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1. Introduction

1.1 The EnMAP mission

The Environmental Mapping and Analysis Program (EnMAP) is a German hyperspectral satellite mis-
sion that aims at monitoring and characterising the Earth’s environment on a global scale. EnMAP
serves to measure and model key dynamic processes of the Earth’s ecosystems by extracting geochemi-
cal, biochemical and biophysical parameters, which provide information on the status and evolution of
various terrestrial and aquatic ecosystems. Once operating, EnMAP will provide unique data needed
to address major environmental problems related to human activity and climate change. The mission’s
main objective is to study and decipher coupled environmental processes and to assist and promote the
sustainable management of the Earth’s resources. Despite being a primarily scientific mission, EnMAP
has a clear potential to evolve towards operational service.

The EnMAP mission consortium comprises the Helmholtz Centre Potsdam - German Research
Centre for Geosciences (GFZ) as the principal scientific investigator, Kayser-Threde as the industrial
prime contractor, OHB Systems AG providing the satellite service module, German Aerospace Agency
(DLR) - Space Administration managing the project, and DLR Oberpfaffenhofen, which is responsible
for the ground segment.

1.2 Scope of the document

The scope of this Science Plan is to describe the scientific background, applications, and activities related
to the EnMAP mission. Primarily, the Science Plan addresses scientists and funding institutions, but it
may also be of interest for environmental stakeholders and governmental bodies. It is conceived to be a
living document that will be updated throughout the whole mission.

Current global challenges call for interdisciplinary approaches. Hence, the science plan is not struc-
tured in the traditional disciplinary way. Instead, it builds on overarching research themes to which
EnMAP can contribute. This Science Plan comprises the following five chapters presenting the signifi-
cance, background, framework, applications, and strategy of the EnMAP mission: Chapter 2 highlights
the need for EnMAP data with respect to major environmental issues and various stakeholders. This
chapter states the mission’s main objectives and provides a list of research themes addressing global chal-
lenges to whose understanding and management EnMAP can contribute. Chapter 3 presents an overview
of the EnMAP mission from a scientific point of view including a brief description of the mission pa-
rameters, data products and access, and calibration/validation issues. Chapter 4 provides an overview
of hyperspectral remote sensing regarding its principles, development, and current state and synergies to
other satellite missions. Chapter 5 describes current lines of research and EnMAP applications to ad-
dress the research themes presented in Chapter 2. Finally, Chapter 6 outlines the scientific exploitation
strategy, which includes the strategy for community building, dissemination of knowledge and increasing
public awareness.
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Chapter 1. Introduction

1.3 Terms and abbreviations

Throughout this document we use the term imaging spectroscopy synonymously for hyperspectral imag-
ing. We refer to EnMAP as the hyperspectral imager containing two sensors, one for visual/near-infrared
range and one for the shortwave-infrared range. Furthermore, we refer to the EnMAP satellite as the
entity composed of the sensors and service module and to the EnMAP mission as all activities related
to the EnMAP satellite. In the context of the EnMAP mission a wide spectrum of technical and man-
agement terms and abbreviations are used. The EnMAP mission team has built up a Glossary of Terms
and Abbreviations that comprises contributions from many team members and is continuously updated
and extended. The glossary is publicly available at http://www.enmap.org/cms.
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2. Research context and significance

2.1 Major environmental challenges

Humanity faces fundamental challenges in the 21st century. Most prominently, we need to mitigate and
adapt to climate change impacts, achieve a sustainable global land use, halt environmental degrada-
tion processes, and ensure resource sustainability. These closely linked aspects need to be understood,
quantified, and managed as they put increasing pressure on society and the environment (ESA, 2006).

The interference of humankind with the Earth’s atmosphere, biosphere, pedosphere, and hydro-
sphere has greatly increased during the last century. One of the most comprehensive impacts of these
disturbances is the increase in air temperature, which is driven by increasing emissions of greenhouse
gases. Over the last 50 years, Earth’s mean near-surface air temperature increased by 0.13 °C per decade
(IPCC , 2007). This trend in global warming drives a range of phenomena such as reduced snow and
glacial cover, rising sea level, and increased occurrences of droughts and fires. These phenomena in turn
show feedback mechanisms to the climate system via modifications in albedo, ocean circulation, and
biogeochemical cycles.

Further global perturbations of the Earth System include the decline of water and air quality by
widespread emission of pollutants and the decline of ecosystem services, which is interrelated to the
loss of biodiversity, due to large-scale land cover changes. Nearly half of Earth’s land surface has been
transformed by direct human action with more than one quarter of the world’s forests cleared (Vitousek ,
1997) and one quarter of the land degraded (FAO , 2011). For several decades we reduced the diversity
of life by polluting the environment, fragmenting habitats, spreading pathogens and invasive species, and
changing global climate (e.g. Dirzo and Raven, 2003). These multiple, atypical high-intensity ecological
stressors drive a continuous loss in biodiversity (Barnosky et al., 2011) and compromise vital ecosystem
services such as clean air, fresh water, and food (e.g. Loreau et al., 2001).

Over the next 50 years, increased population and improved living standards are expected to prompt
major increases in global food demand (von Braun et al., 2005). Resulting increases in food production
will be driven in large by intensified land use because further expansion of arable land area is limited and
freshwater supplies are diminishing (IGOS , 2008). Likewise, the increasing demand of rising population
numbers and growing economies for resources like energy, food, water, and land will remain a major driver
of global change and environmental degradation. In turn, climate change and environmental stress will
continue to put increasing pressure on many vulnerable communities. Extreme weather conditions like
tropical cyclones, rainstorms, and heat waves resulted repeatedly in loss of life, property, and agricultural
goods (e.g. IPCC , 2012). Further hazards like floods and landslides are associated with the continuous sea
level rise, permafrost degradation, and widespread glacial retreat (Kollmair and Banerjee, 2011; Vafeidis
et al., 2011). In essence, we need to understand and quantify the consequences of human activities as a
scientific basis for policy, decision-making, planning, and a sustainable land and resource management.

Our ability to address these increasingly urgent risks also depends on an improved detection and
understanding of relevant processes. During the past decades hyperspectral remote sensing emerged as

3



Chapter 2. Research context and significance

a valuable tool to assess and quantify a broad range of surface processes within the Earth System (e.g.
Goetz et al., 1985; Schaepman et al., 2009). The availability of high quality hyperspectral imagery on a
frequent basis will thus significantly contribute to the understanding of coupled processes and complex
feedback mechanisms across different spheres. Against this background, EnMAP represents an ambitious
mission to offer accurate, diagnostic information on the state and dynamics of terrestrial and aquatic
ecosystems. Its future capability to repeatedly observe various locations of the Earth’s surface in a high
spatial and advanced spectral resolution opens up new possibilities to characterize ecosystem conditions
(i.e. vegetation state, water quality, and soil properties) and to assess future trends. EnMAP is of key
importance to monitor environmental degradation and change and it will contribute to improved concepts
for sustainable management of land and other natural resources.

2.2 EnMAP mission objectives

The main scientific goal of the hyperspectral EnMAP mission is to study environmental changes, inves-
tigate ecosystem responses to human activities, and monitor the management of natural resources. By
measuring diagnostic parameters that quantify the state and trend of environmental change, the stabil-
ity of ecosystems, and the sustainability of resource use, the EnMAP mission aims to provide critical
information for an improved understanding and management of the Earth System.

The primary mission objectives are:

• to provide high-quality calibrated hyperspectral data for advanced remote sensing analyses;

• to foster and develop novel methodologies that improve the accuracy of currently available remote
sensing information and to provide advanced science-driven information products;

• to obtain diagnostic geochemical, biochemical and biophysical parameters that describe the sta-
tus and dynamics of various ecosystems to improve our understanding of complex environmental
processes;

• to provide information products that can serve as input for advanced ecosystem models;

• to significantly contribute to environmental research studies, particularly in the fields of ecosystem
functions, natural resource management, natural hazards and Earth system modelling; and

• to develop new concepts and techniques for data extraction and assimilation to achieve synergies
with other sensors.

EnMAP will significantly increase the availability of currently infrequent hyperspectral measurements
covering large areas. To understand and fully exploit the information content provided by EnMAP, novel
evaluation techniques need to be developed which fully utilize EnMAP’s regional coverage on a global
scale. EnMAP data will provide the unique opportunity to adapt and extrapolate existing hyperspectral
acquisition and data analysis approaches derived from laboratory-, field-, and airborne measurements to
spaceborne imagery. Their integration in regional ecosystem models will allow to complement, enhance,
and extend current local case study findings to a regional scale. Consolidated and improved regional scale
science on the state and evolution of ecosystems is the prerequisite for improvements in global ecosystem
models. Such upscaling studies require a sensible generalisation of the derived quantitative ecosystem
parameters and the synergistic analysis with other spaceborne imagery such as provided by the future
Sentinel fleet.

Owing to the 30° across track off-nadir pointing capability, EnMAP is highly suited for repeated
coverage of multiple key target sites with a maximum revisit cycle of 4 days. This ability allows EnMAP

4
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to repeatedly observe a globally distributed network of local to regional key target sites during its five
years of mission operation. Based on this multiple-observation strategy EnMAP will provide highly
resolved time-series to decipher the response of different ecosystems on natural and man-made pressures,
such as climate change, urban sprawl, land use changes, natural hazards, and environmental pollution.
This overall aim is linked to several secondary objectives that tackle pressing research topics as presented
in the following section.

2.3 Overarching research themes

EnMAP’s repeated observations with an advanced spectral coverage and resolution will provide new
insights into multiple interrelated environmental subjects. The EnMAP Core Science Team identified
several research topics, grouped in five major environmental themes, to which EnMAP data can provide
a substantial contribution. Because hyperspectral image analysis is applicable to a wide range of research
topics this selection focuses only on some of the most challenging environmental subjects.

Terrestrial Ecosystems

Keywords: Ecosystem services, Biodiversity, Species migration, Precision farming, REDD, Urban growth

• Quantifying the impact of human activities such as land use/cover change, land management prac-
tices, and environmental pollution on ecosystems, their services and biodiversity.

• Quantifying the rate and consequences of ecosystem changes (e.g. biodiversity loss, species migra-
tion).

• Monitoring measures to combat biodiversity loss and improve ecosystem stability (e.g. REDD+).

• Assessing the impact of soot and dust on snow and glacial melt and the consequences for the
hydrological cycle.

• Analysing the state and development of urban compositions and growth.

Aquatic Ecosystems

Keywords: Water quality, Water constituents, Environmental pollution, Phytoplankton diversity

• Assessing the impact of environmental pollution on water quality.

• Analysing the spatiotemporal variability of phytoplankton and other water constituents, which
provide insights in aquatic ecological changes.

• Discriminating water constituents (e.g. chlorophyll) to assess the water quality of freshwater reser-
voirs and aquaculturally used coastal and inland water bodies.

• Analysing type, status, and changes of shallow sea/lake bottom substrate (e.g. vegetation types,
sediment dynamics).

Natural Resource Management

Keywords: Mineral deposits, Soil properties, Environmental rehabilitation

• Developing methods to explore and manage geo-resources, such as ore/mineral deposits and petroleum,
in a sustainable way.
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• Quantifying the extent of environmental pollution caused by mine wastes and monitoring the envi-
ronmental rehabilitation progress.

• Monitoring measures to support sustainable resource management (e.g. forest ecosystems, arable
land).

Hazards and Risks

Keywords: Disaster management, Extreme weather conditions, Landslides, Volcanoes, Floods, Land
degradation, Oil spills, Marine debris, Industrial waste

• Quantifying the degree and extend of destruction in the event of a natural disaster to provide a
coordinated short-term emergency response and a long-term risk management.

• Analysing the impact of extreme weather conditions (e.g. droughts, heat waves, hurricanes) on
ecosystems and agriculture.

• Quantifying the degree and extent of environmental pollution caused by oil spills, marine litter,
mine wastes, or industrial chemicals and the environmental rehabilitation progress.

• Quantifying land degradation processes (e.g. desertification, salinization, soil acidification, soil
erosion) and their impact on ecosystem services.

• Assessing the susceptibility of areas/communities towards natural hazards (e.g. fires, floods, land-
slides) and the rate and nature of change in their vulnerability.

Atmospheric Research

Keywords: Columnar water vapour, Mineral dust, Pollen

• Improve algorithms to retrieve columnar water vapour, mineral dust, particulate matter clouds and
pollen.

2.4 European and International stakeholders

The products and information generated from EnMAP data will be of substantial interest for the scientific
community, several European and International organizations, and the general public. References to the
following organizations, initiatives and agreements can be found in the Annex (Table A.1).

First and foremost, researchers need EnMAP data to improve their understanding of Earth sur-
face processes and reduce uncertainties in associated ecosystem models. Scientific requirements for ter-
restrial observations have long been articulated, especially at the international level, by the Interna-
tional Geosphere-Biosphere Program (IGBP), the Land Ocean Interaction in the Coastal Zone Program
(LOICZ), the International Human Dimensions Program (IHDP), DIVERSITAS, the World Climate Re-
search Program (WCRP), Global Land Project (GLP), Global Biodiversity Information Facility (GBIF),
Millennium Ecosystem Assessment (MA), and the Global Environment Outlook (GEO) (GLP , 2005).
The major new “Future Earth” alliance on Earth system research for global sustainability integrates and
consolidates the above mentioned international expertise in environmental and social science under one
umbrella and forms the programmatic and societal justification for the EnMAP-based science.

Key international stakeholders, who rely in their future work on the scientific results of the EnMAP
mission, include organizations that make up the United Nations System (e.g. UNEP, FAO, UNESCO
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and WMO). Furthermore, selected UN System organizations, alongside the Intergovernmental Oceano-
graphic Commission and International Council for Science, sponsor the Global Climate Observing Systems
(GCOS), Global Ocean Observing System (GOOS) and Global Terrestrial Observing System (GTOS).
These three bodies are also important stakeholders as they provide advice on needs, gaps, and future
developments of observations as required by the UN System, by multilateral environmental agreements
(REDD+, UNFCCC, UNCCD, CBD, etc.), and by associated key entities, such as the Intergovernmental
Panel on Climate Change (IPCC), the Intergovernmental Platform on Biodiversity & Ecosystem Services
(IPBES) and the International Union for Conservation of Nature (IUCN) (IGOS , 2008).

At the level of the European Union several Commission directories (e.g., DG VI - Agriculture,
DG VIII - Development, DG XI - Environment, DG XII - Transport, and DG XVI - Regional policy)
are anticipated to require continuous remotely sensed land observations because these governmental
departments need to set, monitor, and enforce their policy agenda. For example, specified biological,
hydromorphological and physico-chemical parameters of water bodies have to be monitored on a regular
basis according to the EU Water Framework Directive. In addition, national/local authorities will need
increasingly detailed information for implementing local measures to combat desertification and to plan
alternative land uses. Furthermore, this information will be useful in meeting the objectives of the
action plans concerning the protection of the Mediterranean Sea against telluric pollution (Barcelona
Convention, Mediterranean Action Plan). Against this background, data products (e.g., soil status,
vegetation cover, change detection maps, degradation index maps) will be beneficial for decision makers.
In particular, the European Earth monitoring programme GMES (Global Monitoring for Environment
and Security) requires environmental information to support critical decisions of policymakers and public
authorities on environmental legislation and policies with a particular focus on climate change and natural
or man-made catastrophes.

Furthermore, the general public has an increasing interest in many aspects of global environmental
change, which is also reflected by political developments. The Aarhus Convention codifies the European
citizen’s participation in environmental issues and provides a legal framework for access to information
on the environment held by public authorities (IGOS , 2008).
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3. General mission framework

3.1 Technical parameters

The EnMAP satellite carries a push-broom type hyperspectral imager, that records reflected radiation
from the Earth surface in the wavelength region from 420 nm to 2450 nm via 242 contiguous bands.
The visible/near infrared (VNIR) range is covered by 88 bands with a mean band width of 6.5 nm and
the short wave infrared (SWIR) range is covered by 154 bands with a band width of 10 nm. Accurate
radiometric and spectral responses are ensured by a sufficient signal-to-noise ratio of ≥400:1 in the VNIR
and ≥170:1 in the SWIR (based on an albedo of 30% and a solar zenith angle of 30°), a radiometric
calibration accuracy of better than 5%, and a spectral calibration uncertainty of 0.5 nm in the VNIR and
SWIR.

The sensor is characterized by a ground sampling distance of 30 m (nadir at sea level) and provides
a swath width of 30 km. EnMAP can record strip lengths of up to 1000 km with a capacity of 5000
km per day. The nominal target revisit time of 23 days can be reduced to 4 days by use of the across
track off-nadir pointing capability of ±30°. EnMAP will be launched in a sun-synchronous orbit (653 km
height at 48°N; 97.96° inclination) with a local equatorial crossing time of 11:00 hr. The satellite launch
is scheduled for 2016 with an Indian “Polar Satellite Launch Vehicle” and has a designed lifetime of five
years. A summary of all mission/instrument details is given in Table 1.

3.2 Data processing, calibration, and validation

Hyperspectral data are usually supplied as spectral radiance data (e.g. Watts per square centimetre per
steradian per micrometre). The identification of pigments and materials such as minerals is based on the
spectral reflectance characteristics of the target surface. Consequently, the internal calibration of the sen-
sor and the methodological approach in the conversion of at-sensor radiance into surface reflectance are
of utmost importance for the accuracy and subsequent processing and evaluation of data. The conversion
processes from radiance to spectral reflectance involve three main steps. The first step accomplishes the
normalisation of the radiance data by the actual spectral solar insolation intensity for each spectral band
of the given sensor (Thuillier et al., 1998; Green and Gao, 1993; Staenz et al., 1995). This transforms
the radiance data acquired by a sensor into at-sensor bi-directional reflectance data. Secondly, the at-
sensor-reflectance-data are converted into surface-reflectances through the application of an atmospheric
correction scheme, which compensates for atmospheric scattering (Rayleigh and Mie), molecular absorp-
tion (H2O, O2, O3, CO2, NO2 or CH4), and aerosols (Conel et al., 1988; Berk et al., 1998; Richter , 1996).
The third step contains the correction of these surface reflectance spectra for relief (elevation, slope and
aspect) and macroscopic surface roughness (Richter , 1998). The resulting reflectance spectra can then
be compared to existing spectral libraries compiled mainly from laboratory and field measurements. The
comparison is also dependent on BRDF (Bidirectional Reflectance Distribution Function) characteristics
of the target (different illumination and observation geometry) and mixed-pixel problems.
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Chapter 3. General mission framework

Table 1: EnMAP satellite parameters

Based on the aforementioned processing steps, the mission requires a well-characterized primary
sensor, on-board calibration facilities with ongoing vicarious calibration measurements to provide a con-
tinuous sensor performance validation. Only well calibrated instruments with validated performance
data are able to produce reliable data throughout the entire mission lifetime. The derived information
products also require independent validation, by means of field and image measurements.

The pre-flight sensor characterization is performed in the laboratory for both, the individual sub-
systems and the complete end-to-end sensor system. It includes spectral, radiometric, and geometric
calibrations. The spectral measurements include the band centres, bandwidths, and spectral response
profiles for each band of each pixel in the array. These are required for a meaningful use of the data
and for the performance of the radiometric calibration of the sensor. The radiometric measurements
include the detector array responsivity, linearity, uniformity, noise characterization, straylight, and op-
tics transmittance with the objective to provide reliable radiance data, which meet the signal-to-noise
requirements of the mission. The geometric measurements include the total field of view, the view angle
for each pixel and each band, and the modulation transfer function. After launch, in-flight calibration is
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Chapter 3. General mission framework

carried out using onboard calibration devices such as the Solar Full Aperture Diffuser for the absolute
radiometric calibration using the sun as the known reference, a Main Sphere for the relative radiometric
calibration, a Small Sphere for spectral characterization, Focal Plane Assembly LEDs for non-linearity
calibration and a Shutter for dark current calibration. These measurements will be complemented by
vicarious calibration experiments on demand. As the imaging spectrometer and the on-board calibration
instrumentation age, there is a growing need for periodic in-flight calibration vicarious and on-board
calibrations.

Validation of the EnMAP L1, L2geo, L2atm and L2 products (see section 3.3) will be performed
during the commissioning phase and the operational mission period. The validation procedure includes
ground- and scene-based techniques for the product evaluation to derive characteristic error estimates for
the final EnMAP products and detailed information to track potential error sources back to instrument
and processing chain levels. These validation results will be incorporated in calibration activities and
will be provided as additional information on the instrument spectral and radiometric performance.
The purpose of these calibration and validation measurements is to provide data products with a high
radiometric and geometric accuracy throughout the operational mission time.

3.3 Data products and access

During the operation phase, the following four EnMAP data products will be delivered to the user
community: Product Level 1, Product Level 2geo, Product Level 2atm, and Product Level 2. Please
note that the raw data and its processed Level 0 (cf. Figure 1) product are not available to the user
community.

The Level 1 product represents the top-of-atmosphere radiance. This product is radiometrically
calibrated, spectrally characterized, geometrically characterized, quality controlled, and annotated with
preliminary pixel classification (usability mask). The auxiliary information (e.g. position and pointing
values, interior orientation parameters, gain and offset) necessary for further processing is attached, but
not applied. The Level 1 processor corrects the hyperspectral image for known effects, e.g. radiometric
non-uniformities, and converts the system corrected data to physical at-sensor radiance values based on
the currently valid radiometric calibration values and dark current measurements.

The Level 2geo product represents geocoded top-of-atmosphere values. This product is derived
from the Level 1 product, which is subsequently geometrically corrected (orthorectified) and re-sampled
to a specified grid. Auxiliary data for further processing are attached, but not applied. The Level 2geo
processor creates ortho-images by direct geo-referencing, utilizing an adequate digital elevation model.
The extraction of ground-control-points from existing reference images using image matching techniques
serve to improve the line-of-sight vector and therefore to increase the geometric accuracy of the ortho-
images. The Level 2geo processor ortho-rectifies image tiles from the VNIR and SWIR instrument
independently. After ortho-rectification the two image tiles are co-registered (better than 0.2 pixel size)
and form a geometrically consistent product over the whole wavelength range.

The Level 2atm product represents scaled ground reflectance values. This product is derived from
the Level 1 product. The data are then converted to ground surface reflectance values after an atmospheric
correction that assumes a flat terrain. Auxiliary data for further processing are attached, but not applied.
The Level 2atm processor will convert the physical at-sensor radiance values to surface reflectance values
separately for land and water applications. This includes the estimation of the aerosol optical thickness
and the columnar water vapour.

The Level 2 product represents the ground surface reflectance. This product is derived from the
Level 2geo product, atmospherically corrected, and converted to ground surface reflectance values. Most
applications are envisioned to use the Level 2 product for further analysis.
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Figure 1: The EnMAP data processing chain from the raw data to the atmospherically and geometrically
corrected level 2 product.

Access to EnMAP data should occur in a transparent and objective manner according to the UN
resolution 41/65, 3 (1986) on Principles on Remote Sensing of the Earth from Space.

EnMAP data distribution differentiates between four user categories: (1) internal users, (2) scientific
users, (3) private users, and (4) so-called “charter users”. Internal users support the operation of EnMAP
by calibrating and validating data, especially during the commissioning phase. Scientific users carry
out research for non-commercial purposes, which also include the use for educational or developmental
purposes. Private users employ data for operational or commercial tasks, which also include applications
for the public domain. Charter users require data in the event of disasters or emergencies according to the
Charter On Cooperation To Achieve The Coordinated Use Of Space Facilities In The Event Of Natural
Or Technological Disasters Rev.3 (25/4/2000).

Within the scope of Announcements of Opportunities the user community is called for project
proposals concerning the pre-operational and scientific use of EnMAP. These proposals are envisioned to
address the calibration and validation of EnMAP products and to develop algorithms and strategies for
their analysis. In addition to these proposals all users can request archived data listed in a continuously
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updated data catalogue. After the end of the commissioning phase all data will be stored, maintained,
and distributed by German Aerospace Agency (DLR) for at least 20 years.

The EnMAP portal (www.enmap.org) is the central entry point for all national and international
users interested in learning about the EnMAP mission, its objectives, status, data products and processing
chains. Additionally, this platform informs about the conditions and requirements for the EnMAP data
access and the ongoing scientific programs and activities.

12

http://www.enmap.org


4. Hyperspectral remote sensing

4.1 Principles of imaging spectroscopy

Surface materials, such as vegetation, soil, and rock, can be discriminated and characterised based on
their so-called spectral signatures, i.e. diagnostic absorption and reflection characteristics over the electro-
magnetic spectrum. Because every material is formed by chemical bonds, their harmonics and overtones
of vibrational electronic transitions result in characteristic spectral absorption features that can be de-
tected in narrow wavelength intervals. Some of the most significant absorption features occur between
wavelengths of 400 nm to 2500 nm, where reflected solar radiation dominates the natural electromagnetic
spectrum (Figure 2). These absorption characteristics can vary in their spectral depth, width, and loca-
tion and therefore serve as diagnostic indicators, which enable us to characterize vegetation conditions
(e.g. Knipling , 1970), to detect water constituents (Lee et al., 1999), or to identify mineral assemblages
(e.g. Hunt and Salisbury , 1970).

Imaging spectroscopy, also known as hyperspectral imaging, is defined as a passive remote sensing
technology that acquires simultaneous images in many spectrally contiguous, registered bands such that
for each pixel a reflectance spectrum can be derived (Goetz et al., 1985; Schaepman, 2007). Application
areas of hyperspectral sensing include ecosystem processes, surface mineralogy, water quality, soil type and
erosion, vegetation type and condition, canopy chemistry, snow and ice properties, and extra-terrestrial
research but it is also widely used in medicine, manufacturing industries, disaster management and
national security.

In ecosystems studies the spectroscopic focus is on detection and identification of plant succession,
phenology, plant health, and invasive species to provide information about ecosystem conditions, and
particularly about the locations and types of environmental stresses (Asner et al., 2008; Schmidtlein and
Sassin, 2004; Ustin et al., 2004). Because of the importance of photosynthetic function, most research
has focused on the spectral properties of leaves and canopies that provide estimates of chlorophyll, water,
dry matter, and nitrogen (Turner et al., 2004). In general, the spectral characteristics of vegetation
exhibit strong pigment absorptions in the visible portion of the spectrum (Figure 3). The near infrared
(NIR: 700-1400 nm) is marked by a steep increase of reflectance that can be related to biomass, state
and type of cellular arrangement, density, geometry and water content of a vegetation canopy. A shift of
the "red edge" at 680 nm to 780 nm to shorter wavelengths is related to chlorophyll decrease, which can
in turn be an indication of heavy metal, water or nutrient stress. The biochemical content of leaves and
canopies, including nitrogen-containing compounds and lignin, absorbs radiation at fundamental stretch-
ing frequencies, generally in the NIR and SWIR regions. Senescent leaves follow a typical trajectory,
with decreases in chlorophyll followed by losses of other pigments and water. Aging and stress increase
reflectance over the visible and shortwave-infrared spectrum and decrease it in the near infrared (Ustin
et al., 2004). Consequently, imaging spectroscopy is highly suitable to quantify vegetation state and to
distinguish between various vegetation species.

For geologic applications imaging spectroscopy is used to map Earth’s surface composition (in terms
of mineralogy or lithology) and for the quantification of rock and soil chemistry and physics based on
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Figure 2: Solar radiation spectrum of extra-terrestrial radiation (Top of the Atmosphere) and global radiation
(Sea level, composed of incoming, diffuse, and reflected radiation) with major atmospheric absorption bands.
Irradiance data are derived from the American Society for Testing and Materials (ASTM) Terrestrial Reference
Spectra (http://rredc.nrel.gov/solar/spectra/am1.5/).

spectral absorption features. Reflectance spectra of minerals are dominated in the VNIR wavelength
range (400-1200 nm) by the presence or absence of transition metal ions (e.g., Fe, Cr, Co, Ni) result-
ing in absorption features due to electronic processes. The presence or absence of water and hydroxyl,
carbonate and sulphate determine absorption features in the SWIR region (1400-2500 nm) due to vibra-
tional processes. These phyllosilicates, sorosilicates, hydroxides, sulphates, amphiboles and carbonates
are widespread components of the Earth surface. The absorption band depth is related to grain or par-
ticle size, as the amount of light scattered and absorbed by a grain is dependent on grain size (van der
Meer et al., 2012). In general, absorption band depth is correlated with the (relative) amount of material
present. Based on relative absorption depth, for example, it has been shown that kaolinite and organic
carbon content can be derived with an accuracy of about 2% by weight (Krueger et al., 1998).

Soils are highly variable, dynamic components of the environment and are essential for ecosystem
functions. Soils comprise a major repository for biospheric carbon, and organic matter in the topsoil.
The degree to which these components are present or absent in the topsoil provide a good indication
of soil quality, soil erosion, and physical processes such as hydraulic conductivity and soil aggregation.
It has long been recognized that some soil properties have spectral features that can be detected us-
ing spectroscopy (Ben-Dor et al., 1999). Baumgardner et al. (1986) identified five basic spectral shapes
related to organic matter content, iron oxide content, and soil texture. In general, soils, like plants,
have only a few recognizable narrow absorption features. Soils typically have broad, shallow absorption
features related to iron oxides and organic matter at wavelengths between 400 and 2500 nm (Figure 3).
Reflectance decreases as organic matter increases. Ferric or ferrous iron causes absorptions in the visible
and near-infrared spectra, particularly around 860 nm. In contrast to organic matter and iron oxides,
various clay minerals (e.g., montmorillonite, kaolinite, illite, smectite) and carbonates have distinctive
narrowband absorptances in the shortwave-infrared region between 2000 and 2500 nm. However, hyper-
spectral quantification of soil properties is only suitable in landscapes with low vegetation cover (Ustin
et al., 2004).

Imaging spectroscopy has been widely used to monitor oceans and inland waters, which are char-
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Figure 3: Reflectance spectra of selected Earth’s surface components. Reflectance data are derived from the
USGS Digital Spectral Library (http://speclab.cr.usgs.gov/spectral.lib06/). The laboratory measurements repre-
sent samples of an oak leaf from Colorado (leaf), Aventurine quartz from India (rock), Montmorillonite and Illite
from Virginia (soil), seawater from the Pacific Ocean (water), fresh snow from Colorado (snow), and black road
asphalt from Colorado (urban).

acterized by an overall high adsorption compared to land surfaces (Figure 3). This optical characteristic
makes water suitable to isolate and measure its optical constituents, such as pigments (e.g. chlorophyll), a
wide range of phytoplanktonic species, dissolved organics, and suspended non-algal particles (e.g minero-
genic sediments). Coastal and inland waters are optically more complex as compared to open oceanic
waters, which can be characterized mainly by one optical parameter and are generally referred to as
case-1 waters (Morel and Prieur , 1977). In contrast, inland and coastal waters are influenced by multiple
parameters, which have partly similar optical properties.

Alpine snow cover and its subsequent melt can dominate local to regional climate and hydrology
in the world’s mountainous regions. To model the snowmelt distribution and its impact hyperspectral
remote sensing allows for the retrieval of snow properties like snow-covered area, albedo, grain size,
liquid water very near the surface, and impurities (Dozier and Painter , 2004). Among natural materials
at the Earth’s surface, snow has a huge range of spectral reflectance values depending on its physical
characteristics, primarily the grain size but also dust or soot content, organic substances such as algae,
and liquid water (Dozier et al., 2009). Clean, deep snow is highly reflective in the visible spectrum,
whereas reflectance in the near-infrared and shortwave-infrared wavelengths shows a general decrease but
vary considerable depending primarily on the grain size (Figure 3).

Urban areas are characterized by a wide range of spectrally distinct surface materials, whose spectral
signature is determined by its chemical composition (Heiden et al., 2012). For example, roofing tiles and
polyethylene exhibit pronounced absorption features and high spectral variation, whereas other urban
surfaces such as concrete and asphalt are characterized by low reflectance and low spectral variation.

EnMAP has the capability to detect individual absorption features in the spectra of many mate-
rials, solids, liquids, or gases. Actual detection depends on the instrument´s spectral coverage, spectral
resolution, spectral sampling, signal-to-noise ratio, the abundance of the material, and the strength of
the material’s absorption features in the wavelength region measured. The spectral molecular absorption
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and scattering properties of materials, as mentioned in the previous paragraphs, form the basis for the
identification and determination of the abundances of surface and atmospheric constituents. Accord-
ingly, research and development efforts within the EnMAP mission employ these fundamental spectral
characteristics as a basis for the extraction of information from spaceborne hyperspectral data.

Despite the numerous advantages over remotely sensed multispectral or panchromatic data, obtain-
ing, (pre-)processing and analysing hyperspectral data is challenging in a variety of ways. (1) The physical
data size of multidimensional imaging spectroscopy data increases linearly with the number of spectral
bands. As a result, the data transfer from satellites to ground stations is limited by downlink capacities
and processing of hyperspectral data is often time consuming. (2) Atmospheric absorption affects partic-
ularly hyperspectral data, which covers the full spectral range between approximately 400 and 2500 nm
in narrow bandwidths. Therefore, selective absorption of atmospheric gases in narrow spectral regions
or pronounced absorption by atmospheric water vapour in wider spectral regions requires sophisticated
pre-processing. (3) An overall lower signal-to-noise ratio as compared to multispectral data is another
issue related to narrow spectral bandwidths and atmospheric attenuations that calls for technological
advances and requires advanced processing methods. (4) Another drawback of hyperspectral data is
the significant band-to-band correlation, which results in dimensionality issues and consequently reduces
the total amount of available bands. (5) Furthermore, analysis of imaging spectroscopy data needs to
account for BRDF effects, which vary as a function of illumination and viewing geometry and depend on
the wavelength as well as structural and optical properties of the surface.

To manage these and other challenges the scientific report "Hyperspectral Algorithms: Report in the
frame of EnMAP preparation activities" by Kaufmann et al. (2010) composes the state of the art process-
ing algorithms and methodologies to analyse imaging spectroscopy data in diverse research disciplines.
Complementary, the EnMAP-Box represents a platform independent software interface, which facilitates
a convenient and straightforward processing and analysing of EnMAP data. For further information refer
to the EnMAP website (www.enmap.org).

4.2 Imaging spectroscopy missions

Nearly three decades of effort have been devoted to the development of imagers capable of acquiring con-
tiguous spectra in different wavelength regions, thereby permitting precise and quantitative analysis of
terrestrial and aquatic ecosystems. These imaging spectrometers have primarily been flown in aircrafts for
experimental and commercial purposes (e.g., AIS, (Vane et al., 1983) FLI and casi (Gower et al., 1992),
AVIRIS (Vane et al., 1993), GER/DAIS (Collins and Chang , 1990), SFSI (Neville and Powell , 1992),
Hydice (Rickard et al., 1993), MIVIS (Bianchi et al., 1994), HyMap (Cocks et al., 1998), APEX (Schaep-
man et al., 2004), AVIS Oppelt and Mauser (2007), AISA (www.spectralcameras.com/aisa), HySpex
(www.hyspex.no), and Hyperspec (www.headwallphotonics.com)) (Figure 4). However, data acquisition
from an aircraft platform is often restricted by various issues: Varying aircraft attitude changes make
geo-referencing of the imagery difficult; the wider sensor field of view required by the low aircraft alti-
tude generates bidirectional reflectance related problems; repeated acquisitions are costly; finally, synoptic
viewing of extended areas is not possible. For a more complete overview of airborne imaging spectroscopy
sensors and their history refer to Schaepman (2009).

In general, operational optical satellite sensors have been panchromatic or multispectral instruments
operating in selected discrete bands in the VNIR region including in some cases bands in the SWIR and
TIR region (e.g. Landsat, ASTER) of the spectrum. The panchromatic sensors provide only spatial
information while the multispectral instruments, such as the traditional broadband systems Landsat TM,
SPOT HRV/HRG, or IRS LISS, augment the spatial data with mainly qualitative information about the
surface materials. Exceptions are the four launched hyperspectral sensors Hyperion by NASA (National
Aeronautics and Space Administration) in 2000 (Pearlman et al., 2003), CHRIS by ESA (European Space
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Figure 4: Overview of the spectral and spatial resolution of selected airborne and spaceborne hyperspectral and
multispectral sensors.

Agency) in 2001 (Barnsley et al., 2004), HJ-1A by CASC (China Aerospace Science and Technology
Corporation) in 2008 and HICO by NASA in 2009 (Corson et al., 2008) (Figure 4). Considering that
Hyperion and CHRIS are still operating technology demonstrators, they provide exceptional results.
Nonetheless, CHRIS, HICO and HJ-1A are limited to the VNIR region, while Hyperion is characterized
by a low signal-to-noise ratio. Both of these factors limit the sensors in their feature detection capabilities.
Therefore, current spaceborne sensors provide only limited information on biochemical and geochemical
parameters, which are required for detailed environmental studies.

Against this background, the EnMAP mission represents a milestone towards an innovative com-
prehensive hyperspectral observation from space. Further imaging spectroscopy missions are prepared
by ASI (Italian Space Agency) in the form of PRISMA (PRecursore IperSpettrale della Missione Opera-
tive), by JAXA (Japanese Aerospace Exploration Agency) in the form of HISUI (Hyperspectral Imager
Suite), by NASA in the form of HyspIRI (Hyperspectral Infrared Imager), and by CNES (Centre National
d’Études Spatiales) in the form of HYPXIM.

4.3 Synergies with other sensors

While EnMAP is conceived as a stand-alone mission with scientific objectives driven by the EnMAP
scientific community and its advanced technical concepts, valuable synergies exist between optical and
radar imagery as well as other geo data.

A large potential for synergies exists between EnMAP and ESA’s future Sentinel missions (Berger
et al., 2012). The Sentinels aim at providing global coverage of high quality remote sensing data in the
optical (0.4-2.5 µm) and microwave (40-80 mm) domain in both high and medium spatial resolution.
These missions will serve the Global Monitoring for Environment and Security (GMES) programme by
providing continuous and global Earth observation from space on an operational basis. The Sentinel fleet
will form the global framework, into which the scientific results from EnMAP’s globally distributed key
target sites can be embedded to improve a new generation of global ecosystem models.

Sentinel-2 will provide Landsat/SPOT-like imagery in a high spatial (10-60 m) resolution and a
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moderate temporal (<5 days) and spectral (13 bands) resolution (Drusch et al., 2012). Its global cov-
erage in a comparable spatial resolution to that of EnMAP (30 m) holds the synergistic potential to
expand EnMAP’s advanced regional information to a global scale. Complementary, Sentinel-3 and sim-
ilar medium-spatial-resolution optical missions, which will operate concurrently with EnMAP, provide
global coverage data in an almost daily temporal resolution (Donlon et al., 2012). Synergies between En-
MAP and these sensors include more frequent ecosystem observations in order to resolve surface processes
with high temporal variations.

In addition to optical sensors, Synthetic Aperture Radar (SAR) missions also provide complemen-
tary information to EnMAP data. For example, Sentinel-1 will operationally provide C-band SAR-data
of the Earth’s surface with spatial resolutions of up to 10-20 m (Torres et al., 2012). This ability allows
for analysing the state and variation of physical parameters, such as surface roughness and soil moisture,
which complements EnMAP’s strength to derive bio-geochemical properties of the Earth surface. Fur-
thermore, digital terrain model (DTM) data as retrieved from TerraSAR-X or Tandem-X using InSAR
techniques may serve for data correction purposes, such as the removal of geometric distortion effects in
mountainous terrain (Krieger et al., 2007).

The high spectral resolution of EnMAP can be combined with the current and future panchromatic
and multispectral satellite systems like IKONOS, QuickBird, WorldView, RapidEye, Pleiades etc., which
are characterized by a high to very high spatial resolution. Such sensors offer additional options to
improve object recognition, product validation, and temporal coverage. For example, the high temporal
and spatial resolution data provided by RapidEye (one day revisit, 6.5m GSD) can be combined with
EnMAP to augment temporal coverage, which is suitable to monitor damage or infestations in agricultural
crops and forests.

For detailed planning and execution of data acquisition it is mandatory to have direct access to geo-
stationary systems such as Meteosat second and third generation (MSG, MTG) and GOES-East/West
to estimate the actual cloud coverage.
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Accurate, quantitative information on the state and evolution of terrestrial and aquatic ecosystems is
needed to support resource management, conservation strategies, rehabilitation measures, and ecosystem
services. Hyperspectral image analysis can support a wide range of environmental applications rang-
ing from the assessment of vegetation state, mineral assemblages, water constituents and environmental
hazards. The EnMAP Core Science Team identified some of the most challenging environmental issues,
to which EnMAP can contribute. These issues were grouped into five major environmental themes,
namely Terrestrial Ecosystems, Aquatic Ecosystems, Natural Resource Management, Hazards and Risks,
and Atmospheric Research and are presented in section 2.3. Addressing these environmental issues re-
quires interdisciplinary approaches across the Earth’s spheres (i.e., biosphere, hydrosphere, pedosphere,
lithosphere, atmosphere and anthroposphere), because they are interconnected by various links and inter-
actions (Figure 5). Fluxes of energy, water, carbon and sediment affect multiple spheres through complex
feedback mechanisms and can be assessed by direct and indirect means with imaging spectroscopy. The
following sections provide an overview of the relevance, the current lines of research, and the potential
contribution of EnMAP for each of the five major environmental themes.

Figure 5: Major research themes and associated application areas for imaging spectroscopy
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5.1 Terrestrial Ecosystems

5.1.1 Natural ecosystems and ecological gradients

Pristine ecosystems on Earth are scarce (Kareiva et al., 2007) and global environmental change impacts
even remote areas of our planet. We here refer to ecosystems that are largely untouched by human land
use and unmanaged or protected. Sharp ecosystem boundaries are mostly a characteristic of managed
ecosystems and therefore transitions or ecological gradients between different natural or natural and
managed ecosystems are also considered here.

Specifically, monitoring and better characterizing natural or close to natural vegetation is essential
to support sustainability of human-environment systems from local to global scales. Moreover, analysing
and monitoring processes related to unmanaged land are crucial to deepen our understanding of indirect
global environmental impacts and help to improve environmental models.

Quantifying ecosystem characteristics and the services they provide requires using information at
the meso- to macro-scale, which needs to be consistent and reproducible through space and time. Such
information can only be obtained by means of remote sensing (Defries et al., 2005). EnMAP data and
products derived from it will overcome current limitations, particularly in respect to the quantification
of complex processes and gradual changes, which are prevalent in natural ecosystems (Asner et al.,
2005). Concepts for the description of heterogeneous vegetated surfaces and floristic composition become
possible, e.g. the plant functional types concept (Lavorel et al., 2011).

Previous studies made use of field-based or airborne hyperspectral imagery for quantifying biophys-
ical parameters of natural vegetation, such as primary production, Leaf Area Index or photosynthetic
activity (Lee et al., 2004; Smith et al., 2002), biomass (Mutanga and Skidmore, 2004; Cho et al., 2007),
carbon storage and water fluxes (Fuentes et al., 2006), ecosystem structure (Asner et al., 2005), or veg-
etation successional stage (Oldeland et al., 2010). Further uses of hyperspectral imagery have been on
single species mapping (Cochrane, 2000; Clark et al., 2005) and the monitoring of invasive species (Un-
derwood et al., 2003). However, most of these studies are limited to one acquisition per year or less and
none of them could make use of high quality, landscape scale hyperspectral data, as EnMAP will provide.
While the relatively coarse spatial resolution of hyperspectral satellite data will add challenges to such
applications, data quality and availability will open up new pathways for parameter retrieval.

In this sense, high temporal and systematic coverage by hyperspectral satellite systems such as
EnMAP will allow for continuous monitoring of natural processes, as demonstrated by pilot studies using
data from experimental spaceborne systems (Asner et al., 2004; Stagakis et al., 2010), and will thus
improve our understanding of these processes (Ustin et al., 2004). Phenological studies, previously based
on existing platforms (Hoare and Frost , 2004; Fisher et al., 2006), are likely to reveal new insights by
improved information that can be retrieved from high spectral resolution data. These data should be
fundamental in improving existing carbon emission accounts and monitoring efforts (Numata et al., 2011),
necessary to make mechanisms, such as REDD or REDD+, effective.

Physical-based modelling concepts are not advantageous for the work in natural environments be-
cause model calibration of such heterogeneously composed vegetated surfaces is too complex. Advances
in statistical and machine learning, however, provide a set of methods that are capable of coupling quali-
tative and quantitative analysis without being affected by collinearity effects in contagious datasets. Such
new developments like self-learning decision trees, partial least square regressions, Gaussian processes or
support/import vector machines (Breiman, 2001; Helland , 1990; Vapnik , 1998; Zhu and T., 2005) have
high potential in making best use of the extended information in EnMAP data and allow for describing
mentioned processes (e.g. Verrelst et al., 2012; Feilhauer et al., 2010).

Beyond the direct use of such generic algorithms for empirical modelling approaches, the generation
of new indices and thematic transformations is of utmost importance. Multi-band indices and non-linear
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transformations may be developed based on insights derived from empirical studies with, for example, a
non-linear kernel-based approach. Such developments have to be robust and possibly general. However,
in most cases a biome-specific calibration procedure will be required and such calibration will be a key
aspect in algorithm development in near future.

EnMAP imagery will thus be extremely useful for monitoring natural ecosystems and their ser-
vices, by allowing the accurate quantification of gradual biophysical parameters, and the description of
heterogeneous landscapes through the estimation of natural composition and pixel fractions of cover.

The following main scientific tasks are related to natural ecosystems:

• Assess ecosystems services, such as the above ground carbon sequestration potential;

• Retrieve biochemical and biophysical parameters as input in ecosystem and species habitat models
to improve the understanding of ecosystems and ecological processes;

• Assess the spatial pattern of ecosystems and biodiversity distributions from local to global scales
in the context of nature protection legislation such as the European habitats directive;

• Monitor natural or quasi-natural vegetation areas (such as nature protection areas, naturalized,
un-used or extensively used areas) to understand causes and driving forces of changes, for example,
in the context of land abandonment, forest disturbance or land degradation processes in order to
combat biodiversity loss and promote ecosystem stability (e.g. REDD+);

• Quantify spatial and temporal ecosystem transitions, such as e.g. vegetation succession, habitat
heterogeneity, plant or animal community transitions, and assess potential feedback mechanisms;
and

• Investigate the effect of climate change and other anthropogenic and non-anthropogenic forces on
global vegetation gradients.

5.1.2 Forests

Worldwide, forests provide timber and non-timber products as well as numerous environmental goods
and services, such as conservation of biological diversity and climatic control, which are crucial for local
livelihoods (FAO , 2010). However, forests and forested ecosystems are being rapidly depleted and under
increasing pressure due to global warming (Birdsey and Pan, 2011; Peng et al., 2011) and expanding
human populations and economies (Hansen et al., 2008). Deforestation associated with conversion of
forests to agricultural land, legal and illegal timber harvesting and recurrent wildfires are some of the
most important processes, which affect forested landscapes (Bond , 2010).

The challenges in forest management are multiscale and intricately linked to society’s needs to
preserve multiple forest values and benefit from its products. The pressing need for sustainable forest
management aims at combining economic interests with ecologic concerns. In this context, remote sensing
data serve economically oriented assessments and management needs as well as studies of ecological
processes and functions (Franklin, 2001). Applications of remote sensing contributing to sustainable forest
management are generally presented in four categories that include classification of forest covertype (i.e.
tree species), estimation of forest structure and available resources (i.e. timber volume, height, age, crown
closure), forest change detection and forest modelling. For each category measurable indicators are needed
to quantify the effects of management activities and natural phenomena on the sustainability of forest
resources. Current research is directed at quantitatively relating remotely sensed spectral information to
ground-based assessments of structural and physiological aspects of forest condition.
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The future EnMAP satellite can efficiently characterize the spatial distribution of forest ecosystems
and provide an inventory of forest resources. Such inventories typically comprise quantitative attributes
related to forest species, health, and functioning, including estimates of chlorophyll, nitrogen, lignin and
canopy water content (Goodenough et al., 2003a; Matson et al., 1994; Schlerf et al., 2005, 2010). Quan-
tifying such species-specific canopy biochemistry differences is well established to map forest species and
ecosystems (Goodenough et al., 2003b; Martin et al., 1998). The fusion of hyperspectral data with other
remote sensing data sources like Radar or Lidar offers additional perspectives to estimate forest structure,
forest type, biomass, timber volume, tree heights, stem densities, and age classes (Anderson et al., 2008;
Dalponte et al., 2008; Huang et al., 2007; Hyde et al., 2006). Furthermore, it is possible to estimate the
above ground carbon stored in the forests, e.g. in the context of REDD (UN Collaborative Initiative
on Reducing Emissions from Deforestation and Forest Degradation, FAO, UNDP, UNEP Framework-
Document , 2008), by combining hyperspectral imagery with geographic information, field calibrations
and physiological models (le Maire et al., 2005), as well as texture and object information (Blaschke,
2010; Buddenbaum et al., 2005; van der Linden et al., 2007). Thus, imaging spectroscopy offers accurate
ways of providing needed forestry information as well as the potential for new indicators of vegetation
state and indices of forest biochemistry and functioning.

Reforestation, afforestation, and deforestation rates can be assessed on regional scales (Clark et al.,
2011; Goodenough et al., 1998). Such measures are needed for the Kyoto Protocol on greenhouse gas
reductions and provide an essential contribution for documenting changes in the forests over time. Pre-
vious studies on forest ecosystems emphasized the role of imaging spectroscopy allowing detailed and
accurate retrievals of relevant vegetation properties (Ollinger and Smith, 2005; Schaepman et al., 2004),
where the most important vegetation parameters are leaf chlorophyll and nitrogen content, the fractions
of photosynthetically absorbed radiation (fAPAR), canopy water content, annual maximum leaf mass
per area (LMA), and annual maximum leaf area (LAI) (e.g. le Maire et al., 2008). Finally, EnMAP can
estimate changes in forest structure and condition, including above ground carbon stocks at improved
accuracies.

Important ecological processes in forests include carbon exchange (photosynthesis and respiration),
evapotranspiration, and nutrient cycling (Coops et al., 2009; Waring and Running , 2007). To model these
processes on a regional to global scale, imaging spectroscopy currently provides accurate local estimates
of forest structural and chemical properties, which serve as required inputs to initialize, calibrate, and
validate such models (Tenhunen et al., 1998). In the mid-term perspective these models can assist
management decisions to mitigate the effects of climate change on a regional scale.

Given the complexity of hyperspectral analysis, expert systems to support the analysis for EnMAP
data have been developed (Goodenough et al., 2012, 2007). Forest reflectance models, as compared
to agricultural models, require much greater attention to forest structure, clumping, shadowing and
understory effects. Reflectance models ranging from simple approaches like INFORM (Atzberger , 2000)
or 4-scale (Chen and Leblanc, 1997) to more complex geometric-optical radiative transfer models like
FRT (Kuusk and Nilson, 2009) or raytracing models like FLIGHT (Gerard and North, 1997) have been
developed and validated in order to analyse the complex hyperspectral signal of forests (Foerster et al.,
2010). Despite some successful attempts (Combal et al., 2002; Koetz et al., 2004; Schlerf and Atzberger ,
2006; White et al., 2000), the inversion of these models is still a challenge and a pressing research issue
for the next years.

EnMAP will be evaluated as a tool for developing spectral indices that will serve as bio-indicators
of forest condition. Through repetitive sampling of selected forest condition test sites, EnMAP would
add the phenological history to the full spectral sampling data to yield effective bio-indicators of forest
condition. EnMAP will provide a capability to compare observations of spectral properties of forests in
many different countries. This is essential in order to develop a consistent tool for monitoring the carbon
state of the world’s forests and their response to climate change. Frequent and broad coverage will
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increase our understanding of the links between pigments, canopy chemistry, stress, and forest type. For
forest inventory programs, hyperspectral data from EnMAP can provide an important sampling system
to ensure precise measurements of indicators for a sustainable development.

Accordingly, the following main scientific tasks are considered important in regard to forest applications:

• Map forest species distributions using hyperspectral, fused and multitemporal datasets, exploring
the potential of advanced classification algorithms, texture and object information, and linkages to
geographic databases etc.;

• Estimate forest biomass and above ground carbon;

• Assimilate biochemical and structural forest parameters into process models;

• Enhance and develop invertible vegetation canopy reflectance models for the forest environment,
extraction of forest parameters, and forest mensuration, health, and risk assessment;

• Investigate the viability of phenological signatures through indicators of canopy pigments and chem-
istry with regard to ecophysiological processes;

• Develop improved optical indices that will serve as bio-indicators of forest condition;

• Develop forest monitoring procedures including multi-temporal and multi-sensor data for the de-
tection of changes in forest quality and canopy cover, and

• Create advanced expert systems to improve the efficiency of hyperspectral information extraction
within the forestry context.

5.1.3 Cryospheric ecosystems

The magnitude of predicted global warming is largest in high latitude and high altitude regions (IPCC ,
2007). Retreating glaciers, decreasing sea ice extent, shorter snow cover periods, and accelerated degrada-
tion of permafrost areas testify this longstanding trend (e.g. Pritchard et al., 2009; Liston and Hiemstra,
2011; Stroeve et al., 2007; Lawrence and Slater , 2005). Complex feedback mechanisms caused by a de-
crease in surface albedo imply a wide range of climatic, hydrologic, ecologic, and geomorphic changes in
these regions. Yet, quantifying the state and changes of snow, glaciers, ice caps, sea ice and permafrost
is strongly hampered by missing ground observations due to the challenging logistics as a result of the
remote and complex terrain. Therefore, satellite observations represent a unique database to track and
quantify variations in the cryosphere.

Despite the environmental limitations for optical sensors in the polar regions (i.e. months of polar
night, high cloud coverage, and year-round low solar incidence angle) hyperspectral data provide unique
information on biogeochemical parameters that are important to model energy, water, sediment, and
carbon fluxes. Therefore, hyperspectral remote sensing offers the great potential to measure key diagnostic
parameters that verify changes in the cryosphere at landscape scales.

Permafrost

Permafrost covers about 25% of the northern hemispheric land area and hence represents one of the largest
components of the Arctic cryosphere. Arctic environments maintain important ecosystems with unique
plant communities, which are particularly sensitive and responsive to climatic changes. Field observations
of the active layer (top layer of soil that thaws during the summer) and the permafrost dating back to the
1970s show a continuously warming trend with a high spatial variability in warming rates that depend
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on ice content and absolute ground temperatures (Smith et al., 2010; Romanovsky et al., 2010). Large-
scale permafrost degradation may provoke feedbacks such as activation of the soil carbon pool and a
northward expansion of shrubs and forests (Lawrence and Slater , 2005). Increased permafrost knowledge
is particularly important for the design and maintenance of infrastructure in permafrost environments and
for designing effective adaptation strategies for the local communities under warmer climatic conditions
(Romanovsky et al., 2010).

Permafrost is an underground thermal phenomenon, which cannot be directly observed by optical
remote sensing. However, there is a large number of surface indicators suited for hyperspectral remote
sensing applications, such as changes in vegetation biomass and communities, surface morphology, hy-
drology, and aquatic ecosystems. In particular, the discrimination of different vegetation types and
biophysical variables (e.g., leaf area index or biomass) is of great interest in tundra/permafrost research
(Rees et al., 2003; Laidler and Treitz , 2003; Hope et al., 2003). Similarly, robust data on the proportions
of soil, nonphotosynthetic vegetation and green vegetation in various landscapes are needed (Warner and
Asada, 2006). For example, Muster et al. (2012) used CHRIS and other optical remote sensing data to
investigate the water body area and the moisture regime for detailed process studies of energy and water
fluxes in the Lena Delta of Siberia. Detailed spatial information on surface variables, such as vegeta-
tion biomass, plant functional types, the moisture regime, the insulating moss layer, the surface water
ratio, the dissolved organic carbon and particulate matter concentration, is crucial to detect the state of
permafrost and to model thermal, hydrological, and carbon fluxes.

Snow & Ice

Characterization of snow-covered areas and glaciers is critical for understanding Earth’s hydrology, cli-
matology and ecology because of their significant effect on the energy balance at the land-atmosphere
boundary and their importance as fresh water sources. However, detailed ground-based measurements of
snow and glacial properties are scarce due to the remoteness and complex terrain of most snow-covered
areas. Imaging spectroscopy can be used to retrieve key snow parameters, such as snow covered area,
albedo, grain size, snow impurities, and liquid water content in the near-surface layer, in order to model
their effects on the regional water and energy cycle (Dozier and Painter , 2004).

Snow evolves after its deposition. Snow albedo and snowmelt are directly linked to the growth of
grain size (Warren and Wiscombe, 1980). The broadband reflectance decreases dramatically, especially
in the near infrared range, as the snow grains evolve. In the same way liquid water inclusions of melting
snow yield albedo reductions, because liquid water in snow caused the grains to form clusters (Colbeck ,
1979). Similarly, snow contaminants such as dust, algae, and soot degrade snow reflectance significantly,
especially in the visible spectrum by adsorption of incoming radiation and at longer wavelength by in-
creases in grain size through local microscale metamorphism (Dozier et al., 2009). Repeated hyperspectral
measurements of snow cover enable us to quantify the evolution of broadband albedo by accounting for
various effects like grain size and snow contaminants. In addition, spectral mixture analysis enables map-
ping surface constituents at subpixel resolution in order to accurately represent the spatial distribution
of snow (Nolin et al., 1993). Accurate measurements of these physical snow properties (i.e. fractional
snow covered area and snow albedo) are prerequisites to drive distributed hydrological models in order
to quantify timing and magnitude of snowmelt runoff and its source areas.

Future snow and ice research will benefit from a synergistic data collection that combines fine
spectral and spatial resolution (EnMAP) with a broad swath and daily coverage of the whole Earth
(MODIS, Sentinel 3, VIIRS). Envisioned applications include regular tests of medium spatial resolution
data with EnMAP and data assimilations to improve models of snow cover and albedo evolution by an
increased temporal and spatial resolution. Earth observing imaging spectrometers have large potential to
capture seasonal variations in snow cover and albedo with high accuracy. Further information that may
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be retrieved from EnMAP data include snow grain size, liquid water near the surface and snow impurities
content derived from dust, soot, or organic content. Some of the remaining challenges are to improve
snow mapping in forests, adapt to angular variability in the signal, further investigate the measurement
and consequences of absorbing impurities in snow. This information from both operational sensors and
imaging spectrometers need to be incorporated into hydrologic models that, together with advances in
modelling and remote sensing, would better characterize the fluxes and reservoirs in snow covered areas
(Dozier et al., 2009).

Imaging spectroscopy of sea ice and glaciers can similarly contribute to an improved understanding of
surface energy fluxes and mass flux quantifications. For example, the extent of melt ponds on sea ice and
glaciers can be quantified and their resulting impact on the surface albedo. Furthermore, the extensive
glacial debris cover, which characterizes most mountain glaciers, can be analysed by spectroscopic means
to decipher their origin and to improve glacial mapping as well as our understanding of glacial ablation
and kinematics (Casey et al., 2012).

The following main scientific tasks are related to cryospheric ecosystems:

• Assess the state and changes in vegetation biomass, hydrology, and surface morphology in per-
mafrost landscapes;

• Discriminate different permafrost vegetation communities and plant functional types;

• Develop and improve new hyperspectral approaches to retrieve snow properties (e.g., albedo, grain
size and near-surface liquid water, mineral and organic contaminants) and spatial snow cover dis-
tribution;

• Establish multi-seasonal time series of snow parameters to improve regional hydrologic models;

• Analyse the effect of snow impurities on variations in snow melt timing and magnitude; and

• Explore synergies to multispectral sensors with varying spatial scales to improve snow mapping in
forests and adapt to angular variability.

5.1.4 Agricultural land

Limited land resources, increasing land degradation, rising population numbers, an increasingly meat-
prone diet, a growing demand for biofuels, and on-going climatic change coupled with more frequent
extreme events cause substantial land use conflicts between food- and energy production versus ecosystem
services including biodiversity conservation. To sustain the benefits of natural ecosystems, a growing
demand for agricultural commodities can only be met by sustainable increases in land productivity.
However, global scale studies highlight that large appropriation of land resources contrast low efficiencies
in land management (e.g. water use) (Haberl et al., 2007; Kijne et al., 2009). The challenge to reverse this
global trend involves a wide range of land management aspects, including the selection of suitable plants
and cultivars, water productivity, organic farming, fertilizer and pesticide management, soil conservation,
and irrigation. Because of the spatial variability in climate, soils and topography, as well as societal
aspects like culture, education, technology and markets, agricultural management relies critically on
spatial data to support management decisions. Therefore, modern farming practices try to incorporate
the identification, analysis, and management of spatial and temporal variability within regions and fields
for optimum profitability, sustainability, and protection of the environment.

Moran et al. (1997) identified key areas where remote sensing can provide critical spatial information
for agricultural management. These aspects include the mapping of crop yield and biomass as well as the
monitoring of seasonally and spatially variable soil and crop characteristics. Since this early assessment,
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our understanding of farming related land heterogeneity management has progressed towards a site-
specific management to support sustainable productivity. This method for agricultural management
includes early detection of infections, as well as water and fertilizer deficits, monitoring of ecological
intensification of extensive agriculture as well as ecological extensification of intensive agriculture, and the
identification and evaluation of new land reserves where agriculture could be established due to climatic
changes. These land management practices lead to a new demand for more complex and integrated global
information, e.g. in land evaluation, site and plant specific yield gap (the difference between potential
and actual yield) determination, fertilizer intensity monitoring as well as determination of seeding dates
and spatially distributed plant phenology.

Hyperspectral instruments, providing agricultural information more accurately and in more detail
than existing operational multispectral sensors, can substantially support farming decisions (Staenz et al.,
1998). In addition, hyperspectral instruments offer more spatially distributed, in-depth information than
provided by conventional statistical regression analysis between laborious ground-truth measurements of
vegetation parameters and simple spectral indices. A more thorough approach is to fully exploit the
complete spectral information content by invertible vegetation canopy reflectance models. These models
infer biochemical/biophysical parameters, such as chlorophyll and water content, from continuous canopy
spectral reflectance signatures and have previously been applied to field crops and grasslands (Bach et al.,
2003, 2011; Jacquemoud et al., 2000; Migdall et al., 2009, 2010; Verhoef and Bach, 2003). The parameters
that control productivity and health of vegetation can be estimated through model inversion using remote
optical measurements such as retrieved from EnMAP.

Recent studies have shown that the following set of crop parameters relevant for agricultural pro-
duction can be retrieved from hyperspectral data:

• Leaf area index (LAI) describing the size of the producing layer (Weiss et al., 2001);

• Absorbed photosynthetic active radiation (APAR) providing the amount of absorbed energy usable
for production (Weiss et al., 2010);

• Chlorophyll content as the chemical actor for photosynthesis, which is dependent on nitrogen ap-
plication (Haboudane et al., 2002; Oppelt and Mauser , 2003);

• Water content as indicator for water status of a specific crop type and its maturity (Ceccato et al.,
2001; Champagne et al., 2003);

• Plant density as indicator of disease sensitivity (Larsolle and Hamid Muhammed , 2007);

• Plant pigments such as carotinoids and anthocyanins as indicators of adaptation of the canopy to
varying light conditions (Blackburn, 2007).

Assimilation of these and additional remotely sensed plant parameters, like phenology and seeding date,
into agro-ecological models allows to explicitly simulate crop growth for each pixel based on the plant
parameters retrieved from hyperspectral remote sensing data. This approach provides site-specific in-
formation on key farming parameters like biomass, plant height, crop yield, nitrogen or phosphorus
deficit and/or uptake, which are not directly observable with remote sensing. Furthermore, time series
of remotely sensed plant parameters account for spatiotemporal heterogeneity in agricultural production
models, which can also be used to explore the suitability of different management options (Hank et al.,
2012).

From the large number of existing crop growth models, the CERES family (Ritchie and Otter , 1985)
is one of the most prominent models, which relies on statistical relationships between environmental vari-
ables and plant growth and development. PROMET-V (Schneider and Mauser , 2001) is an advancement
of such an agricultural model towards spatially distributed simulations that integrate remote sensing data.
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A further development towards process understanding is achieved by dynamic vegetation models, which
simulate plant growth on the basis of eco-physiological processes and feedbacks during the photosynthesis
and respiration process.

Currently, the most realistic representation of vegetation dynamics in regional agro-ecological models
as well as regional to global ecosystem and Earth system models is based on the combination of dynamic
vegetation models, agricultural management models (e.g. PROMET (Hank , 2008), LPJ-mL (Bondeau
et al., 2007)), and appropriate canopy models that simulate the distribution of assimilates among the
plant constituents (i.e. roots, stem, leaves) in order to allow for a realistic representation of complex
canopy layers. Recent studies have shown that the proposed data assimilation approach is viable and
provides reasonable results (Bach et al., 2003; Weiss et al., 2001; Hank et al., 2012). Nevertheless, further
research and development is needed to improve models, in particular with regard to process representation
and accuracy. In addition, various data assimilation methods should be tested under a broad range of
farming conditions, especially in regions with low-efficiency farming systems, different crop (e.g. cassava,
sorghum, groundnut) and energy plants (e.g. sugar cane, oil palm, jatropha), different stresses (e.g. water,
fertilizer, temperature), irrigated agriculture, and mixed silvi-agricultural systems in order to reach an
operational stage of such coupled model systems.

Besides further improvements in modelling approaches, sophisticated agricultural applications need
to be based on frequently available hyperspectral imagery with high data quality standards. Based on the
knowledge already gained in numerous studies with airborne sensors, EnMAP will offer hyperspectral data
in a suitable spatial and temporal resolution to approach the next major scientific step from regression
analysis to a mechanistic process representation.

The following major scientific and application tasks have been identified in agriculture:

• Develop and improve accurate, robust and reliable crop parameter retrieval methodologies based
on inversion of improved canopy reflectance models using imaging spectroscopy data (retrieval of
crop type, LAI, APAR, chlorophyll content, plant water content, canopy geometrical structure);

• Develop and improve methods for quantitative mapping of soil parameters, also taking the spectral
signal of vegetation into account;

• Develop and improve approaches to derive complex canopy parameters, e.g. crop phenology, man-
agement intensity or yield gap, from hyperspectral remote sensing data, in conjunction with ancillary
remote sensing data.

• Develop operational methodologies for yield and biomass estimation and forecasting based on En-
MAP and ancillary data.

• Map crop species distribution using hyperspectral-temporal information content;

• Distinguish crop stressors like nitrogen deficiency, crop disease, insect infestation, water stress, and
chlorosis; and

• Develop and improve approaches to assimilate remote sensing derived spatial distributions of veg-
etation and soil parameters into dynamic agro-ecological models.

5.1.5 Urban areas

Over the past 50 years, anthropogenic ecosystem changes were more rapid and extensive than in any
comparable period of time in history (MEA, 2005). The world currently experiences rapid urbanization
and an increase in the number of megacities, particularly in developing countries. According to the
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United Nations Development Program, urban population growth will continue to rise substantially over
the next several decades (UN , 2006). The (often uncontrolled) process of urbanization always results in
changes in land use and cover and causes serious problems such as environmental pollutions, destruction of
ecosystems, waste disposal and others. Moreover, urbanization and related changes in lifestyle increase the
per capita demand for energy, goods and services (Meyerson et al., 2007). Land conversions, introduced
by urban consumption patterns, have regional consequences for the biophysical system that may lead
to global consequences (Sanchez-Rodriguez et al., 2005). Thus, there is a critical need to map urban
land cover composition and monitor urban growth. Remote sensing techniques are widely used to study
urban environments. However, hyperspectral applications are comparably scarce (Xu and Gong , 2007;
Cavalli et al., 2008; Weng et al., 2008), which may, to a great extent, be explained by the spectral
and structural complexity of urban areas (Small , 2003, 2001; van der Linden and Hostert , 2009) and
to a limited availability of appropriate sensors covering the full reflective wavelength range. EnMAP
hyperspectral data of medium spatial resolution will open up new opportunities to describe and monitor
land cover composition in urban areas and along urban-suburban gradients assisting in the understanding
of the dynamics of global urbanization (Heldens et al., 2011).

Classification schemes for urban areas are generally influenced by the spatial scale of analysis and
the scope of related studies (e.g. Heiden et al., 2007; Herold et al., 2004). Research is needed to determine
the most suitable classification scheme for EnMAP. Given the 30 m ground sampling distance of EnMAP
urban mapping will often require a quantification of the sub-pixel land cover composition. For these types
of analyses, techniques such as spectral unmixing or regression modelling that are capable of dealing
with the spectral variety of urban surfaces have to be developed (Roessner et al., 2001; Franke et al.,
2009). For both qualitative and quantitative analyses of urban areas the implementation of reference
spectral libraries is essential (Heldens et al., 2011), yet poses a challenging step that requires extensive
collaboration between international research groups (Hueni et al., 2009; Rasaiah et al., 2011). The
combination of medium spatial resolution and high spectral information content requires new concepts
for the description of land cover composition. While the occurrences of spectrally pure surface materials
are rare, urban spectral mixtures contain compositional information that might be characteristic for
certain urban structures such as inner city centres or commercial areas. Recent studies that focused on
plant species variations used compositional variation to extract major vegetation gradients (Schmidtlein
and Sassin, 2004; Feilhauer et al., 2011). Applying such concepts to urban areas could account for the
spectral and spatial information content of EnMAP data of urban areas.

One essential application with regard to urban planning is reliable mapping of imperviousness. Here,
approaches that combine qualitative and quantitative analyses appear most suited to make full use of
the additional information from EnMAP data. This additional information will help make approaches
based on the V-I-S concept (Ridd , 1995; Wu and Murray , 2003; Lu and Weng , 2006) more reliable or help
to extend such models by additionally differentiating built-up and non-built-up areas. Reliable surface
material indicators are needed for applications such as urban climate studies. In this context, fusion of
spectral and thermal data (at the feature or knowledge level) may reveal the relationship between thermal
patterns, urban surface materials, and urban structure and thus, helps to understand their influences on
the urban climate (Oke, 1988). Such data fusion studies have already been carried out at local scale with
airborne thermal and hyperspectral data (e.g. Xu et al., 2008). Novel fusion techniques combining future
EnMAP data with thermal sensors (e.g., ASTER, HyspIRI) can open up new opportunities for urban
climate studies on larger scales. Another challenging task is the combined analysis of hyperspectral
data and high-resolution remote sensing data, which enables a detailed analysis of urban structures
combined with surface material information. In this context, image data fusion (Zhang , 2010) is a
promising technique to retrieve further information from EnMAP data. Yet, methodological gaps exist
for spatial upscaling techniques that preserve spectral information content. Overall, the synergistic use of
hyperspectral-, thermal-, and optical data with advanced data analysis techniques may result in enhanced
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socioeconomic and environmental indicators to model urban dynamics and their social and environmental
consequences.

Accordingly, main scientific tasks related to urban areas include:

• Map and monitor urbanization and its dynamics on a global scale;

• Implement a comprehensive spectral library to analyse urban land cover based on EnMAP data;

• Develop and improving classification algorithms to map urban land cover (including classes that
are spectrally ambiguous in multispectral data) at the spatial resolution of EnMAP;

• Develop algorithms for quantitative analysis of urban land cover composition at the spatial resolu-
tion of EnMAP with regard to mixed pixel problems and rare pure endmember availability;

• Investigate of new concepts for the information extraction based on compositional information of
spectral mixtures;

• Apply the V-I-S concept to monitor impervious surface fractions, e.g. in context of urban climate
studies;

• Support urban climate studies by hyperspectral data; and

• Map the abundance of hazardous materials such as asbestos, e.g. in the context of risk analyses.

5.2 Aquatic Ecosystems

5.2.1 Coastal and inland water

Coastal and inland water bodies are vital for recreation, food supply, commerce and human health, and
they also support habitats for a large floral and faunal diversity. Currently, these ecosystems experience
high pressure from increasing social and economic human activities as well as climate change. As sinks for
pollutants, coastal and freshwater ecosystems are among the most sensitive indicators of environmental
impacts related to human activities (UNEP , 2012). For example, a major global ecological problem is
the increasing eutrophication and pollution of coastal and inland water bodies caused by fluvially trans-
ported substances such as phosphate and nitrogen compounds, which derive from intensified agricultural
and industrial activities. Monitoring and managing the water quality of coastal and inland habitats is
necessary as they are vital to many kinds of utilization, including urbanisation, tourism, transportation,
industry, fish farming and drinking water supply. According to the EU Water Framework directive 2000,
specified biological, hydro-morphological and physico-chemical parameters of water bodies have to be
monitored on a regular basis.

A major advantage of hyperspectral data covering coastal and shallow freshwater bodies is the ability
to spectrally unmix various in-column optical constituents and the sea floor or lake bottom (Carder et al.,
1993; Goetz , 2011). The advanced spectral resolution of EnMAP in the visible and near-infrared region
will allow the assessment of water constituents including phytoplankton pigments, suspended matter,
dissolved organic matter, dissolved organic carbon concentration, and water transparency. Moreover,
phytoplankton taxonomic groups can be identified, which provide indications for the occurrence of harmful
algal blooms (Bracher et al., 2009). Chlorophyll-a concentration is widely used as an indicator of algal
biomass that depends upon nitrogen and phosphate availability in the water bodies (Carlson and Simpson,
1996; Kamarainen et al., 2009). Water transparency is a widely used indicator of the trophic state, which
is influenced by the abundance of organic and inorganic suspended particulate and dissolved matter
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(Kirk , 1994). Several researchers have developed algorithms to quantify various parameters, such as
chlorophyll-a, humic substances, suspended matter, yellow substances, and water transparency (Giardino
et al., 2007; Kallio et al., 2001; Schiller and Doerffer , 1999; Thiemann and Kaufmann, 2000, 2002).
EnMAP can make use of these standards for detailed observations of coastal zones and inland waters,
while sensors such as MERIS, MODIS and SeaWIFS are designed for ocean applications with frequent
observations at coarser spatial resolutions. Algorithms for coastal and inland water constituents with
different phytoplankton, particulate and dissolved matter composition will be adapted and improved for
EnMAP to provide water quality data at a higher spatial resolution. Water quality assessment serves both
monitoring of freshwater security and the still increasing importance of aquaculturally used coastal and
inland water bodies. Moreover, water quality assessment is crucial for the monitoring and management
of endangered ecosystems such as coral reefs, seagrass meadows or mangrove forests (Bell et al., 2008;
Landvelde and Prins, 2007).

EnMAP data will not only offer more frequent observations of in-column constituents, but will
provide frequent information about the type and status of the sea floor substrate and its changes. Water
column correction approaches using hyperspectral data allow the identification of bottom vegetation types
and, if regularly monitored, the observation of sedimentation dynamics (Deronde et al. 2004) as well as
short- and long-term changes in species distribution and structure (Vahtmaee et al., 2011). Quantitative
analyses of coastal benthic communities enable the investigation of net primary production (Dierssen
et al., 2010). Moreover, many benthic species act as environmental indicators. Their frequent monitoring
therefore enables an estimate of the state of coastal marine environments and provides evidence for
environmental changes (Phinn et al., 2003; Vahtmaee et al., 2006). In this context, the fusion of EnMAP
data and satellite data with a high geometric resolution (e.g. Worldview, GeoEye) offers the potential
to pinpoint heterogeneously distributed vegetation and sediment patches. The monitoring of benthic
vegetation can support integrated coastal zone management when species of certain genera (e.g. Ulva,
Laminaria, seegrasses) are grown as a food supply for humans or aquaculture of marine animals (Anderson
et al., 2007; Radiarta et al., 2011). The fusion with spatially high-resolution data also offers the potential
to monitor frequently invasive benthic and emergent species (Albright and Ode, 2011; Forrest et al., 2012).

Coastal ecosystems are highly productive and store large amounts of carbon (Cole et al., 2007;
Pidgeon, 2009). The distribution and dynamics of organic carbon in the vegetation, in combination
with dissolved organic matter, are important in understanding regional and global carbon cycles. In this
context, the EnMAP data provide efficient means to characterize the role of coastal and inland water
bodies in carbon uptake and release.

Coastal and freshwater ecosystem management involves modelling and monitoring, which require a
reliable information base and robust analytical techniques. Conventional mapping methods are logisti-
cally constrained, while airborne campaigns are cost intensive and often are limited to a few acquisition
dates. The EnMAP satellite will enable a repeatable quantitative monitoring of the water-related en-
vironmental parameters mentioned above. The combination of hyperspectral data with ecological or
hydrological models, geographic information systems and in-situ measurements allows the development
of advanced integrated management plans for coastal zones and catchments characterized by inland wa-
ter bodies, wetlands or reservoirs (Yang , 2009; Radiarta et al., 2011). The fusion of hyperspectral data
with thermal infrared data offers additional perspectives to the analysis of the trophic state of coastal or
freshwater ecosystems. A combination of EnMAP derived bathymetry with RADAR, LIDAR or Laser-
scan data can be useful to derive underwater topography and morpho-dynamics of shallow water areas
(Pleskachevsky et al., 2011). Thus, imaging spectroscopy enables an accurate estimation of water quality
and sea floor parameters. Moreover, it offers the potential for new and complementary indicators for the
characterization of the state of coastal and inland water bodies.

Accordingly, the following main scientific tasks are related to coastal and inland water body applications:
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• Improve the identification of different substances by their spectral characteristics, such as improved
chlorophyll quantification, the differentiation between ecological important phytoplankton groups,
and dissolved organic compounds;

• Enhance the identification of different fractions of suspended mineral and organic particles;

• Monitor the spatio-temporal dynamics and structure of shallow sea/lake bottom substrate (vegeta-
tion and sediment);

• Monitor the distribution patterns of invasive submersed and emergent algae;

• Monitor the variety of algal species/genera in space and time as a bio-indicator of coastal and
freshwater ecology;

• Monitor and taxonomically identify (potentially toxic) algal and phytoplankton blooms in eutroph-
icated coastal and inland waters;

• Estimate processes such as primary production in inland and coastal waters and suspended matter
transport and its impact on coastal ecosystems;

• Monitor the distribution of sediments in tidal flats, wetlands, and mangrove forests; and

• Monitor coastal erosion and changes in coastal morphology.

5.2.2 Oceans

Oceans cover about 71% of the Earth’s surface. Ocean currents greatly affect the Earth’s climate by
transferring heat from the tropics to the polar regions and influencing inland precipitation patterns.
In general, oceans host a vast resource of marine life and play a vital part in the global carbon and
oxygen cycle. For example, oceanic phytoplankton represent only 2% of the global plant biomass but is
responsible for about 50 % of the global primary production (Berger , 1989).

Remote sensing enables us to study the upper ocean layer on various spatial scales to identify
surface processes and to quantify characteristic parameters, such as phytoplankton biomass, sediment
distributions, salinity, and surface temperatures. The first optical sensor built to study specifically
the oceans, the Coastal Zone Color Scanner (CZCS), was launched in 1978 and paved the way for
several subsequent instruments like SeaWIFS, MERIS, and MODIS and will be continued by OLCI in
the forthcoming Sentinel series. All these globally covering multispectral instruments are optimised to
analyse the open ocean, which can optically be characterised by only one parameter, the chlorophyll
content (case 1 water). Since the advent of MERIS we are also able to resolve properties of optically
more complex coastal waters (case 2) like chlorophyll, suspended sediments and chromophoric dissolved
material (IOCCG , 2000). EnMAP’s strength is based on its higher spectral and spatial resolution.
These characteristics are important to resolve coastal regions with highly structured geographic features,
infrastructures like rigs or offshore windfarms, and shallow waters with a high variability like lagoons,
estuaries and wadden seas. For example, off-shore windfarms may affect sediment resuspension and may
alter the biotic communities, which can be observed with hyperspectral imagery. Furthermore, it is of
great interest to detect and analyse marine processes involving small-scale patterns and structures. An
unresolved research topic in the marine community focuses on the detection of increased phytoplankton
occurrences along eddy structures. Another open question that can be addressed with EnMAP concerns
the dynamics of cyanobacteria blooms that develop along eddies and their linkage to the upwelling of
nutrients along oceanic frontal and mixing zones.

The following main scientific tasks are related to ocean applications:
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• Monitor the impact of off-shore windfarms on the bottom substrate and biotic communities; and

• Detect phytoplankton along small-scale eddy structures and quantify their dynamics.

5.3 Natural Resource Management

Natural resources are natural assets occurring in nature that can be used for economic production or
consumption. Management of natural resources comprise their exploration, monitoring, and sustainable
utilisation. Because natural resources form the basis for economic growth, they are of major interest for
governments and industries. In this section, natural resources refer to the availability of abiotic resources
including minerals, soils, and fossil fuels whereas biotic resources are mainly addressed in the previous
section on “terrestrial and aquatic ecosystems” (see section 5.1 and 5.2). Imaging spectroscopy has proven
to be an effective tool to detect, monitor, and manage natural resources. Current research focuses on the
assessment of mineral deposits (e.g. Clark et al., 2003), the management of mining impacts (e.g. Swayze
et al., 2000), and the deduction of soil properties (e.g. Ben-Dor et al., 2009). Because most present
studies are based on airborne hyperspectral imagery, EnMAP holds a considerable potential to expand
lithospheric investigations and to monitor seasonal or event-based pedologic changes.

5.3.1 Resource investigations

Mineral mapping

Minerals are essential to an industrialized society. This particular interest in detecting mineral com-
positions has been the most significant driver in the development of spectroscopy (Schaepman et al.,
2009). Spectra of minerals exhibit several diagnostic absorption features mainly due to the presence
or absence of transition metal ions (e.g. iron, chromium, cobalt and nickel) and molecular bonds (e.g.
Fe-OH and Mg-OH in amphiboles, Al-OH in clay minerals, CO3 in calcium carbonates). These specific
absorption features facilitate regional mineral mapping based on imaging spectroscopy (van der Meer
et al., 2012; Clark et al., 1990). Besides the mineral mining interest, mineral mapping can provide a bet-
ter understanding of weathering, mineralization, hydrothermal alteration, and other geologic processes
(Clark et al., 2003; Kaufmann et al., 1999). Detectable indicator minerals, such as kaolinite, dickite,
alunite, sericite, chlorite and epidote, are commonly found in hydrothermal alteration systems that may
contain deposits of economically valuable minerals, such as gold, silver and copper, to name a few. In
this context, the detection and assessment of rare earth elements deposits are of greatest interest for both
political relations and the global economy. In specific cases, subtle variations in chlorophyll concentration
of homogeneous canopies may indicate heavy metal concentrations in the underground (Collins et al.,
1983). In addition to mineralogical investigations, lithospheric research includes the mapping of volcanoes
and their plume composition (Carn et al., 2005; Guinness et al., 2007; Spinetti et al., 2008).

Soil properties

Hyperspectral data as provided by the EnMAP satellite will hold considerable potential to characterize
the pedosphere by identifying soil properties and their changes in time. In view of limited arable land area
and rising population numbers, the emerging field of precision farming is receiving increased attention.
Supported by imaging spectroscopy soil conditions can be assessed before, during, and after the growing
season. In this way, farmers can better evaluate critical needs such as irrigation, nutrient supply, and
cultivation to gain increased agricultural yields (Dematte et al., 2000).

Soils are complex dynamic systems, which are formed and developed as a result of the combined
effects of climate and biotic activities, and modified by topography. Soil development that can be either
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progressive or regressive with time modifies the chemical, physical, and mineralogical properties of soil
surfaces to produce distinct spectral features that can be detected using high-resolution reflectance spectra
(Leone and Sommer , 2000). In particular, the amount of organic matter and iron content, particle size
distribution, clay mineralogy, water content, soil contamination, cation exchange capacity and calcium
carbonate content, can be determined with imaging spectroscopy (Ben-Dor et al., 2009).

Petroleum detection

Petroleum, or crude oil, consists of a complex mixture of hydrocarbons and other liquid organic com-
pounds. Over the past decades, these hydrocarbons have been the primary energy source, which con-
tributed significantly to technological and industrial advances. In recent years, there has been a growing
demand for environmental monitoring, associated with the advance of petroleum exploration at deep
offshore waters and oil sand extractions in pristine ecosystems. Imaging spectroscopy can be used to
detect oil discharges on the Earth surface, which is of environmental concern and economical interest
(Lammoglia and de Souza Filho, 2011). Oil seepages may occur naturally within onshore or offshore
basins or result from leaks and spills during the extraction, transportation, storage, and utilization of
petroleum. Oil pools and tar deposits can often be directly detected, whereas micro-seepages may give
rise to vegetation stress or cause geochemical alterations in soil and rocks, which can be studied indirectly
using hyperspectral sensors (van der Meer et al., 2002).

Spectral characteristics of hydrocarbons are linked to their chemical composition, which can be
used to distinguish various oil types such as crude oil, emulsified oil, and oil on ocean water (Horig et al.,
2001; Lammoglia and de Souza Filho, 2011). For example, hyperspectral reflectance spectra from soil
samples have been used to model the total bitumen content in Canadian oil sands (Lyder et al., 2010;
Rivard et al., 2010). However, in marine environments the oil type and the layer thickness are critical to
the applicability of optical remote sensing for natural oil slick detection and identification (Wettle et al.,
2009).

The following main scientific tasks are related to the natural resource management:

• Develop algorithms and expert systems for mineralogical mapping with emphasis on alteration
zones and index minerals of metamorphic zonations;

• Analyse the capability of hyperspectral data for the detection of rare earth minerals based on
different globally distributed sites;

• Develop new algorithms and models for non-linear, weighted unmixing and mineral quantification
approaches;

• Investigate the effects of mineral-induced stress on the spectral signature of dense vegetation
canopies to establish a link between vegetation stress and specific minerals;

• Quantitatively estimate the influence of external (weathering crusts, lithobionts) and internal (or-
ganic matter, opaque accessory minerals) parameters on the spectral signature of rocks and soils –
creation of pedo-transfer functions;

• Calibrate remote sensing-based soil condition indices against soil reference samples to better link
spectral parameters with soil development models;

• Retrieve soil properties, such as organic matter and iron content, particle size distribution, clay
mineralogy, water content, soil contamination, cation exchange capacity and calcium carbonate
content to analyse status and changes of soils; and

• Develop methods to optimize oil extraction in order to improve ecosystem stability.
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5.3.2 Environmental rehabilitation

The extraction of natural resources is frequently associated with environmental degradation due to the
dispersion of potentially toxic substances. For example, numerous abandoned mines (e.g. open pit
coal, copper and gold mines) have left an environmental legacy of acidic drainage and toxic metals in
downstream watersheds, with adverse effects to human and ecosystem health (Swayze et al., 2000). Acid
mine drainage derives from an enhanced sulfide hydro-oxidation process due to the increased effective
surface of crushed and milled rocks during the mining process. Sulfuric acid enters the food chain through
contaminated soils and water, which can ultimately result in the collapse of wetlands (McCarthy et al.,
2007) and the decline of ecosystems (Wepener et al., 2011). Imaging spectroscopy can effectively identify
contaminations and determine its sources and downstream impacts on the water cycle and on vegetation
health (Clark et al., 2003). Hyperspectral mapping of areas affected by acid mine drainage has accelerated
the site cleanup and saved millions of dollars in cleanup costs (EPA, 1998).

Based on an improved understanding of mining related environmental impacts many countries
strengthened legislation to enforce environmental protection and to implement rehabilitation measures
(MMSD , 2002). In this context imaging spectroscopy represents a comprehensive monitoring tool to
assess the mining related environmental impacts and to monitor the progress of ecosystems restoration.
In the event of oil spills, as happened in the Gulf of Mexico after the Deepwater Horizon explosion,
imaging spectroscopy can accurately identify petroleum and discriminate it from terrestrial backgrounds
(e.g. Allen and Krekeler , 2011). Therefore, EnMAP has the potential to become an efficient operational
tool to monitor both the effects of environmental pollution and the progress made in the rehabilitation
of affected sites.

The following main scientific tasks are related to environmental remediation:

• Develop geospatial tools and integration techniques for sustainable mine site management;

• Detect, quantify, and model the short- and long-term environmental changes caused by mining
activities;

• Develop algorithms to automatically detect mine waste areas; and

• Assess and quantify the success of remediation strategies.

5.4 Hazards and Risks

With growing population and infrastructure the world’s exposure to natural hazards is increasing (Nelle-
mann et al., 2008). In particular, coastal areas record the strongest increase in population growth
concurrently with an increasing exposure to floods, cyclones and tidal waves. Natural hazards encompass
a wide range of phenomena that range from geologic and climatic hazards to fires and diseases. These
hazards occur on different timescales (e.g. earthquakes and droughts) and affect different spatial scales
(e.g. landslides and geomagnetic storms).

Many natural occurring phenomena are growing to natural hazards once we are faced with their
extremes. Thus, some topics described in this section are closely linked to other applications and research
topics (e.g. algae blooms, soil contamination) and can also be synergistically adjusted to the needs of
hazards and risks management. The specific demand for disaster management is described in the following
section.
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5.4.1 Disaster management

In case of a natural disaster the crisis management is described by the crisis cycle: starting with the
(1) urgent crisis, followed by the phases of (2) emergency relief, (3) recovery, (4) reconstruction, (5) risk
analysis, and (6) preparedness and alertness before closing the cycle with the next crisis. Most phases
offer diverse opportunities for imaging spectroscopy to contribute to an improved and comprehensive
crisis management.

In general, crisis information is needed at different stages before and after a disaster event with
varying degrees of urgency. During the emergency relief phase crisis information is needed to minimize
loss and damage. Rapid mapping based on hyperspectral data requires a high level of readily implemented
and computationally efficient algorithms and procedures. Due to the high information content, given the
large number of spectral bands, an operational use in the case of emergency has to be defined, tested and
accurately described. The following main applications and tasks have been identified for different crisis
phases, in which hyperspectral analysis can add significant information to existing sensors and analyses:

Emergency phase

• detection of water or land pollution (e.g. oil spill monitoring, detection of massive algae blooms,
determination of chemical pollutant types during technical accidents, debris analysis in case of
tsunamis, etc.)

• detection of flood-affected areas along flood plains (e.g. saturated soil and dams)

• determination of different volcanic flows in case of volcanic eruptions (lava of different ages, pyro-
clastic flows, and lahars) and deposits of other volcanic materials

Recovery phase

• status of vegetation (to estimate crop failure after hurricanes, hailstorms or during droughts)

Prevention phase

• risk assessment (e.g. prediction of oil spill spread direction and rate characteristics, assessment of
contaminated areas, monitoring of vegetation status)

During previous disaster events airborne imaging spectroscopy data were employed to localize and identify
materials related to oils spills, chemical pollutions, volcanic eruptions, and landslides. However, airborne
imaging systems are of limited use to cover events of larger geographic extend on an operational level. In
most previous disaster events imaging spectroscopy data were applied during the later reconstruction and
risk analysis phase (monitoring of oil spills, identification and measuring of damage, assessment of the
situation, scientific applications), rather than during the urgent emergency relief phase. Therefore, exist-
ing algorithms employed during later disaster management stages need to be automated and optimized
to be operational during the pressing early disaster stages.

Such disaster applications require the following main scientific tasks:

• Development of new algorithms for disaster mapping using the hyperspectral band information;

• Development of time-efficient image processing techniques; and

• Monitor areas affected by natural hazards for long-term studies and to derive early warning indi-
cators.
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5.4.2 Natural hazards

Landslides

In mountainous areas landslides of various forms and compositions impose a constant threat to local
communities and infrastructures. Landslide monitoring and hazard assessment studies have long been
based on geomorphological analysis of remote sensing imagery (Metternicht et al., 2005, and references
therein). Traditional geomorphological landslide analysis can be improved with hyperspectral data to
characterize active unstable slopes (debris-covered areas, fractured/disjointed rock walls, landslide accu-
mulation borders) and individual structural features and landforms (major faults and fractures, trenches,
elongated depressions, counterslope scarps) (Mondino et al., 2009).

Floods

Many of the world’s urban centres are subject to floods caused by rainstorms, snowmelt, or dam-failures.
A major challenge related to flood monitoring is its timely detection given the sparse ground instrumen-
tation and the broad regional extent of floods. To overcome this lack of data satellite imagery have been
extensively used since the 1970s including advanced hyperspectral data. For example, Ip et al. (2006)
developed change detection algorithms to identify and classify flood-induced changes, in hyperspectral
images captured by Hyperion. This automatic ability to detect and monitor floods enables a more rapid
respond to flood risks, assessment of damaged areas, and further studies of water quality changes (Ip
et al., 2006).

Droughts

Droughts can have a substantial impact on the ecosystem and agriculture of the affected area. For ex-
ample, large-scale agricultural losses can have local to global socioeconomic implications in the form of
income losses and increasing commodity prices (Simelton et al., 2012; Ubilava, 2012). In general, drought
periods lead to an increased fire susceptibility and tree mortality, whereas carbon uptake decreases sig-
nificantly (Nepstad et al., 1999; Asner et al., 2000; Williamson et al., 2000). In critical ecosystems, such
as the Amazon forest, seasonal droughts may increase in severity through deforestation, more frequent El
Niño Southern Oscillation episodes, and global warming (Asner et al., 2004). Spaceborne imaging spec-
troscopy has large potential to study climate–vegetation interactions by detecting the state of vegetation
on a regional scale (Asner et al., 2004). Such ecosystem studies may yield in an increased accuracy of
ecological models and could result in drought-preventive measures for agricultural areas.

Volcanoes

In concert with seismic and geodetic measurements, hyperspectral information on volcanic debris flows,
pyroclastic materials, and gas emissions are fundamental to the understanding of eruptive systems (Crow-
ley et al., 2003; Tralli et al., 2005). In particular, hyperspectral thermal information provides valuable
insights into volcanic activity (Cipar et al., 2010). While these studies illustrate the potential of a hyper-
spectral sensor in volcanic research, the approaches need to be fine-tuned and tailored to the information
needs of crisis management. For example, the differentiation between various crater types, lava flow
types and volcanic deposits would significantly improve the risk assessment to enable a timely planning
of evacuation measures.

The following main scientific tasks are related to natural hazards:

• Monitor and identify tectonic and mineralogic characteristics of active landslides to improve hazard
assessments;
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• Detect and monitor flood occurrences to assess flood risks, damaged areas, and water quality
changes;

• Detect the state of vegetation during drought periods to improve the accuracy of ecological models
and to develop drought-preventive measures for agricultural areas; and

• Investigate volcanic systems with regard to their crater types, lava flow types and volcanic deposits
to improve risk assessment and evacuation measures.

5.4.3 Man-made hazards

Land degradation

As a result of climatic variations and human mismanagement, deterioration in soil and plant cover
has adversely affected nearly 70% of the world´s dry-lands that cover approximately one third of the
continental surface of the Earth. These facts have led to the ratification, by almost 180 nations, of the
UN Convention to Combat Desertification (UNCCD , 1994), which emphasizes the need to monitor and
assess land degradation processes worldwide. Combating desertification requires an accurate knowledge
of the current land degradation status and the magnitude of the potential hazard. It is widely agreed
that accelerated erosion is one of the most important sources of land degradation that, together with the
destruction of vegetation cover and structure, contributes to the potential increase of land degradation
and desertification (Pickup, 1989).

EnMAP data holds considerable potential to assess various degrees of land degradation by retriev-
ing important variables that control the susceptibility to soil erosion, such as soil compaction, surface
roughness, infiltration rate, and soil moisture (Haubrock et al., 2004, 2008). Due to distinct topsoil char-
acteristics, soils previously affected by erosion can be spectrally distinguished from intact soils (Dematte
et al., 2000). Another manifestation of soil degradation is increased salinity, which is commonly caused
by rising water tables induced by land clearing or irrigation. Here, imaging spectroscopy proved to be
an effective tool to infer the degree of soil salinity as indicated by the shape of the hydroxyl absorption
feature at 2200 nm and by the presence of indicator minerals such as gypsum or smectite (Taylor et al.,
2001; Taylor , 2004). Further applications to investigate land degradation based on hyperspectral imagery
include the analysis of spatial patterns and temporal dynamics of desertification (Asner and Heidebrecht ,
2005). Overall, EnMAP will open up new possibilities to assist agricultural land use and to combat land
degradation.

Oil spills

Most prominently, imaging spectroscopy was employed to detect the occurrence and migration of oil
spills. In marine environments hyperspectral data can be used to track an oil spill’s areal extent, the
oil thickness, and oil categories. For example, Salem (2001) developed methods to detect oil-polluted
surfaces (soil and water) and to predict oil spill trajectories and migration rates for a quick disaster
response. However, the spectral behaviour of oil in water is inherently a highly non-linear and variable
phenomenon that changes depending on oil thickness and oil/water ratios (Rand et al., 2011). In addition,
hyperspectral imagery has been used to detect ecosystem changes by weathered oil in coastal littoral zones
(Bostater et al., 2011; Salem, 2005) and by oil-induced vegetation stress (Li et al., 2005).

Marine litter

The pollution of marine and coastal environments with marine litter, which is mainly composed of plastics,
has been identified as a long-term hazard for associated ecosystems (Galgani et al., 2010; UNEP , 2009).
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Continuously increasing disposal quantities and low plastic degrading rates (on the order of centuries)
caused an increasing litter accumulation in these environments over the past decades. Marine litter
causes several harms including entanglement of and ingestion by marine organisms (e.g., fishes, seabirds)
(Gregory , 2009). Because persistent toxic substances, such as organochlorines (e.g., PCB, DDE, DDT)
and others, are accumulating at high concentrations on the surface of plastics (e.g. Mato et al., 2001;
Ogata et al., 2009), the ingestion of plastics by marine organisms represents the entrance point of those
substances into the food chain (e.g. Bjorndal et al., 1994; Eriksson and Burton, 2003; Graham and
Thompson, 2009; Boerger et al., 2010). However, whether there is enrichment or depletion within the
food chain is subject to on-going research (Zarfl et al., 2011). Despite a basic understanding of principle
sources and sinks of plastic pollution, a detailed assessment of their quantities and transport pathways is
still lacking (Zarfl et al., 2011). Given that imaging spectroscopy is suitable to identify marine plastics
(e.g. Thompson et al., 2004; Kuriyama et al., 2002), EnMAP might contribute to the localization of
major pollution sources, sinks and pathways of marine litter. A potential application to localize marine
litter is related to natural hazards like tsunamis and floods, which can act as transport agents for large
amounts of artificial materials into the marine environment. A major challenge in such a scenario is
the timely acquisition and analysis of remote sensing images, which requires the development of efficient
image processing techniques for a near-real-time support to enable the removal of marine litter.

Industrial waste

Technical accidents or illegal dumpings that release toxic industrial waste typically contaminate the
surrounding environment (Mayes et al., 2011; Minh et al., 2003; Okoronkwo et al., 2006; Wong et al.,
2007). Against this background, imaging spectroscopy can be applied to quantify the distribution of
toxic materials and to assess the degree of environmental contamination (Kemper and Sommer , 2004).
Furthermore, hyperspectral applications on waste management provided information on the concentration
and distribution of asbestos and other debris materials in the aftermath of the September 11th terrorist
attacks (Clark et al., 2001) and the assessment of mine waste contamination of mining dumps (Mars and
Crowley , 2003).

The following main scientific tasks are related to man-made hazards:

• Monitor land degradation processes (erosion and deposition) by providing regular maps of soil
status such as organic matter (TOC), CaCO3, iron content, infiltration rate, salinity, and physical
crusting development;

• Identify and quantify various soil contaminants through their specific spectral signatures or in-
dicators (e.g., bio-indicators based on eco-toxicological effects on vegetation) linked to change in
chemical composition of the polluted soil;

• Develop new algorithms and optimisation of existing modelling approaches for mapping coherent
indicators of the erosional state of soils;

• Monitor vegetation distribution and characteristics in semi-arid and sub-humid ecosystems for land
degradation purposes taking into account highly variable background substrates;

• Investigate oil spills with respect to their oil type, distribution, migration rates, and environmental
impacts;

• Identify sources, sinks and pathways of marine litter during large-scale plastics discharge events
(e.g. tsunamis); and

• Quantify the distribution of toxic materials in waste dumping sites and assess the degree of envi-
ronmental contamination.
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5.5 Atmospheric Research

Although EnMAP is not specifically designed for atmospheric research, variables that describe atmo-
spheric conditions and constituents may be retrieved using EnMAP data. These variables include atmo-
spheric water vapour, mineral dust, particulate matter clouds, and pollen.

Atmospheric water vapour is important for many environmental applications since it constitutes one
of the most effective greenhouse gases in the atmosphere. It shows a high spatial and temporal variability
depending on meteorological conditions and land use at the underlying Earth’s surface. Information on
the regional distribution of atmospheric water vapour may, for example, facilitate the analysis of SAR
data since the radar signal transit time depends on the atmospheric conditions. A few algorithms for the
retrieval of columnar water vapour content from hyperspectral remote sensing data have already been
developed (e.g. Barducci et al., 2004).

Atmospheric constituents such as mineral dust and particulate matter clouds originating from sand
storm areas or biomass-burning activities also show a highly variable temporal and spatial distribution.
Mineral composition of such transported dust is essential to our understanding of climate forcing, min-
eralogy of dust sources, aerosol optical properties, and mineral deposition to the ground. Furthermore,
the differentiation of spectral signals from the ground and from mineral dust may allow separating atmo-
spheric influences from the actual ground signal by determining their mineral composition. Chudnovsky
et al. (2009) showed that, for the suspended dust, the absorption signature could be decoupled from scat-
tering, allowing detection of key minerals. For vegetation and phenological studies temporal and spatial
pattern of pollen spread may be retrieved from hyperspectral data as few studies have demonstrated (e.g.
Kaleita et al., 2006).

Accordingly, scientific tasks related to atmospheric applications include:

• Develop and improve algorithms to retrieve columnar water vapour based on hyperspectral data;

• Develop and improve algorithms to characterise mineral dust, particulate matter clouds and pollen
based on hyperspectral data; and

• Develop and improve algorithms to separate the spectral signal of mineral dust from the actual
ground signal.
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To meet the overall objectives of the EnMAP mission a considerable amount of effort is dedicated to
scientific exploitation activities with the aim to build and train a well-prepared community ready for an
efficient and professional use of the EnMAP data, once they are available. This strategy is achieved by
a bundle of activities that aim at spreading relevant information, increase public awareness and train
the next generation of remote sensing scientists. This section provides a brief overview of the various
activities related to the EnMAP mission.

6.1 Community information and public awareness

The primary source of information about the EnMAPmission is the official EnMAP website www.enmap.org.
In addition, a mailing list was established to spread EnMAP-specific news and announcements. One can
subscribe to the list by sending an email to EnMAP_wiss-on[at]gfz-potsdam.de. As of July 2012, the list
has nearly 300 German and an increasing number of international subscribers from research, administra-
tion and business.

Research results related to EnMAP are frequently published in scientific journals and presented at
international conferences. To raise the public awareness relevant information about the mission and its
status are spread through the media (newspapers, TV, etc.).

Key documents of the EnMAP mission targeting the scientific community and other users are
highlighted in Table 2. Note that some of these documents are under preparation and will be available
at a later stage.

6.2 Community building and training

In the preparatory phase of the EnMAP mission various activities are in place to build and increase an
expert scientific community in order to exploit the full information content of the EnMAP data.

National workshops are held in about 15 months intervals with the following objectives:

• to inform the scientific community on the progress of the mission

• to present and discuss the progress of the EnMAP-related research

• to form and enlarge the scientific community

• to raise awareness of the mission

In addition to the national workshops, EnMAP sessions at international conferences (e.g. EARSeL) are
organized to present results and interact with the scientific community.
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Table 2: Key documents of the EnMAP mission

The YoungEnMAP group represents a research community of PhD students, early PostDocs and
undergraduate students based at various universities and research institutes in Germany, which share
ideas and experiences in the field of imaging spectroscopy. In order to promote and train these junior
scientists, EnMAP summer schools are conducted by the ECST on an annual basis covering a broad
range of themes. An additional communication and interaction tool represents the Internet platform
“YoungEnMAP” (www.young-enmap.org), which is frequently used by the vibrant research group.

To facilitate convenient and straightforward processing and analysing of EnMAP data the EnMAP
Box was developed. This Box represents a platform independent software interface, which is continuously
advanced by the ECST and the EnMAP scientific community. For further information on documentation
and installation of the EnMAP Box please refer to the EnMAP website (www.enmap.org).
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6.3 Thematic and regional areas of interest

Flight campaigns

Hyperspectral data that derive from flight campaigns are crucial to simulate future EnMAP data. These
data are required to develop and evaluate various methods and applications that can be readily employed
during the mission operation period.

Appropriate study sites for such flight campaigns should be characterized by the following criteria:

• Cover at least one major research fields;

• Representativeness of the study area for these research fields;

• Long-term well-instrumented sites; and

• Pooling of interest groups if possible to reduce costs and use synergies.

Major study sites

During the EnMAP preparation programme period 2010 to 2012 the following study sites (sorted by
research fields) were investigated by several flight campaigns (see Figure 6 for the approximate location).

• Agriculture: Neusling, Demmin, Köthen, Harz, Wahner Heide

• Forestry: Merzalben, Harz, Karlsruhe, Solling

• Land degradation: Oderbruch, Isabena (Spain), Castro Verde (Portugal)

Most of these sites are covered by multi-seasonal flights to support the analysis of multi-temporal process
studies. Furthermore, acquisitions in different flight heights are obtained, which facilitate spatial scaling
studies. In some occasions, the simultaneous data collection with other sensors (e.g., LiDAR) enables
multi-sensoral studies. During each flight campaign extensive ground-data sampling is carried out to
calibrate and validate the airborne acquisitions.

For the EnMAP preparation programme period 2013 to 2015 there are three to five flight campaigns
planned per season at the main study sites Neusling, Demmin and Merzalben. Three additional sites
are envisioned to augment this programme with approximately four flight campaigns per site to allow
for multi-temporal analysis. The selection of these addition sites will be based on the above-mentioned
criteria for study sites. In this concept, pre-processed data sets obtained during the previous period 2010
to 2012 form the basis for long-term analyses at each study site.

Background mission

In case of free acquisition capacities, images are collected according to a predefined background mission
strategy. The background mission includes general areas of interest with respect to the scientific mission
goals and the identified major test sites.
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Figure 6: Location of study sites investigated with flight campaigns during the EnMAP preparation programme
period 2010 to 2012
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Tables

Table A.1: List of organization, initiatives, and agreements relevant in the context of the EnMAP mission (as
referred to in section 2.4).
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