able to also model vegetation dynamics, or

DGVMs have been extended to simulate global hydrology including not only vertical but

lateral water flows as well as human water use and man-made reservoirs. In addition,

simulation of irrigation water use is not only done by some GHMs, LSMs and DGVMs but

also by global crop models (e.g., Elliott et al. 2014).

In the following, we do not distinguish between GHMs, LSMs and DVGMs but sum-

marily refer to all of them as GHMs (like Schewe et al. 2014 or Hagemann et al. 2013 did)

because existing models cannot be strictly classified into the three categories and because

we focus on their ability to simulate terrestrial water flows and storages. GHMs typically

simulate the dynamics of soil moisture storage due to precipitation and evapotranspiration,

the generation of runoff and the discharge through the river network. The majority of these

models are based on the water balance concept and track the transfer of water through a

number of storage compartments with time steps ranging from a month to less than 1 day.

Conceptual models are chosen as they are deemed to be more robust than empirical models

and more parsimonious in their data requirements than fully physically based models,
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while they maintain the ability to translate the effects of global change on water flows and

storages in a consistent manner. Over time process descriptions have become more

physically based. Few models simulate human water use that is essential to quantify river

discharge, water availability and water stress, and even fewer models represent ground-

water including groundwater recharge and abstractions, which is crucial to assess

groundwater resources. Sood and Smakhtin (2015) presented an overview over 12 GHMs,

and Bierkens et al. (2015) provided a table that describes the main features of GHMs and

regional-scale hydrological models.

3 Challenges

Aiming at an improved representation of freshwater systems at the global scale, global

hydrological modelling faces diverse challenges. We select some of the most important

challenges that have been identified by the scientific community, i.e. constraints that lead

to uncertain model output and thus limit the usefulness of global hydrological modelling

for understanding freshwater systems.

3.1 Modelling Human Water Use

Human water use leads to anthropogenic water flows in the form of water abstractions from

and return flows to surface water or groundwater bodies (Döll et al. 2012; Wada et al.

2011). Quantification of these flows is important for two reasons. On the one hand, water

abstractions, consumptive water use (the part of the withdrawn water that evapotranspires

during use) or net water abstractions (water abstractions minus return flows) are used in

combination with estimates of water availability to compute indicators of water stress (or

water scarcity). On the other hand, these anthropogenic water flows alter natural

groundwater and surface water flows and storages (Döll et al. 2014a, b; Wada et al. 2012).

It was estimated that around the year 2000, mean annual river discharge had been

decreased due to water abstractions and man-made reservoirs by more than 10 % on one-

sixth of the global land area (excluding Greenland and Antarctica), as compared to natural

discharge (Döll et al. 2009). The strongest alterations, with, e.g., both decreases and

increases of mean annual water storage (Döll et al. 2012), are found in semi-arid and arid

areas of the globe, where irrigation is the dominant water use and alterations of river flow

regimes by water abstractions are more important than alterations due to man-made

reservoirs (Döll et al. 2009).

In global hydrological modelling, water abstractions and return flows are mostly esti-

mated at a spatial resolution of 0.5� by 0.5� (55 km by 55 km at the equator) or 50 by 50

(9 km by 9 km). While water use for domestic and industrial purposes is assumed to vary

negligibly throughout the year, monthly estimates of irrigation water use are required due

to the often high seasonal variation of irrigation requirements. Modelling of water use for

households and manufacturing strongly relies on statistical water abstraction data provided

by countries, but data generally exist for a few years only. To derive annual time series by

country, abstractions are modelled taking into account structural and technological change

(Flörke et al. 2013). In addition, downscaling to the grid cell level is required and is mainly

done based on urban and rural population in grid cells (Flörke et al. 2013; Vassolo and Döll

2005). Cooling water requirements for thermoelectric power plants are computed for each
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power plant as a function of power plant type and cooling system, as well as values of

national thermal electricity production (Flörke et al. 2013).

Unlike domestic and industrial water abstractions, irrigation water abstractions are very

rarely measured, and statistical data for countries are generally based on either modelling

or rough assumptions on per hectare irrigation water use. Consumptive irrigation water use

in a grid cell is modelled as a function of irrigated area, crops and climate (e.g., Döll and

Siebert 2002; Rost et al. 2008). Estimation of areas equipped for irrigation and even more

estimation of areas actually irrigated are prone to large uncertainties as quality of statistical

information is very heterogeneous (comp. information of map quality of the Global Map of

Irrigation Areas GMIA v5.0, http://www.fao.org/nr/water/aquastat/irrigationmap/index40.

stm). Assumed cropping patterns describing crop-specific growing periods throughout the

year strongly impact the seasonality of estimated irrigation water demands (Zhou et al.

2015) and to a lesser degree annual values. Global consumptive irrigation water use as

computed by six state-of-the-art global water use models varies between 1000 and

1500 km3/year (Zhou et al. 2015, Siebert and Döll 2010), but this range may underestimate

total uncertainty as all models used the same map of irrigated areas (GMIA). Estimated

consumptive use strongly depends on the algorithm to compute potential (or reference

crop) evapotranspiration, with global values ranging from 1180 to 1450 km3/year just due

to using three different equally plausible algorithms (FAO Penman–Monteith and two

versions of Priestley–Taylor; Siebert and Döll 2010). To estimate water abstractions for

irrigation, irrigation water use efficiencies (water consumption-to-abstraction ratios) need

to be defined, e.g., for individual world regions (Döll and Siebert 2002), or simulated

depending on the crop (in particular paddy rice; Wisser et al. 2008) or type of irrigation

system (surface, sprinkler and drip; Jägermeyr et al. 2015). By modelling water flows in the

three irrigation systems in a processed-based manner for different crops, Jägermeyr et al.

(2015) computed grid cell-specific irrigation water use efficiencies as well as beneficial

consumptive use due to transpiration. They estimated that global abstractions for irrigation

are twice as high as the global consumptive irrigation water use of 1260 km3/year, while

52 % of consumptive use is beneficial.

Irrigation water use is normally computed under the assumption that the crops receive

enough irrigation water to allow actual evapotranspiration to become equal to the potential

evapotranspiration value. However, it is likely that farmers irrigate less in case of water

scarcity. Backed by independent information on worldwide groundwater depletion,

application of a GHM indicated that in areas with groundwater depletion, farmers irrigated

with only 70 % of the optimal water volume (Döll et al. 2014a).

An important uncertainty in human water use modelling relates to the distinction

between the groundwater and surface water abstractions, and also to which degree return

flows caused by irrigation recharge groundwater. Currently, the distinction of the source of

water abstraction appears to more uncertain in the domestic and manufacturing sector than

in the irrigation sector (Döll et al. 2012). Table 1 summarizes major uncertainties in

modelling sectoral human water use at the global scale.

3.2 Uncertain Climate Input

A number of studies have shown the very strong dependence of computed continental

water flows on applied climate input (Biemans et al. 2009; Döll and Fiedler 2008; Guo

et al. 2006; Müller Schmied et al. 2014; Nasonova et al. 2011). Not only precipitation, but

also radiation data are strong drivers of water flows and storages around the globe, while

temperature data have the strongest impact in case of snow and ice. However, both historic
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and future climate information are prone to multiple types of uncertainty which represents

a major challenge for providing reliable GHM output.

3.2.1 Uncertainties in Historic Climate Information and Their Impact on Simulating
Water Resources

Historic climate information applicable for global-scale studies suffers mainly from

insufficient density of high-quality observations but also from observation errors. The

effect of incomplete knowledge about the spatio-temporal distribution of climate variables

during historic periods on global sums of water flows and storage changes is illustrated in

Table 2 where simulation results of the GHM WaterGAP 2.2 (Müller Schmied et al. 2014)

are listed. The considered model output encompasses global mean annual river discharge

into oceans and inlands sinks (equal to renewable water resources in the case of model runs

Table 1 Major challenges in modelling sectoral human water use at the global scale (livestock water use is
neglected)

Water use sector Challenges

Irrigation Areas equipped for irrigation and areas actually irrigated; irrigated crop
calendars; degree of deficit irrigation; climate input; equation for computing
potential evapotranspiration; fraction of return flows to groundwater and
surface water

Domestic Downscaling to grid cells

Manufacturing For many countries, only data on sum of water use for manufacturing and
thermal power plant cooling available; downscaling to grid cells

Thermal power plant
cooling, TP

Temporal development of cooling systems

All sectors Technological change rates leading to water saving; water consumption-to-
abstraction ratio (except TP); differentiation between groundwater and surface
water abstractions (except TP)

Table 2 Mean annual (2000–2009) water flows (precipitation P, discharge into oceans and inland
sinks/total water resources Q, actual evapotranspiration AET, consumptive water use WCa) and change in
total water storage (dTWS) calculated for different WaterGAP 2.2 model variants, in km3/year

1 2 3 4 5 6 7 8

P 111,819 113,215 111,819 113,215 104,768 111,819 111,819 111,819

Q 39,799 42,470 45,743 49,998 41,405 46,908 51,567 44,031

AET 70,948 69,791 64,884 62,154 63,405 64,937 60,282 67,808

WCa 1326 1184 1368 1208 0 0 0 0

dTWS -246 -220 -167 -135 -34 -18 -22 -12

1: STANDARD, 2: CLIMATE, 3: STANDARD NoCal, 4: CLIMATE NoCal, 5: PRINCETON NoCal
NoUse, 6: STANDARD NoCal NoUse, 7: STANDARD NoCal NoUse -20 % net radiation, 8: STAN-
DARD NoCal NoUse ?20 % net radiation

NoCal: model version without calibration, NoUse: model version assuming no human water use (for details
on model variants, refer to Müller Schmied et al. 2014)

200 Surv Geophys (2016) 37:195–221

123



that neglect human water abstractions), actual evapotranspiration, consumptive water use

by humans and water storage changes for the time period 2000–2009. Three different

climate data sets were used to generate the table, all of which are available at the spatial

resolution of WaterGAP (0.5� grids). For the STANDARD model runs, the WFDEI data

were used that combine observational data with ERA-Interim reanalysis data for the years

1979–2009, resulting in climate input with a daily resolution (Weedon et al. 2014). In

variant CLIMATE, the monthly data set CRU TS 3.2 (Harris et al. 2014) was used, but

monthly precipitation totals were replaced by the GPCC v6 precipitation monitoring

product (Schneider et al. 2014) because it includes more observation stations. Downscaling

to daily values was done within WaterGAP, in case of precipitation based on the number of

wet days in each month. Precipitation input used to drive both STANDARD and CLI-

MATE variants is based on monthly precipitation data from GPCC, but correction of

precipitation error and the GPCC product version differ, leading to small differences in

global precipitation (Table 2). Further details on climate input for the two model variants

can be found in Müller Schmied et al. (2014). The PRINCETON model variant is forced by

the ‘‘Global Meteorological Forcing Dataset for land surface modelling v2’’ from Princeton

University which is a combination of global observation-based datasets and the NCEP-

NCAR reanalysis (Sheffield et al. 2006) and is available at http://hydrology.princeton.edu/

data.pgf.php.

WaterGAP 2.2 is calibrated against observed mean annual river discharge at 1319

stations worldwide, by adjusting 1–3 parameters in the basin cells. Table 2 shows that this

calibration reduces the impact of uncertain climate variables on global river discharge into

oceans and inland sinks Q, actual evapotranspiration AET, actual consumptive water use

WCa and change in total water storage dTWS (comp. differences between columns 1 and 2

to differences between columns 3 and 4 in Table 2). While the difference in global pre-

cipitation between CLIMATE and STANDARD of 1396 km3/year is increased to a dif-

ference in Q of 4255 km3/year without calibration, this difference, i.e. sensitivity to

climate input, is reduced by calibration to 2671 km3/year. The difference is still appre-

ciable even in the calibrated model version due to areas without observed river discharge.

Global AET reacts much less sensitive to the different climate inputs. This is also seen

when comparing the results of two uncalibrated model runs (no human water abstractions

assumed) that are driven by either the Princeton or WFDEI climate data (columns 5 and 6).

The Princeton climate data, with global precipitation estimated to be 7051 km3/year less

than in case of the WFDEI data, result in global total water resources that are 5503 km3/

year less than with the WFDEI data.

To perform a first sensitivity analysis regarding uncertain radiation data, daily net

radiation in the uncalibrated STANDARD variant of WaterGAP 2.2 (without human water

abstractions, column 6 in Table 2) was decreased or increased by 20 % in each grid cell

(columns 7 and 8 in Table 2). At least at the scale of 0.5� grid cells, an uncertainty of 20 %

for net radiation is not exaggerated. In case of -20 % net radiation, global actual evap-

otranspiration decreases by 7.2 %, while with ?20 % net radiation, it increases by only

4.4 %. The asymmetry is due to water availability limiting actual evapotranspiration;

radiation-limited areas become water limited when net radiation is increased. With a 20 %

lower global net radiation on the continents, renewable water resources (i.e. runoff) would

increase by 9.9 %, while with a 20 % higher global net radiation, it would decrease by

6.1 %. Figure 1 shows the spatial distribution of the changes in renewable water resources

that are computed by WaterGAP 2.2 to result from a 20 % decrease or increase in net

radiation (average for 2000–2009), in addition to a global map of the baseline net radiation

computed by WaterGAP 2.2. While renewable water resources decrease in most grid cells
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by less than 10 % in case of ?20 % net radiation, they increase by more than 10 % in

many regions of the globe in case of -20 % net radiation. Changes in per cent of water

resources are highest in radiation-limited areas, i.e. in many grid cells with surface water

bodies (e.g., in Tibet) but also in tropical and cold regions (even without surface water

bodies). In water-limited areas, simulated water resources vary less (Fig. 1).

3.2.2 Uncertainties in Global and Regional Climate Projections and Their Impact
on Simulating Future Water Resources

Land and water management as well as assessment of climate change impacts in support of

climate change mitigation require quantitative climate projections from seasonal to multi-

decadal timescales that can be used as input to GHMs. These projections are subject to

uncertainties that are different from the uncertainties of historic climate. The first uncer-

tainty is related to future scenarios of anthropogenic perturbations including emissions of

greenhouse gases and sulphate aerosols, land use change and water management itself all

of which affect future climate at least on multi-decadal timescales. The second uncertainty,

which is related to model deficiencies as illustrated by the different GCM responses to

identical radiative forcings, is important at all timescales. Model uncertainty is generally

Fig. 1 Sensitivity of renewable water resources RWR during 2000–2009 to a decrease or increase in daily
net radiation by 20 % as simulated by WaterGAP 2.2 (Müller Schmied et al. 2014). RWR, i.e. net cell
runoff, as computed with uncalibrated model variant STANDARD (a) and the related net radiation (b), and
RWR changes relative to STANDARD in case of decreased (c) and increased (d) net radiation. nc: Per cent
change cannot be meaningfully computed in case of zero or negative values of renewable water resources
for STANDARD NoCal NoUse and where the value changes the sign. Negative RWR values occur in cells
with lakes or wetlands if evapotranspiration of water flowing in from upstream cells exceeds precipitation
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higher for precipitation than for temperature and arises partly from the limited spatial

resolution of GCMs and the need to parameterize unresolved processes within atmosphere

and ocean and at the land surface. Higher-resolution regional climate models still show

significant biases when driven by atmospheric reanalyses and still require bias correction

based on observations for use in impact studies. While there is hope to narrow model

uncertainty by further increasing model resolution down to a few kilometres, at least for

resolving explicitly atmospheric convective processes, the need of ensemble simulations at

both seasonal and multi-decadal timescales will remain a major obstacle for at least a

decade and raises the issue of both climate model formulation (structural model uncer-

tainty) and model calibration (parameter uncertainty).

The need of large ensembles is related to the third source of uncertainty: the internal

variability of the climate system, that is, the natural fluctuations that arise in the absence of

any anthropogenic forcing (and any natural radiative forcing such as solar activity or

volcanic eruptions). Appreciation of these fluctuations is an important matter for decision

makers because they have the potential to reverse—for a decade or so—the longer-term

trends that are associated with anthropogenic climate change (e.g., Douville et al. 2015).

While they have been recognized as a fundamental limit to predictability from the early

beginning of seasonal forecasting, their relevance in climate scenarios has been empha-

sized more recently and is probably still underestimated in most impact studies which often

use a single realization of a given GCM for driving the impact model.

The relative importance of the three sources of uncertainty varies with prediction lead

time and with spatial and temporal averaging scale, but is also variable dependent.

Focusing on seasonal precipitation at the regional scale from the CMIP3 archive, Hawkins

and Sutton (2011) showed that internal variability contributes 50–90 % of the total

uncertainty for all regions for precipitation projections of the next decade and is the most

important uncertainty for many regions for lead times up to 30 years. Model uncertainty is

generally dominant thereafter. Scenario uncertainty was found to be small or over land

areas. This is different for other climate inputs such as surface air temperature or surface

radiation, and hydrological impacts of climate change differ appreciably between low and

high emissions scenarios in the second half of the twenty-first century (Jiménez Cisneros

et al. 2014).

The fourth source of uncertainty is related to the statistical bias correction of GCM

outputs (e.g., Hagemann et al. 2011). Such techniques are sometimes included in statistical

downscaling tools but, again, must be also implemented on top of dynamical downscaling

tools. Statistical bias correction is commonly applied in climate impact modelling to

correct GCM output for systematic deviations of the simulated historical data from

observations. It has been found that evapotranspiration and river discharge as computed by

GHMs that are driven by GCM output differ significantly for historic time periods if

climate model output is not bias corrected; bias correction of precipitation and temperature

is more important than bias correction of radiation, humidity and wind speed (Haddeland

et al. 2012). Bias correction methods are generally based on transfer functions generated to

map the distribution of the simulated historical GCM output to that of the observations.

Those are subsequently applied to correct the future projections, thus making the

assumption that GCM biases are constant over time. While such an assumption is not

necessarily true, especially for precipitation biases (Chen et al. 2015), there are other

challenging assumptions in most bias correction techniques.
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3.3 Quantification of the Role of Active Vegetation Under Changing Climate
and CO2 Concentrations

When climate and atmospheric CO2 concentrations change due to anthropogenic climate

change, vegetation changes too. Therefore, evapotranspiration and runoff are not only

affected directly by changes in climatic variables but in addition by the vegetation reaction

to changes in climatic variables and CO2 concentration. Rising CO2 concentration causes

two counteracting effects (Gerten et al. 2014). On the one hand, the physiological effect

reduces opening of leaf stomata, as less water is required to assimilate carbon in case of

higher CO2 concentration; this decreases transpiration for the same climatic conditions. On

the other hand, CO2 fertilization may cause increased plant growth leading to increased

transpiration per unit area (structural effect). Current quantification of these effects is

highly uncertain, due to diverse observational evidence but also algorithms in DGVMs

(Gerten et al. 2014). This is true not only for natural vegetation but also for crops (Elliott

et al. 2014). In addition, the changing climate itself affects the vegetation, e.g., altering

biomass production or vegetation cover or even leading of a biome shift.

It is uncertain how vegetation responses to increasing CO2 and changing climate will

affect water flows, which adds uncertainty to the response of water flows to climate

change. Effects may be large, in particular where the type of vegetation changes. A

modelling study with a DGVM indicated that until the end of the twenty-first century the

active vegetation may cause a relative increase in runoff in response to increased atmo-

spheric CO2 concentration (physiological effect dominant), except in areas where grass-

land changes to deep-rooted vegetation in a warmer climate (Murray et al. 2012). In case of

4 �C global warming, the high temperatures lead to decreased vegetation cover, such that

runoff as a ratio of precipitation is projected to increase worldwide (Murray et al. 2012).

Large uncertainties also surround the response of vegetation to persistent droughts in both

present-day and future climates, especially over the Amazon rainforest (Joetzjer et al.

2014).

Most GHMs, like most basin-scale hydrological models, do not model vegetation

responses to changes in climate and atmospheric CO2 concentrations. Thus, if, for

example, the physiological effect were dominant, those GHM would underestimate future

runoff and thus renewable water resources. Neglecting the reaction of crops to increased

CO2 may lead to an overestimation of future irrigation water demand (Wada et al. 2013;

Elliott et al. 2014; Gerten et al. 2014). In the multi-model study of Wada et al. (2013), the

only model that considered CO2 effects on crop photosynthesis and transpiration shows a

decreasing trend in future irrigation water demand (about 10 % by the end of this century)

and increasing yields, while model runs without CO2 effect indicated pronounced increases

in future irrigation water demand ([20 % by the end of this century).

Unfortunately, models that simulate vegetation responses strongly disagree among each

other on the effect of active vegetation on evapotranspiration and runoff. In a multi-model

study on projected runoff changes between 1981–2010 and 2070–2099, two DGVMs

computed higher runoff, and two computed lower runoff compared to GHMs with passive

vegetation (Fig. 2; Davie et al. 2013). Comparing the runs of the four models with elevated

CO2 to runs with constant CO2, they found that modelling the CO2 effect on vegetation

contributes to an increased spread in runoff projections. The challenge is to (1) improve

modelling of climatic and CO2 effects on vegetation with respect to evapotranspiration and

runoff and (2) to include the effect of the active vegetation on evapotranspiration and

runoff also in the majority of GHMs that do not model vegetation dynamics.

204 Surv Geophys (2016) 37:195–221

123



3.4 Understanding of Why GHMs (Including Global Irrigation Models)
Respond Differently to Changed Climate Input

Traditionally, GCMs have been considered as a major source of the uncertainty in future

hydrological assessments. Therefore, hydrological studies on the impact of climate change

applied not only the output of one but multiple GCMs as input to the hydrological model

(Jiménez Cisneros et al. 2014). However, recent model intercomparison projects (Water-

MIP and ISI-MIP) where various GHMs were driven by either standard historic climate

data or the bias-corrected output of multiple GCMs showed that differences among GHMs

are also a major source of uncertainty regarding evapotranspiration, runoff and discharge

(Dankers et al. 2014; Davie et al. 2013; Gosling et al. 2011; Haddeland et al. 2011, 2014;

Hagemann et al. 2011, 2013; Schewe et al. 2014) and irrigation water demand (Wada et al.

2013; Elliott et al. 2014). The uncertainty can be larger than that arising from GCMs,

depending on the region and the output variable. Considering eight GHMs but only three

GCMs, Hagemann et al. (2013) found that the spread in projected changes of actual

evapotranspiration dominantly caused by the different GHMs in most areas of the world,

while the spread in projected runoff was dominantly caused either by the GCM or by the

greenhouse gas emissions scenario (considering changes until the end of the twenty-first

century). However, the small number of applied GCMs and bias correction of GCM output

has limited the spread of GCM output. Applying eleven GHMs driven by five bias-

corrected GCMs, Schewe et al. (2014) determined that GHMs were responsible for a larger

spread in river discharge than the GCMs on most of the global land area. This can be

explained by the fact that they compared model results not for a specific time period but for

Fig. 2 Uncertain impact of vegetation response on runoff changes under future anthropogenic climate
change: scatterplot of runoff change against precipitation change between 1981–2010 and 2070–2099 in
mm/day for world regions as computed by global hydrological models not taking into account active
vegetation (blue) and global vegetation models that do (green). All models are forced with HadGEM2-ES
RCP8.5 climate. Figure by Davie et al. (2013)
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a specific global warming for which the GCM outputs are more similar. Projections of the

impact of climate change on optimal irrigation water abstractions as computed by seven

GHMs driven the same GCMs were dominated by GHM uncertainty throughout the

twenty-first century (Wada et al. 2014). With these studies, it has become state-of-the-art

that an ensemble of model runs that has been generated by driving multiple GHMs with the

output of multiple GCMs should be evaluated in water-related climate change impact

studies. Analysis of such multi-model ensembles should not be restricted to the ensemble

mean but also consider results of individual models that would imply a high risk, i.e.

results that may have strong negative impacts due to high vulnerability (Döll et al. 2015).

Why do the responses of GHMs (and hydrological models in general) to climate change

projections vary so widely? Possible reasons include (1) different model algorithms for the

computation of potential and actual evapotranspiration as well as runoff generation, (2)

modelling (or not) of energy balance in addition to water balance, (3) modelling irrigation

water requirements based on soil water deficits as derived from soil water balances or as

the difference between optimal evapotranspiration and available water, (4) different

physiographic input parameters such as soil properties and land use and (5) different

simulation of vegetation, including the CO2 effect on crops and other vegetation. The latter

aspect has already been discussed in the previous section.

None of the multi-model studies has been able to analyse in depth the reasons for the

discrepant results of the individual GHMs. Hagemann et al. (2013) concluded that large

differences in projected changes between the GHMs may be attributed to different model

formulations of evapotranspiration but provide no further detail. Different methods for

computing potential evapotranspiration (e.g., taking into account only temperature, or also

radiation or humidity and wind speed) may explain the disagreement not only in energy-

limited regions (Haddeland et al. 2012). Among eleven hydrological models applied for the

ISI-MIP project, a few models used temperature-based methods for simulating potential

evapotranspiration (Schewe et al. 2014), which has likely contributed to the spread.

Haddeland et al. (2011) analysed differences among eleven GHMs driven by the same

historic climate input, discussing the impact of energy balance-based snow algorithms as

compared to degree day-based snow algorithms (affecting seasonal flows) and the impact

of differing parameter values. They found that regarding ‘‘the interannual variation in

runoff and evapotranspiration, no major differences have been found between the models

run at daily or subdaily time steps or between models using different evapotranspiration or

runoff schemes’’ (Haddeland et al. 2011, p. 882).

Model intercomparison studies should go beyond the identification of the spread of the

model ensemble but also try to understand reasons for the spread and identify routes

towards model improvement. However, the challenge of understanding why a large

number of complex GHMs with a high spatial and temporal resolution react differently to a

spatially and temporally heterogeneous change in input variables may appear over-

whelming. A step towards progress could be to devise feasible intercomparison strategies

that aim at understanding the major drivers of the spread. Another step would be to assess

the capability of the GHMs to simulate hydrological effects of past climate variability,

under the assumption that a model that does a good job in simulating hydrological

responses to, e.g., inter-annual climate variability is also able to better simulate impacts of

climate change. Hydrologists should study lessons learnt in model intercomparison of

climate (e.g., Knutti and Sedlacek 2013) or dynamic vegetation models (Sitch et al. 2008;

Warszawski et al. 2013). Regarding GCMs, Knutti and Sedlacek (2013) found that model

spread regarding future temperature change has not decreased in the new CMIP5 model

ensemble as compared to the CMIP3 ensemble, i.e. after about than 6 years of massive
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efforts in model improvements. They argue that GCMs have improved and now represent

more processes in greater detail, which implies greater confidence in projections even if

model spread, which is often called model uncertainty, has not decreased. A decreased

spread might even misleading if caused only by using more similar model input or more

similar algorithms that become to be considered ‘‘state-of-the-art’’ within the scientific

community even without firm scientific support. Regarding DGVMs, the study of Sitch

et al. (2008. p. 2035) showed ‘‘the ability of models to satisfy contemporary global carbon

cycle constraints, while future projections diverge markedly’’, as many different parameter

combinations allow recreating the historical record but lead to divergent future projections.

3.5 Modelling of Monthly Time Series of River Discharge and Human Water
Use to Support More Meaningful Indicators of Water Stress for Both
Humans and Ecosystems

Currently, indicators of water stress are mostly defined based on mean annual values of

water availability and use (e.g., Kiguchi et al. 2015, Arnell and Lloyd-Hughes 2014).

Water stress for humans and freshwater ecosystems as well as environmental flow

requirements could be defined more meaningfully at the monthly timescale (Hoekstra and

Mekonnen 2011) as use of mean annual values masks differences in seasonality and

interannual variability. Consideration of mean annual values only leads to an underesti-

mation of water stress in highly seasonal flow regimes, e.g., in monsoon regions, as well as

in regions with high interannual flow variability, e.g., in semi-arid and arid regions.

However, WaterGAP and most likely all other GHMs are not capable of satisfactorily

simulating monthly time series or even mean monthly values of river discharge and human

water use. Müller Schmied et al. (2014) found that even for most of the 1319 gauging

stations used for model calibration (that considers only mean annual river discharge),

monthly (their Figs. 6 and 7, and Table 4) or mean monthly river discharge (their Fig. 5)

was not well simulated. In case of the best model version (STANDARD), only 28 % of the

basins showed a modelling efficiency (Nash–Sutcliffe coefficient) of more than 0.7, while

46 % of the basins had a value of less than 0.5. Simulation of seasonality of irrigation

water use is known to be highly uncertain as cropping patterns and calendars are not well

known (Portmann et al. 2010). Besides, cropping patterns and calendars would ideally be

simulated as a function of climate. Therefore, we believe that it is currently not reasonable

to compute, in global-scale studies, water stress indicators based on monthly water

availability and use. The challenge is to improve both GHMs and their input data such that

reliable monthly time series of river discharge and human water use are computed.

An alternative to indicators based on monthly discharge values is to consider statistical

monthly low and high flows, e.g., Q90 and Q10, the river discharge that is exceeded in 9 out

of 10 months and 1 out of 10 months, respectively. These statistical low and high flows

include seasonal and inter-annual variability of monthly river discharge, which is partic-

ularly high in the dry regions of the globe, and are ecologically relevant indicators of the

flow regime. They can be computed reasonably well by the GHMs WaterGAP and PCR-

GLOBWB, at least for the gauging stations whose mean annual discharge was used for

calibrating WaterGAP (Fig. 3). Simulation of high flows is better than simulation of low

flows. In case of observed Q90 values of less than 1 km3/month or 10 mm/month, Q90 as

simulated by WaterGAP simulations may differ very strongly from the observed value

even though WaterGAP was calibrated against mean annual river discharge of these sta-

tions (Fig. 3 top). WaterGAP tends to overestimate Q90 (with 592 of the simulated 821

values being larger than the observed ones) and to underestimate Q10 (with 608 of the
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simulated 821 values being smaller than the observed ones). PCR-GLOBWB shows the

same behaviour but to a much lesser extent (Q90: 497 of the simulated 821 values are larger

than the observed ones; Q10: 449 of the simulated 821 values are smaller than the observed

ones). However, model results of PCR-GLOBWB show a lower fit to observed low and

high flow values as the model is not calibrated against mean annual discharge at the

depicted gauging stations. Water stress indicators based on monthly Q90, where water use

is often taken to be mean annual consumptive water use instead of mean annual water

abstraction, were applied, e.g., by Alcamo et al. (2007) and Hanasaki et al. (2008).

3.6 Simulation of Groundwater–Surface Water Interaction and Capillary
Rise by Gradient-Based Groundwater Modelling

Groundwater is the largest store of freshwater available for human use. It is replenished by

precipitation in the form of diffuse groundwater recharge through the soil and sometimes

by concentrated recharge from surface water bodies (Taylor et al. 2013). Groundwater

flows along gradients of hydraulic head, but this is not represented yet in GHMs. In

particular, groundwater flow between grid cells is not simulated. If at all, groundwater is

represented in GHMs mainly as a linear storage compartments that discharge groundwater

as baseflow into surface water bodies, baseflow being a function of groundwater storage.

With a linear groundwater store, the relative temporal changes of groundwater storage can

be computed, also as affected by groundwater abstractions (Döll et al. 2014a, b).

Groundwater storage changes can be translated to variations of groundwater table eleva-

tions, but there is no information of the absolute elevation of the groundwater table or

depth to groundwater table. An approach for taking into account groundwater in climate

models by Niu et al. (2007) allows to compute depth to groundwater table and capillary

rise but does not simulate lateral groundwater flow (nor groundwater recharge from surface

water bodies).

Fig. 3 Validation of monthly low and high flows Q90 (left) and Q10 (right) as simulated by the global
hydrological models WaterGAP 2.2 (Müller Schmied et al. 2014) (top) and PCR-GLOBWB (Wada et al.
2014) (bottom) against observations at 821 of the 1319 WaterGAP calibration stations with at least 15 years
of data and basin area of at least 20,000 km2. Note that different from WaterGAP, PCR-GLOBWB is not
calibrated to mean annual observed discharge at the depicted gauging stations
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Without dynamic modelling of the elevation of the groundwater table, groundwater

recharge from surface water bodies, which is particularly important in dry regions, cannot

be represented well. Döll et al. (2014a) used a very rough estimate of groundwater recharge

from lakes and wetland in semi-arid and arid regions of the globe to avoid underestimation

of groundwater recharge and thus overestimation of groundwater depletion. Equally,

capillary rise from groundwater to the soil cannot be represented well if the distance of the

groundwater table to the land surface is not simulated. Thus, for a simulation of ground-

water–surface water interaction and capillary rise, it is necessary to estimate the temporally

changing elevation of the groundwater table well; this can only be achieved if lateral

groundwater flow driven by gradients of hydraulic head (or groundwater table) is computed

(Fan et al. 2007; Jones et al. 2008; Kollet and Maxwell 2008; Krakauer et al. 2014;

Maxwell et al. 2007; Maxwell et al. 2015). Lateral groundwater flow is described by a

partial differential equation the solution of which is computationally more involved than

solving the ordinary differential equation that is used to describe groundwater storage and

outflow in typical hydrological models. However, the main reason for not including gra-

dient-based groundwater flow modelling in GHMs may be the extreme lack of information

on groundwater that is available for global-scale studies (Taylor et al. 2013; de Graaf et al.

2015).

For North America, Miguez-Macho et al. (2007) linked a land surface scheme with a

two-dimensional gradient-based groundwater model and computed, with a daily time step,

gradient-based groundwater flow, water table elevation, groundwater–surface water

interaction and capillary rise, using a spatial resolution of 12.5 km. One challenge was the

determination of the river conductance that affects the degree of groundwater–surface

water interaction. Capillary rise was computed using the Richards’ equation for a soil

column reaching down to the groundwater table by soil layers of variable thickness; the

model appears to overestimate capillary rise that is computed to dominate in all flat regions

during May–October. Vergnes et al. (2012, 2014) established a gradient-based ground-

water model applicable for global-scale modelling and applied it to France with spatial

resolutions of 0.5� and 5 arc-min. The transient model simulates two-dimensional

groundwater flow dynamics and also accounts for groundwater–river exchange and cap-

illary rise. It is currently being implemented in the GHM of CNMR (Centre National de

Recherches Météorologiques, France). Fan et al. (2013) developed a high-resolution

(30 arc-s) steady-state global groundwater flow model driven by diffuse groundwater

recharge, taking into account land surface elevation. The results indicated that patterns in

water table depth explain patterns in wetlands at the global scale and vegetation gradients

at regional and local scales. This study was an important step towards simulating

groundwater dynamics globally. However, in the chosen approach, neither the important

hydraulic connection between rivers, surface water bodies and groundwater nor spatially

distributed hydrogeological information was taken into account. A subsequent study by de

Graaf et al. (2015) presented an alternative global-scale steady-state groundwater flow

model of a shallow aquifer (spatial resolution 6 arc-min), estimating aquifer depths and

using a global lithological map (Hartmann and Moosdorf 2012) in combination with

estimates of lithology-specific hydraulic conductivity (Gleeson et al. 2014). The results

showed the importance of lateral groundwater flows over catchment boundaries as inter-

basin flow paths. Both models are likely to overestimate the depth to groundwater. They

are not dynamic and are not coupled to a model that dynamically models groundwater

recharge and surface water levels. Therefore, the simulation of groundwater–surface water

interactions is very limited, and neither capillary rise nor groundwater pumping or

groundwater recharge by irrigation return flows is considered.
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At a continental scale, Maxwell et al. (2015) showed the possibility of setting up an

integrated hydrological model that simulates surface and subsurface flow at a high spatial

resolution (1 km). The model solves surface and subsurface flow simultaneously and is

constructed entirely of available datasets including topography, soil texture and hydro-

geology. However, the steady-state simulation did not take into consideration runoff

generation, transient dynamics or human activities such as groundwater pumping that

affect the quantity of surface water fluxes and groundwater recharge (Döll et al. 2014a, b).

Maxwell et al. (2015) concluded that these limitations can be addressed within the current

modelling framework but require additional computational resources. Advanced soil–

groundwater–surface water modelling systems such HydroGeoSphere (Brunner and Sim-

mons 2012) that are widely applied at local scales would require not only faster computers

and better calibration strategies but also good quality data to be applicable at the global

scale.

Given the poor knowledge on the three-dimensional shape and distribution of aquifer

bodies as well as restricted computational resources, gradient-based groundwater mod-

elling cannot aim, in the near future, at modelling groundwater flows in three dimensions

or at supporting the sustainable management of specific aquifers. The focus is on better

representing groundwater–surface water interactions and capillary rise. Here, the major

challenge is to achieve a reasonable representation even with relatively large grid sizes

such that it is computationally feasible to perform transient groundwater flow simulations

that are coupled to soil water and surface water dynamics.

3.7 Detection and Attribution of Observed Changes in Freshwater Systems

Detection is the process of demonstrating that an observed change cannot be explained by

internal climate variability only. Attribution of a change to anthropogenic influence

requires the additional demonstration that the detected change is consistent with the change

simulated in response to a combination of external forcings. While detection is generally

done using statistical methods, attribution almost always requires the use of models. Most

often in hydrology, detected change, e.g., of river discharge, is attributed to observed

changes in climate or CO2 concentrations (Jiménez Cisneros et al. 2014). Attribution of

hydrological changes to human climate-altering activities is seldom attempted because it

requires the application of climate models. An exception is the study of Pall et al. (2011)

where citizens allowed the researchers to perform a very large ensemble of climate model

runs on their computers such that it could be shown that increased greenhouse gas con-

centrations increased the likelihood of a specific historic flood event in the UK by

approximately a factor of 2–3.

Detection of changes of water flows and storages is limited by availability of, e.g., river

discharge data or data on groundwater recharge. In the case of river discharge, available

data are inhomogeneous as records of many stations end in the 1990s or even earlier, and

there are a large number of ungauged basins around the world so that there is no good

global coverage of river discharge by gauging stations. In case of the important variable

groundwater recharge, there are no measured time series at all. In addition, the strong

spatio-temporal variability of hydrological variables makes it hard to detect changes, e.g.,

changes in flood frequency. Attribution of detected changes of river discharge is chal-

lenging because river discharge is affected not only by climatic (and CO2) changes but also

by changes in land use and water abstractions (Jiménez Cisneros et al. 2014).

There are studies that tried to attribute changes in river discharge to changes in climate,

CO2 and land use (Gedney et al. 2006) and, more recently, to the radiative effect of
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anthropogenic aerosols (Gedney et al. 2014). Such studies were based on the comparison

between annual river discharge derived from offline land surface simulations on the one

hand and from observed river discharges on the other hand. The river basins with sig-

nificant irrigation were ignored so that the role of human water use was considered as

negligible. Yet, the conclusions of Gedney et al. (2006) that CO2 increase played a large

role in causing increased global river discharge were challenged. They are highly uncertain

not only due to the specific model assumptions on physiological versus structural effects on

evapotranspiration but also because the applied precipitation data set is not suitable for

evaluating trends as it is based on a temporally varying number of precipitation gauging

stations, and because a more recent compilation of observed river discharge resulted in a

decrease in global river discharge over time (Gerten et al. 2014). Alkama et al. (2011) were

successful in simulating recent river discharge trends without accounting for physiological

effects and emphasized the possible relevance of permafrost thawing for capturing the

discharge trends of northern high-latitude rivers.

As far as evapotranspiration (ET) is concerned, changes at the continental to global

scale are even more difficult to analyse due to lack of direct measurements. Only relatively

few monitoring sites operate around the world and the period of record is quite short. Two

studies (Jung et al. 2010, Wang et al. 2010) have used such in situ measurements for tuning

global empirical ET schemes based on remote sensing and standard meteorological data.

They agreed on a global increase in annual mean ET by about 7 mm per year per decade

from 1982 to the late 1990s. These results were compared with ET outputs of process-

oriented land surface models and were found to be relatively robust (Jung et al. 2010). The

1982–2008 period was, however, too short for a formal detection and attribution. More

recently, Douville et al. (2012) used several global ET reconstructions based on two land

surface models driven by two precipitation forcings and attributed the reconstructed multi-

decadal variations of annual mean ET in three latitudinal belts to anthropogenic climate

change. The ET reconstructions neither accounted for direct CO2 effects on ET nor

accounted for changes in land or water use, thereby allowing a fair comparison with GCM

outputs and a more robust attribution of the effect of anthropogenic climate change. Yet,

this strategy did not allow the authors to assess the possible impacts of other human

activities on ET, such as water abstractions.

4 Prospects

The role of global hydrological modelling is to combine large amounts of diverse and

mostly spatially and temporally resolved data in order to estimate continental water flows

and storages and resulting policy-relevant indicators of the water situation worldwide. To

decrease the uncertainty of the computed estimates, it will be fruitful to generate and

utilize improved GHM input data such as climate data but also to make better use of

observations of GHM output variables such as river discharge or total water storage

variations. This can be done by multi-criteria validation, calibration or data assimilation. A

higher spatial resolution of GHM models beyond the current 0.5� resolution

(55 km 9 55 km at the equator) will increase the policy relevance of GHM output, e.g.,

for supporting integrated water resources management at the scale of river basins.
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4.1 Multi-criteria Validation Against River Discharge and Geodetic/Remote
Sensing Observations

Observations of river discharge are ideally suited for validating macro-scale hydrological

models because the point observation integrates over processes in the whole upstream

basin of the gauging station. Besides, river discharge is a flow that can be related quite

easily to water availability which is the focus of many assessments. Finally, long time

series of observational data exist for many stations around the globe and some of them are

compiled by the Global Runoff Data Centre (GRDC). When validating model output

against observed river discharge, measurement errors should be taken into account, ideally

in a station- and discharge-specific manner. None of the 500 UK gauging stations has a

discharge observation uncertainty of less than 10 % (for individual measurements at mean

flow conditions) due to uncertain stage–discharge relationships, while 83 % of the stations

for which uncertainty could be determined has an uncertainty of less than 40 % (Coxon

et al. 2015).

Observational data of other components of the water cycle in addition to river discharge

are needed to validate hydrological models due to the well-known equifinality problem

(Beven and Freer 2001); more than one parameter combination (or model) can lead to a

good fit between discharge observations and simulations, while other water flows or

storages would be projected very differently by model variants that result in equally good

simulations of the river discharge. Therefore, a multi-criteria validation that considers

other observed flows or water storage variations or any other observation that are related to

flows and storages can be expected to be highly informative.

As an example, total water storage (TWS) variations as modelled by GHMs can be

validated against satellite-based geodetic observations of monthly gravity variations of the

GRACE satellites (Tapley et al. 2004), at least if all important storage compartments like

the groundwater and large surface water bodies are taken into account in the GHM.

Simulated TWS variations can also be validated by continuous GPS observations at more

than 200 network stations worldwide because water storage variations cause crustal

deformations which lead to displacements of the GPS reference point (Döll et al. 2014b).

Comparing simulated TWS variations against both GRACE and GPS, Döll et al. (2014b)

identified regions where the WaterGAP GHM underestimates seasonal variability of TWS

and found that maximum TWS occurs 1 month too early in WaterGAP for most land areas

(based on GRACE only). Validating groundwater depletion as computed by WaterGAP

against both in situ well observations and GRACE TWS allowed the conclusion that

farmers in groundwater depletion area irrigate with only 70 % of the optimal value (Döll

et al. 2014a). In the future, combined validation of GHM model output against river

discharge and TWS (e.g., Alkama et al. 2010) should be intensified, and time series of lake

or river water tables as measured by radar altimetry should serve as additional observa-

tional data sets.

4.2 Multi-criteria Calibration and Data Assimilation

Multi-criteria calibration and data assimilation goes beyond multi-criteria model valida-

tion. In model calibration, model parameters are adjusted in a way that simulated water

flux or storage (state) variables optimally match historic observations with respect to one or

more performance criteria. A primary goal of calibration is to obtain a model (including

parameter values) that allows simulations for periods without observation data, such as for
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simulations of the global water resources for the time period 1971–2000 or of future

climate change impacts. GHMs have rarely been calibrated, with few exceptions such as

WaterGAP (Döll et al. 2003; Hunger and Döll 2008) and WASMOD-M (Widén-Nilsson

et al. 2007) for which one or more parameters were adjusted by evaluating simulation

results against observed river discharge. Without basin-specific calibration, even mean

annual simulated river discharge may differ strongly from the observed value (Müller

Schmied et al. 2014; Haddeland et al. 2011).

Model calibration is usually hampered by parameter equifinality (see Sect. 4.1), and

calibration against more than one observable and performance criterion has long been

recognized as an option to allow adjustment of a larger number of model parameters and to

constrain the number of plausible model realizations (e.g., Gupta et al. 1999). For conti-

nental to global-scale modelling, however, there is not yet much experience with multi-

criteria calibration, presumably because adequate satellite-based observation data with

sufficient spatial and temporal extent and resolution have become available only recently.

While considerable uncertainties of remote sensing data products may still limit their value

in a multi-criteria calibration strategy (Livneh and Lettenmaier 2012), large-scale cali-

bration examples demonstrated the benefit of using, in addition to river discharge, satellite-

based monitoring data, such as near-surface soil moisture from Envisat (Milzow et al.

2011), MODIS-based evapotranspiration (Livneh and Lettenmaier 2012), altimetry-based

water levels (Milzow et al. 2011), MODIS-based snow cover (Parajka and Blöschl 2008) or

total water storage (TWS) variations from GRACE (Werth et al. 2009, Xie et al. 2012).

GRACE TWS and river discharge were incorporated into a multi-criteria calibration

scheme for WaterGAP by Werth and Güntner (2010) by adjusting the most sensitive 6–8

parameters in the 28 largest river basins worldwide. Improved simulations of TWS vari-

ations and river discharge were achieved for most basins after calibration, but calibrated

mean annual discharge was still poor compared to the observed values in some basins, and

a better fit to GRACE TWS did not necessarily lead to a better fit of simulated discharge to

observed discharge. In the study of Xie et al. (2012), model parameters appear to be less

sensitive to TWS than to river discharge. While large trade-offs in model performance for

different objective functions leave the model with considerable uncertainties, they can help

to unravel deficiencies of the model structure (e.g., Duethmann et al. 2014).

Direct multi-criteria calibration for the essential terms of the continental water balance

(river discharge and TWS changes, and evapotranspiration if monitoring data were

available) is particularly appealing if one strives for a closed water balance model of the

continental areas. Nevertheless, the particular nature of GRACE TWS data based on the

Earth’s time-variable gravity field requires specific consideration of the storage compart-

ments considered, data filtering and error terms to make the calibration scheme consistent

between model and observations (Güntner 2008). Multi-criteria calibration should com-

prise more than two observables to further constrain the space of plausible model real-

izations. Besides the types of satellite-based data on states and fluxes mentioned above,

information on water storage in surface water bodies has a high potential as a large-scale

calibration constraint, based on currently available multi-sensor combination data (for

example, Papa et al. 2013) and future satellite missions such as SWOT. With the devel-

opment of multi-scale modelling and parameterization concepts (Samaniego et al. 2010),

even observation data with a small spatial measurement support but a global coverage such

as evapotranspiration from Fluxnet eddy-covariance sites (Jung et al. 2011) or near-surface

soil moisture based on GNSS reflectometry (Larson et al. 2008), for instance, may inform

parameter adjustment in global models within a multi-criteria calibration approach.
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For observing systems that require complex operators to transform the sensor signal into

a hydrological variable simulated by a GHM, an inverse strategy can be promising. In this

case, the state or flux variable of the hydrological model is forward-transformed to a

quantity at the sensor level and, thus, parameter adjustment is done by measuring the

performance directly relative to the sensor signal. This avoids the need for using an

operator which in turn often is a nonlinear model that is afflicted with uncertainty. An

example is to convert simulated water storage variations of a hydrological model into

K-Band range rate data which is the key observable of GRACE at the level of the twin

satellites, i.e. the inter-satellite distance changes as determined by a K-Band Ranging

(KBR) System between the two GRACE satellites (Krogh 2011). Parameters in the

hydrological model are then adjusted by minimizing the difference between modelled and

observed range rate data.

Data assimilation, i.e. an integration strategy of models and data that primarily adjust

state variables of the model, and possibly also parameters, may allow for an optimal

quantification of the system status for a period where observations are available, and if the

respective errors can be adequately specified. With early developments of data assimilation

for large-scale applications being tailored towards appropriate initial conditions in land

surface schemes of weather forecasting systems, there are now numerous examples for

continental to global-scale assimilation of a variety of data types into LSMs with the

general aim of hydrological forecasting and provide land surface hydrological states that

are superior to satellite observations or model estimates alone (see, e.g., overviews in Li

et al. 2012; Reichle et al. 2014; Lahoz and de Lannoy 2014). However, there are only very

few examples of data assimilation for large-scale water cycle modelling and operational

water resources assessment so far (Renzullo et al. 2014), presumably because of limited

availability of usable data at this scale, but also because of the complexity and compu-

tational costs of these techniques (van Dijk et al. 2014). The most widely adopted tech-

nique is the ensemble Kalman filter (EnKF) or Smoother, where the otherwise unknown

error characteristics of the model are estimated by a Monte Carlo-based ensemble approach

to determine the error covariance matrix of the model. First assimilation studies using

GRACE TWS show its value for informing simulated subsurface water storage (Zaitchik

et al. 2008; Li et al. 2012; Houborg et al. 2012). Eicker et al. (2014) presented an EnKF

approach for assimilating GRACE TWS into WaterGAP with combined state and

parameter updating and a full error propagation from the monthly GRACE spherical

harmonic coefficients. They showed that GRACE data inform the model even at higher

spatial resolution than resolved by the GRACE data themselves, with varying gains in

time, space and among the different storage compartments. Some of the major challenges

for the further development of data assimilation techniques include strategies for con-

serving mass during the assimilation process, error characterization of model and obser-

vation data, and adequate mapping functions between observed and simulated variables.

Data assimilation or fusion techniques can also be applied in an offline mode to provide

consistent water balance estimates of continental hydrology. A global water cycle

reanalysis product has recently been presented by van Dijk et al. (2014), merging prior

estimates of monthly water storage changes based on an ensemble of several LSM outputs

and complementary data with GRACE TWS data in a sequential data assimilation

framework.
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4.3 Hyperresolution Global Hydrological Modelling

There is the vision that one day it may be feasible to perform global-scale hydrological

modelling with an acceptable accuracy at a much higher resolution than today, with grid

cells of 100 m to 1 km instead of the current 50 km (Wood et al. 2011). Then, global-scale

modelling would allow improved global assessment of, e.g., food security and could

support river basin management everywhere. This has particular relevance in developing

countries where basin models are not yet available or a poorly constrained because of lack

of local data; in these cases, information about water resources derived from GHMs that

can exploit non-local remote sensing data would be a great asset if it is locally relevant

(Bierkens et al. 2015). In addition, highly resolved global-scale information on water flows

and storages would be very beneficial for freshwater ecosystem management and for

assessing global biogeochemical cycles.

The HyperHydro initiative (www.hyperhydro.org) aims at advancing hyperresolution

global hydrological modelling. It is a network of scientists that is open to the broader

scientific community and invites anyone who wishes to cooperate. Current efforts include

the establishment of testbeds, overcoming of computational challenges and the compilation

of input data sets. For further information on motivation, challenges and prospects of

hyperresolution global hydrological modelling, please refer to Wood et al. (2011) (in-

cluding a comment of Beven and Cloke 2012 and the reply of Wood et al. 2012) and

Bierkens et al. (2015). Beven et al. (2015) provide valuable critical comments on hyper-

resolution modelling of water on the land areas of the globe, pointing out that unknown

heterogeneities in the subsurface and ignorance about subsurface processes result in a

lower gain of accuracy by increased resolution than is the case in atmosphere and ocean

modelling. However, a prospect of hyperresolution modelling is that its output can be

evaluated more meaningfully than current GHM output by local experts and stakeholders

who can help identify model deficiencies.

5 Conclusions

The capabilities and the sheer number of GHMs have increased significantly over the last

decade such that global-scale quantification of water resources has improved and uncer-

tainties are better known. We conclude that major challenges remain until GHMs can serve

as reliable tools for characterizing current and potential future water resources worldwide.

We hope that our presentation of selected challenges informs not only on the state-of-the-

art of global hydrological modelling but also indicates fruitful research directions. As

outlined in the previous section, we believe that major advancements will be possible if

in situ and remotely sensed observational data of model output variables are utilized more

efficiently in global hydrological modelling and if spatially more resolved model output

can be provided with reasonable accuracy.
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Parajka J, Blöschl G (2008) The value of MODIS snow cover data in validating and calibrating conceptual
hydrologic models. J Hydrol 358(3–4):240–258. doi:10.1016/j.jhydrol.2008.06.006
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Gochis D, van de Giesen N, Houser P, Jaffe P, Kollet S, Lehner B, Lettenmaier DP, Peters-Lidard C.,
Sivapalan M, Sheffield J, Wade A, Whitehead P (2012) Reply to comment by Keith J. Beven and
Hannah L. Cloke on ‘‘Hyperresolution global land surface modeling: meeting a grand challenge for
monitoring Earth’s terrestrial water’’. Water Resour Res 48:W01802. doi:10.1029/2011WR011202

Xie H, Longuevergne L, Ringler C, Scanlon BR (2012) Calibration and evaluation of a semi-distributed
watershed model of Sub-Saharan Africa using GRACE data. Hydrol Earth Syst Sci 16(9):3083–3099.
doi:10.5194/hess-16-3083-2012

Zaitchik BF, Rodell M, Reichle RH (2008) Assimilation of GRACE terrestrial water storage data into a land
surface model: results for the Mississippi River basin. J Hydrometeorol 9(3):535–548. doi:10.1175/
2007JHM951.1

Zhou T, Haddeland I, Nijssen B, Lettenmaier DP (2015) Human induced changes in the global water cycle.
AGU Geophysical Monograph Series, Submitted

Surv Geophys (2016) 37:195–221 221

123

http://dx.doi.org/10.1175/JHM-D-11-0149
http://dx.doi.org/10.1002/2014JD021573
http://dx.doi.org/10.1126/science.aac6009
http://dx.doi.org/10.5194/hess-15-3785-2011
http://dx.doi.org/10.1029/2011WR010562
http://dx.doi.org/10.1002/grl.50686
http://dx.doi.org/10.5194/esd-5-15-2014
http://dx.doi.org/10.1029/2009JD013671
http://dx.doi.org/10.1029/2009JD013671
http://dx.doi.org/10.1088/1748-9326/8/4/044018
http://dx.doi.org/10.1088/1748-9326/8/4/044018
http://dx.doi.org/10.1002/2014WR015638
http://dx.doi.org/10.5194/hess-14-59-2010
http://dx.doi.org/10.1016/j.epsl.2008.10.021
http://dx.doi.org/10.1016/j.jhydrol.2007.04.002
http://dx.doi.org/10.1029/2008GL035296
http://dx.doi.org/10.1029/2010WR010090
http://dx.doi.org/10.1029/2011WR011202
http://dx.doi.org/10.5194/hess-16-3083-2012
http://dx.doi.org/10.1175/2007JHM951.1
http://dx.doi.org/10.1175/2007JHM951.1

	Modelling Freshwater Resources at the Global Scale: Challenges and Prospects
	Abstract
	Introduction
	Approaches for Modelling Global Hydrology
	Challenges
	Modelling Human Water Use
	Uncertain Climate Input
	Uncertainties in Historic Climate Information and Their Impact on Simulating Water Resources
	Uncertainties in Global and Regional Climate Projections and Their Impact on Simulating Future Water Resources

	Quantification of the Role of Active Vegetation Under Changing Climate and CO2 Concentrations
	Understanding of Why GHMs (Including Global Irrigation Models) Respond Differently to Changed Climate Input
	Modelling of Monthly Time Series of River Discharge and Human Water Use to Support More Meaningful Indicators of Water Stress for Both Humans and Ecosystems
	Simulation of Groundwater--Surface Water Interaction and Capillary Rise by Gradient-Based Groundwater Modelling
	Detection and Attribution of Observed Changes in Freshwater Systems

	Prospects
	Multi-criteria Validation Against River Discharge and Geodetic/Remote Sensing Observations
	Multi-criteria Calibration and Data Assimilation
	Hyperresolution Global Hydrological Modelling

	Conclusions
	Acknowledgments
	References




