GFZ

Helmholtz-Zentrum
PorTspaAam

Originally published as:

Sun, X., Lall, U., Merz, B., Nguyen, D. (2015): Hierarchical Bayesian clustering for nonstationary flood frequency
analysis: Application to trends of annual maximum flow in Germany. - Water Resources Research, 51, 8, pp. 6586—
6601.

DOI: http://doi.org/10.1002/2015WR017117



@JAGU PUBLICATIONS

Water Resources Research

RESEARCH ARTICLE

10.1002/2015WR017117

Key Points:

« Develop a nonstationary frequency
analysis approach for large area data
sets

« Investigate the trends in annual
maximum daily stream flow over
Germany

Correspondence to:
X. Sun,
xs2226@columbia.edu

Citation:

Sun, X,, U. Lall, B. Merz, and N. V. Dung
(2015), Hierarchical Bayesian clustering
for nonstationary flood frequency
analysis: Application to trends of
annual maximum flow in Germany,
Water Resour. Res., 51, 6586-6601,
doi:10.1002/2015WR017117.

Received 20 FEB 2015

Accepted 22 JUL 2015

Accepted article online 27 JUL 2015
Published online 24 AUG 2015

© 2015. American Geophysical Union.
All Rights Reserved.

Hierarchical Bayesian clustering for nonstationary flood
frequency analysis: Application to trends of annual maximum
flow in Germany

Xun Sun?, Upmanu Lall'2, Bruno Merz3-4, and Nguyen Viet Dung3

'Columbia Water Center, Columbia University, New York, New York, USA, 2Depar‘tment of Earth and Environmental
Engineering, Columbia University, New York, New York, USA, 3Section Hydrology, GFZ German Research Center for
Geosciences, Potsdam, Germany, “Institute of Earth and Environmental Science, University of Potsdam, Potsdam,
Germany

Abstract Especially for extreme precipitation or floods, there is considerable spatial and temporal vari-
ability in long term trends or in the response of station time series to large-scale climate indices. Conse-
quently, identifying trends or sensitivity of these extremes to climate parameters can be marked by high
uncertainty. When one develops a nonstationary frequency analysis model, a key step is the identification
of potential trends or effects of climate indices on the station series. An automatic clustering procedure that
effectively pools stations where there are similar responses is desirable to reduce the estimation variance,
thus improving the identification of trends or responses, and accounting for spatial dependence. This paper
presents a new hierarchical Bayesian approach for exploring homogeneity of response in large area data
sets, through a multicomponent mixture model. The approach allows the reduction of uncertainties through
both full pooling and partial pooling of stations across automatically chosen subsets of the data. We apply
the model to study the trends in annual maximum daily stream flow at 68 gauges over Germany. The effects
of changing the number of clusters and the parameters used for clustering are demonstrated. The results
show that there are large, mainly upward trends in the gauges of the River Rhine Basin in Western Germany
and along the main stream of the Danube River in the south, while there are also some small upward trends
at gauges in Central and Northern Germany.

1. Introduction

It is widely recognized that regional frequency analysis of hydroclimatic extremes can reduce uncertainty in
precipitation/flood frequency estimates at locations with short records [Kysely et al,, 2011; Sun et al,, 2014]. A
variety of different methods have been developed for regional flood frequency analysis under the paradigm of
stationarity [e.g., Lang et al., 1999; Madsen and Rosbjerg, 1997; Meshgi and Khalili, 2009; Ribatet et al., 2007; San-
karasubramanian and Srinivasan, 1999]. The importance of addressing potential sources of nonstationarity in
frequency analysis is now well recognized and two main approaches have emerged. One seeks to identify
trends (secular or periodic) in individual series of extremes in the context of a formal model (e.g., the General-
ized Extreme Value distribution) through the use of time as a covariate with an appropriate basis function to
represent the temporal variation of one or more of the parameters of the distribution. The second considers a
causal framework where the model parameters depend on climate or land use covariates, which may them-
selves change in space and time. The first case is primarily a diagnostic model, since extrapolating a trend
model far into the future without a causal framework is not likely to yield good results. The second case is diag-
nostic and allows one to assess sensitivity to the proposed causal variables, and to then potentially predict into
the future or at other locations, using possible scenarios of the causal variables. In both cases, uncertainty in
estimation and the homogeneity of the parameters estimated across a relatively large region raises questions
as to identifiability and reliability of the model. For instance, over a large enough region, trends in extreme pre-
cipitation may switch from positive to negative, or the response to an El Nino condition may switch from
enhancement to suppression of extremes. The automatic identification of such heterogeneities while reducing
the uncertainty of estimates in a formal modeling framework is the goal of this paper. A general hierarchical
Bayesian model which explicitly considers finite mixtures (or clusters) and partial pooling of local parameters in
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each cluster is developed and applied to historical data at a country scale from a network of stations in
Germany.

Many frequency analysis models that incorporate spatial and/or temporal covariates have been developed
[Cannon, 2010; Chavez-Demoulin and Davison, 2005; Cooley et al., 2007; Delgado et al., 2012; El Adlouni et al.,
2007; Katz et al., 2002; Khalig et al., 2006; Leclerc and Ouarda, 2007; Nasri et al., 2013; Ouarda and El-Adlouni,
2011; Renard et al., 2006; Sun et al., 2014]. With this framework, the effect of temporal trend, seasonality, cli-
mate variability, spatial variability, etc. on the frequency and severity of hydro-meteorological events can be
quantitatively characterized [e.g., Aryal et al., 2009; Begueria et al., 2011; Chen et al., 2014; Cunderlik and Burn,
2003; Kysely et al., 2010; Leclerc and Ouarda, 2007; Lima et al., 2015; Lima and Lall, 2009, 2010; Renard et al.,
2008; Rust et al., 2009]. As indicated earlier, the need to reduce estimation uncertainty at a given station
using regional analysis has been recognized, and a common challenge for regional models is how to shrink
the estimation variance by proper pooling information across sites. A possible solution is to consider a
region where the climate effects or temporal trends may be homogeneous. However, it is not obvious how
to a priori identify a region where the trends or climate effects are homogeneous. Hence, most authors
[e.g., Srinivas et al., 2008] only apply regional models in small areas where the process may be considered to
be homogeneous, and large domain are divided into subregions using clustering techniques, such as
K-means [MacQueen, 1967], Fuzzy C-means [Bezdek et al., 1984] and Gaussian mixture clustering [McLachlan
and Peel, 2004]. However, these applications typically cluster on the mean and/or standard deviation of
each station, and not on the climate sensitivity or trend, and are not suitable for the highly skewed data,
typical of hydro-climatic extremes [Bernard et al., 2013]. Some Bayesian clustering models have been devel-
oped to consider spatiotemporal variation based on Expectation-Maximization (EM) algorithm or Dirichlet
process [e.g., Xiong and Yeung, 2004; Johnson et al., 2013; Nieto-Barajas and Contreras-Cristan, 2014], but
these models have been limited to a Gaussian framework.

The model presented in this paper improves on existing models by

1. Considering probability distributions suitable for extremes, such as the Generalized Extreme value
distribution;

2. Allowing the local and/or regional parameters of these distributions to depend on specified spatial or
temporal covariates using appropriate basis functions;

3. Seeking subregions or clusters of the larger domain, while allowing a flexible multilevel model in each
subregion where the degree of homogeneity in each subregion can be explicity modeled through
partial pooling across the sites selected for that subregion. The clustering criteria can consider a user
specified subset of parameters (e.g., mean, standard deviation, shape, climate effect, temporal trend) of
interest;

4. Developing a unified inference framework where classification into subregions and the estimation of all
local and regional parameters of the extreme value distributions is part of the same inference process
while formally modeling parameter uncertainty. Here the parameter estimation includes the parameters
of the model that expresses the dependence on covariates, as well as the hyper-parameters of the prior
distributions introduced; and

5. Using this framework to identify trends as well as climate dependence across the region.

The application of the model to the data from Germany was motivated by the availability of a complete
data set across the country, and by past investigations that led to inconclusive arguments as to the pres-
ence of trends across the nation, thus providing an opportunity to explore whether the techniques devel-
oped could provide a useful interpretation of the data.

The paper is organized as follows. The next section introduces the hierarchical Bayesian clustering model.
Section 3 provides a case study of trends on annual maximum German flow. The conclusion and further
extensions of the model are discussed in section 4.

2. Hierarchical Bayesian Clustering Model for Frequency Analysis

2.1. Full Pooling and Partial Pooling Model in a Homogeneous Region
For a homogeneous region, consider that the observations follow a distribution with parameters varying
with time and space:
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Y(s,t) ~ D(é(s, r)) (m

where D is a prespecified distribution and 0= (0“))

. are the associated distribution parameters, and L
is the number of distribution parameters.

Jevnsl

Each distribution parameter can potentially be modeled as a function of the covariates. For example, a com-
ponent of 6(5., t) can be modeled as 0(s,t)=p(s)+u,t, where y,(s) is a site-specific (local) regression
parameter, y, is a regional regression parameter which is common for all sites, and t is the temporal covari-
ate. More generally, the regression function can be written as follows:

(I () ()
0 )(S7 t):R(ﬂ/ocvﬁreg;x(s’ t)) (2)

where R is a general regression function (for instance it could be written in terms of a suitably chosen set of

.
basis functions, including splines, if a nonlinear dependence on covariates is to be explored); g, is the col-
lection of local regression parameters, and ﬁ%)g is a collection of regional regression parameters, and x (s, t)
refers to a set of covariates defined with respect to site and time indices s and t, respectively.
In a hierarchical Bayesian model, pooling of information across gauges for regressions can be considered at

three stages: no pooling, full pooling and partial pooling [Devineni et al., 2013]. In a no pooling model, each
—()
gauge is modeled independently, thus the regression parameters only involve local parameters .. Conse-

quently, case studies using a no pooling model consider a series of local analyses. In a full pooling model,

the regression parameters are typically assumed to have a regional effect, which is common over all

stations. However, some regression parameters may still remain site-specific. Thus both local and regional
I

regression parameters (f,,. and ﬁ,eg) are involved. In a partial pooling model, the regression parameters are
allowed to vary by site, but are assumed to be drawn from a common hyper-distribution D’ across the
region. The aim is to shrink the local parameter toward the common regional mean, but an estimation of
the across site variance or covariance is also included. This hyper-distribution describes the second level of
the hierarchical Bayesian model. A schematic of the partial pooling model is presented in Figure 1. The level
2 model may be used for each local parameter, if desired. As a consequence, the no pooling model
and the full pooling model are two end points of the partial pooling model. We stratify the local parameters

~ - ~()
Bjoc into two groups B, » and B, v, with the former having a second level model:

Ul (I
ﬂ/ocP ~ DI(I) <a( )) 3)

() ,
where “() is the hyper-parameters, and D' refers to the corresponding density function.

For any site s, the likelihood function of the hierarchical Bayesian model can be written as follows:

T -~ L () )
fu(s) :H b <y(s, t)]0(s, t)> H oo (B,OC,P\oc ) (4)
t=1 =1

In particular, the likelihood function of a full pooling model for any site s is fH(s)=HtT:1 fp (y(s, t)|§(s, t)).
The complete likelihood function can be calculated by taking the product of fy(s) among all

stations.

2.2. An Example

Consider a model for the linear temporal trend of annual maximum data Y(s,t), which is assumed to be
described by a GEV distribution at each site, with the location parameter defined by a linear function of the
time index t. One example of the no pooling (equation (5)), full pooling (equation (6)) and partial pooling
(equation (7)) models can be established as follows:

No pooling : Y (s, t) ~ GEV(uo(s)+ 1ty (5)t, 00(s), (5)) (5)
Full pooling : Y(s,t) ~ GEV(1o(s)+uyt, a0(s), &) (6)
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Figure 1. Schematic of the hierarchical Bayesian model. Level 2 applies in the partial pooling case where the local regression parameters
follow a hyper-distribution. The no pooling model and full pooling model are particular cases of the partial pooling model.

Level 1: Y(s,t) ~ GEV(uo(s)+ 4 (s)t, ao(s), &)
Patial pooling : (7)
Level 2 : 1 (s) ~ N(uu, au>

where 1, (s) is the intersection on the location parameter, 1, /i, (s) is the slope that characterizes the tem-
poral trend, go(s) is the scale parameter and &/&(s) is the shape parameter. The difference between i, and
i (s) (or & and &(s)) is that the former is a regional parameter while the latter is a site-specific parameter. y,,
and g, are two hyper-parameters in the second level model of equation (7).

These three models use the same regression function on the location parameter of the GEV distribution to
describe the temporal trend, while they differ in the settings of y; and & which are regional, site-specific or
having a second level model. Equations (5)—(7) constitute one example of parameter settings. Depending
on each specific case study, the regression parameters are flexible to be regional, site-specific or to have a
second level model.
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In the no pooling model (equation (5)), both p; and ¢ are site-specific, and thus estimated locally. In the full
pooling model (equation (6)), both are regional and estimated by using all data. In the partial pooling model
(equation (7)), the temporal slope y; of each site is assumed to come from a Gaussian distribution with
hyper-parameters x, and o,,. The idea of using a level 2 model for g, is that the level 2 model can improve
the precision when estimating the slope y;, while still allowing variation on the slope across stations rather
than considering the same slope for all stations. ¢ is still regional in equation (7), because it requires more
data to obtain a precise estimation due to the large uncertainty [Coles, 2001, p. 106].

2.3. Hierarchical Bayesian Clustering Model

The hierarchical Bayesian clustering model is now introduced to deal with observations which are not nec-
essarily in a homogenous region. We assume that the stations can be divided into K clusters, and the obser-
vations in each cluster follow a partial pooling model as described in section 2.1. The membership of each
station to each cluster is not prescribed a-priori. Each station has a probability 7, to belong to cluster C,.
This leads to a mixture structure across clusters:

For any station s, Y(s anf,.,k (8)

where k is the cluster number. Y(s)=(Y(s, 1), ..., Y(s,T)) is the observation of site s, and fy, (s) is the likeli-
hood function of the hierarchical Bayesian model for cluster k. In equation (8), it is implicit that the member-
ship of each station should be consistent for all time steps.

We reformulate some notations of the parameters to better represent the mixture structure. We denote the
distribution parameter of each cluster by Bk—(ﬁ % )/ : . Due to the mixture structure, the covariates

-----

in the regression function are limited to temporal covarlates Thus the regression function applied to each
Hf(l) is a function of temporal covariate x (t) and the regression parameters:

O (0 2O (2ON
Ok =R ﬂ/oc,P7ﬂIoc,N7 ﬁreg k;X(t) ©)

-~ =)
where ., and B, , are local regression parameters with the former having a second level model.

=)
([f,eg> are regional parameters which are identical over all stations inside the cluster k. The level 2 model
k

()
for B p is the following:

Bocs ~ 0" ((2"),) (10

where D'() is the hyper-distribution, and < )>k is the associated hyper-parameters.

The full likelihood of this hierarchical Bayesian clustering model can be calculated as follows:

S K
A=T D Smufi (s)

s=1k=1

IS Tt 0Ll (1) 50 T (57

t=1

(1

Taking the example of section 2.2 and considering K clusters as a candidate for the classification problem,
the explicit formula for each cluster k can be extended from equation (7):

Level 1: Y (s, t) ~ GEV(uy(s)+uy(s)t, ao(s), &)

(12)
Level 2 : pi;(s) ~ N<uﬂk,0“k)

where 1, and aq are site-specific parameters without second level modeling, u; is site-specific parameter
which has a second level model, and ¢ is the regional parameter. In this model &, u,, , o, are three param-
eters that are associated with cluster k.
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2.4. Parameter Inference

In this model, the regression parameters and hyper-parameters are estimated in Bayesian framework with
Markov chain Monte Carlo (MCMC) methods. No-U-Turn sampler [Homan and Gelman, 2014] is used as the
sampling algorithm in MCMC. The posterior pdf of the regression parameters is given as follows:

(G S T (0 WL W
=L =1L k=1, K =1,..L k=T, Kil=1, L
cner((Be) | (P) (") Ares)
A W] k=1, Kl=1,...L k=1, K=

-~ —(
where f ( (ﬁmw) , (lf,eg) , (&(I>>k_1 i1 L n k:],,A,K) is the prior joint pdf, and A is the
=1L k=1, KI=1,0..L =1 K=

(13)

likelihood function calculated in equation (11). To the specific model used in section 3, we associate a
Dirichlet distribution with identical parameters (e.g., a vector of 2 with length k in this study) as the prior for
nx, and flat priors (normal or uniform distribution with large variance) for the rest parameters. For the initial
values, we fit a stationary GEV distribution first using maximum likelihood to obtain an approximate value
of the location, scale and shape parameters for each station. These were then used as the starting point for
the intercept of location parameter p,, scale go and shape ¢ of each station in our clustering model. The
slope parameters i, and dependence parameter 4 is set to 0 initially. For the hyper-parameters, the mean
of u, is set to 0 initially. Four chains using different initial value of n, standard deviation of u; and shape
parameter &, and 30,000 simulations (burn-in the first half simulations) are run for all parameters. Conver-
gence is investigated by GR index [Gelman and Rubin, 1992], which should be smaller than 1.2 for each
parameter.

2.5. Spatial Dependence

The clustering model can increase the power of detection for weak signals by appropriately grouping sta-
tions together. However, if the spatial dependence is ignored, uncertainties will be under-estimated. This is
because the same information shared by the correlated stations will be used repeatedly, which falsely
reduces the estimation uncertainties.

In a hierarchical Bayesian model, a formal way to consider spatial dependence is to model the spatial data
with a multivariate distribution, where the dependence is explained by the covariance matrix [e.g., Chen
et al., 2014; Devineni et al., 2013]. This requires well-known characterization of the multivariate distribution,
such as multi-Normal distribution. However, if the multivariate form of a distribution is not well known (e.g.,
GEV distribution), Gaussian or Student copulas can be used to obtain the joint distribution, where the
dependence is considered through the covariance matrix of a multivariate Gaussian or Student distribution
[e.g., Renard, 2011; Sun et al., 2014]. Unfortunately, how to apply these two approaches to hierarchical
Bayesian clustering model is not immediately obvious, since the membership of each station is unknown
during the process. Thus, it is not clear how a multivariate distribution can be applied. Therefore, we seek to
model the spatial dependence through the streamflow network [Jensen, 1996; Pearl, 2014]. A specific
approach to this study is presented in section 3.2.2.

2.6. Number of Clusters

In a case study, the number of clusters K is generally unknown a priori. In the Bayesian framework, the iden-
tification of the number of clusters K has two possibilities. One is to consider K as a regression parameter
whose posterior distribution is estimated along with the other regression parameters. However, varying K in
the mixture model is usually computationally intensive and analytic expressions for computation in non-
Gaussian frameworks are lacking. The other is to fit models for varying choice of K and use some model
selection techniques to choose the best number K based on the goodness-of-fit and model complexity cri-
terion, such as Bayes factors [Kass and Raftery, 1995], Deviance Information Criterion (DIC) [Spiegelhalter
et al.,, 2002], the Watanable-Akaike Information Criterion (WAIC) [Watanabe, 2010]. Unfortunately, these cri-
terion have theoretical or practical limitations for mixture models [Gelman et al., 2014, chap. 22.4]. There are
also many other approaches for choosing the number of clusters based on different measures of homoge-
neity or performance under cross validation. The “silhouette coefficient” [Rousseeuw, 1987] method can be
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used to evaluate the tightness of clusters, and this was used in the applications here to guide the selection
of the number of clusters.

3. Case Study

3.1. Case Study Area, Flood Characteristics and Data

We study the trends in flood magnitude at 68 streamflow gauges distributed across Germany. These gauges
have different flood regimes [Beurton and Thieken, 2009]. Catchments in the western and central part of
Germany have floods in winter, and annual maximum flow occurs only rarely in other seasons. Gauges in
North and East Germany are also dominated by winter floods, however with a considerable share of spring
and summer floods. The southern region is dominated by summer floods generated by snowmelt events in
the catchments of the alpine Danube tributaries.

There are a number of flood trend studies for different catchments or subregions of Germany, however,
only two studies covered Germany completely. Petrow and Merz [2009] applied the Mann-Kendall test, con-
sidering field significance and auto-correlation, for different flood indicators for 145 gauges in the period
1951-2002. They found, depending on the flood indicator used, significant changes at the 10% significance
level for 10% to 45% of the gauges. Gauges in the Rhine and Danube catchments in west and south Ger-
many had a considerably higher fraction of changes compared to the Weser and Elbe catchments in North
and East Germany. Most of the significant changes were upward. The spatial and seasonal coherence of sig-
nificant changes suggested climate as driver of the detected trends. In a related study, Petrow et al. [2009]
clustered the gauges according to their flood seasonality and compared flood changes with changes in
flood-prone atmospheric circulation patterns. They found, in particular for flood-prone circulation patterns,
a tendency for higher persistence supporting the conclusion that flood changes in the second half of the
20" century in Germany may be dominated by climate effects.

Our study investigates a longer time period, i.e., the hydrological years 1934-2005 (1 November 1934 to 31
October 2005). Daily discharge time series were obtained from the water authorities of different federal
states of Germany. The data are part of the hydrometric observation network of the water authorities in Ger-
many, hence, the observations are regularly checked and can be assumed to be of good quality. For this
joint period, annual maximum daily stream flow from 68 catchments was derived. The catchments cover

abs(slope)

abs(tau) X 0.0050
* 015 X 0.0075
* 020 K 00100

0.0125
0.0150

Elevation(m)

025
0.30
Elevation(m)

2000
1500
1000
500
0

2000
1500
1000
500

| I

Figure 2. (a) Mann Kendall trend test with a significance level of 0.1 for annual maximum stream flow, where red (blue) triangles represent the stations with significant positive (nega-
tive) trend. The size of triangles shows the absolute value of the Kendall rank correlation coefficient. (b) No pooling model (equation (5)) for annual maximum stream flow, where red
(blue) triangles represent the stations where y; is significantly positive (negative), i.e., 90% credibility interval of y; is larger (smaller) than 0. The size of triangles shows the magnitude of

slope p;.
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almost the complete area of Germany (Figure 2). Seven gauges had missing values for one complete year,
and five gauges had data gaps of more than 1 year. These gaps were filled by correlating the daily time
series to the station with the highest correlation coefficient. The catchment area varies between 135 and
144,232 km” with a median of 4,151 km”.

The annual maximum streamflow data were preprocessed by standardizing the data by subtracting the
mean and dividing by the standard deviation of each series. An alternate model, that considers scaling of
the at-site mean and standard deviation in terms of the drainage area [e.g., Lima and Lall, 2010] could have
been pursued. However, since the focus of this paper was on demonstrating a clustering approach for trend
identification, a simpler model was pursued.

3.2. Models

Considering the large area and the variability of flood regimes in Germany, the homogeneity assumption
across the 68 stations may not hold, and thus exploring whether a single model or a clustered model
applies is of interest. We apply the hierarchical Bayesian clustering model (section 2.3), to see whether
this model can improve the precision of the estimates and obtain more robust information on the trends
in the extreme flows compared with the local analysis (using no pooling models). A step by step develop-
ment (from no pooling, to full pooling, and then to partial pooling) of the clustering model will be dem-
onstrated in this study.

Similar to the examples described in section 2.2, the same regression functions are consistently used
throughout the case study for the no pooling and clustering models (for both full pooling and
partial pooling models). A time-varying GEV distribution is applied to the extreme data by assuming
that the regression function on the location parameter has a temporal trend [e.g., Coles, 2001; Katz
et al., 2002]:

Y(t) ~ GEV(uo+ut, 60, €) (14)

where Y(t) is the observation of time t, py, 1;, 0o and ¢ are the regression parameters that need to be esti-
mated, in which yu; is the parameter that characterizes the temporal trend. Thus the no pooling model is
the same as presented in equation (5).

3.2.1. Clustering Model Ignoring Spatial Dependence

We first consider clustering models without considering spatial dependence across the gauges. Two full
pooling and two partial pooling models (Table 1) are considered for each cluster k. The third column of
Table 1 lists the regional parameters, which are used to cluster the stations. Each station belongs to cluster
k with probability 7.

Table 1. Regional Models for Clustering
Model Distribution and Regressions Parameters for Clustering

Full Pooling Model

M1 Y(s, t) ~ GEV (to(5)+p kt, 50 (s), £(s)) Mk

M2 Y(s,t) ~ GEV (po(s)+ py 4t, 00(s), &) Ha ks i

Partial Pooling Model Ignoring Spatial Dependence

M3 Level 1: Y(s,t) ~ GEV(uo(s)+p (S)t, ao(s), E(5)) Moy Oy
Level 2 : pi; (s) ~ N(H,W ‘Tuk)

M4 Level 1: Y(s,t) ~ GEV(uo(s)+p (S)t, ao(s), &) Py s Opnes Sk

Level 2 : pty(s) ~ N(,u,,k,auk)
Partial Pooling Model Considering Spatial Dependence

M5 o> Oy
Level 1: Y(s,t) ~ GEV | po(s)+ (s)t+Zﬂvy(sv,t),ao(s),g'(s)

vevs

Level 2 : py(s) ~ N(MWJM)
Mé By O > Ek
Level 1: Y(s,t) ~ GEV(%(s)w1 (s)r+2/1vy(sv,r),ao(s>,¢k> e

vevs

Level 2 : p(s) ~ N<,um,auk)
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In the full pooling model (Table 1: M1, M2), stations within the same cluster have the same temporal trend.
In the partial pooling model (Table 1: M3, M4), the trend of stations within each cluster is assumed to come
from a Gaussian distribution at the second level of the model. In M1 and M3, the clustering is based only on
the trend slope, while in M2 and M4 both the trend slope and the shape parameter of the distribution are
considered.

In both the full pooling and partial pooling model, we pool the information through the trend and/or shape
parameter. The motivation of considering these two parameters for clustering is that, for the standardized
extreme data used in the case study, the shape parameter determines the tail behavior of the extreme value
distribution, and is difficult to estimate. Pooling this parameter across sites, or spatially modeling it may
offer improvements in the uncertainty of extremes across all sites. Likewise modeling the trend as indexed to
space is useful. The models exemplified in this study are used to demonstrate the usefulness of the clustering
model. We therefore do not attempt to compare the other combinations of settings on different regression
parameters.

3.2.2. Clustering Model With Spatial Dependence

The spatial dependence is considered across the stream flow network. We assume that the dependence
between the stations along one river can be summarized through the most immediate upstream stations,
on any contributing tributaries. Thus we add an additional term to the location parameter of the GEV distri-
bution to represent the contribution of the immediate upstream stations. As an illustration, considering
model M3 as the original model, and station B and C being the immediate upstream stations of A, the level
1 model of M3 becomes:

At Station A:

(15)
Y(SA7 t) ~ GEV(#O(SA)+/11 (SA)t+)~B.Ay(SB7 t)+)vc‘,qy($c, t), ()'()(SA)7 f(SA))

where y(sg, t), y(sc, t) are the annual maximum flows for station B and C; and /g4 and /c 4 are the depend-
ence parameter characterizing the influence of station B and C on station A, which need to be estimated.
The complete partial pooling model is:

Level 1: Y(s,t) ~ GEV (,uo(s)+u1 (s)t+Zivﬁsy(Sv, t),00(s), 5(5)>

veVs

Level 2 : u;(s) ~ N(u#wauk)

where an additional term Zvev Avsy(sy,t) is added to the location parameter compared with M3. V; is the

collection of the immediate upstream stations of station s, y(s,,t) is the observation of an immediate
upstream station s,, and 4, is the corresponding dependence parameter. As a part of regression, 4, s is esti-
mated simultaneously with the other parameters. We denote equation (16) by M5, which is extended from
M3 to account for the spatial dependence. Similarly, the extension of M4 is denoted by M6. The detailed
equations are presented in Table 1.

In this structure, the slope parameter , (s) no longer represents the trend of the station s. Instead, it repre-
sents the net trend after subtracting the effect of immediate upstream stations. Consequently, the member-
ship of the stations identified in model M5 and M6 could be different from the membership identified in
model M3 and M4, and the trend at the examined station needs to be reconstructed by accounting both its
net trend and the trend of the immediate upstream stations along with their dependence parameters.

3.3. Results

3.3.1. Local Model

Figure 2 shows the results from the local analysis. For comparison the widely used Mann-Kendall test
has been applied as well (Figure 2a). It shows that for 26.5% (18 out of 68 stations) of all stations trends
are significant at the 0.1 significance level. Most of the significant trends are positive (13 stations). The
Rhine catchment shows the largest share of significant trends (50% stations in the catchment).
The overall result for the no-pooling model is similar (Figure 2b). However, more stations (39.7%; 27 out of
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Figure 3. Scatterplot of the slope (trend) parameter y«; and shape parameter ¢ in the local
analysis. Red triangles and blue triangles are stations with significant positive and nega-
tive u; values in Figure 2b, respectively.

68), particularly in the South and
West, are found to have a signif-
icant trend compared to the
Mann-Kendall test.

The scatterplot between the
estimated slope u; and shape &
(Figure 3) shows that most of
the stations with near zero trend
have a positive shape parameter
(grey dots), while most of the
stations with large positive
trend (solid red triangles) have
negative shape values. This indi-
cates that considering the shape
parameter may help to better
classify the trend.

3.3.2. Full Pooling Clustering
Models

Table 2 summarizes the results
for the full pooling models with
K equal to 2, 3 and 4. In general,
the full pooling models identify
more clusters than the partial
pooling  models.  This s
expected because the partial

pooling models allow more variation within each cluster in the trend parameter y;, and accounting for the
uncertainty of the trend at each station, a fewer number of classes are sufficient in the partial pooling

model.

For the full pooling model, two clusters are identified from M1. One cluster contains the stations with nega-
tive trend, and the other contains the remaining stations, which is a mixture of no trend and positive trend
stations. When the shape parameter is also considered for clustering (M2), three clusters are identified. The
new cluster contains the stations with large positive trend. This corresponds to the finding in Figure 3 that
stations with large trend slope tend to have a negative shape parameter. This highlights the utility of con-

sidering the shape parameter for clustering in this case study.

Table 2. Summary of the Clustering Results for Models in Table 1°

K=2 K=4
Full Pooling Model
M1  Two clusters are detected: Same as K=2 Same as K=3
1. Negative trend (u;)
2. The rests (no trend and positive trend are mixed)
M2  Two clusters are detected: Three clusters are detected: Same as K=3
1. Large positive trend (¢, =0.01) with negative shape (¢) 1. Negative trend with near zero shape
2. Near zero trend with positive shape (&) 2. Large positive trend (1;=0.01) with negative shape
3. Small trend (u;=0.003) with positive shape
Partial Pooling Model Ignoring Spatial Dependence
M3 All stations are in the same cluster. Same as K=2. Same as K=3
M4 Two clusters are detected: Same as K=2. Same as K=3
1. Small trend (1, =0.003) with positive shape
2. Small trend (i, =0.005) with negative shape
Partial Pooling Model Considering Spatial Dependence
M5 All stations are in the same cluster. Same as K=2. /
M6  Two clusters are detected: Same as K=2 /

1. Small net trend (x, =0.002) with negative shape
2. Small net trend (u, =0.003) with positive shape

“The values of the trend in the parentheses is the median of posterior pdf of 1  for the full pooling models and 1, for the partial

pooling models.
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Figure 4. Posterior distribution of 7, 1; and & for the full pooling model M2 (K=3). The two “hinges” of the box are the first and third quartile. The lower and upper extremes
are *£1.58 IQR/+/sample size as the classical definition of the box.

Figure 4 shows the posterior distribution of 7, u;, and &, for M2 (K=3). Based on the median posterior
probabilities, we note that about 10%, 30% and 60% of the stations belong to clusters 1, 2 and 3 respec-
tively. The posterior distributions of u;, and & are clearly separated across the clusters, with largest uncer-
tainty for cluster 1, as expected given the smallest set of stations that belong to it. According to the
posterior distribution of all regression parameters, the posterior probability of station s belonging to cluster
k can be calculated:

Tk fHk (S)
K
> mufi, (s)
k=1

Figure 5a illustrates the membership of each station according to the largest posterior probability for each
station belonging to cluster k for model M2 (K=3) using the modal parameters (defined as the parameter
set providing the largest posterior distribution in the MCMC iterations). According to the estimation results
(Table 2 (M2, K=3)), blue dots, red dots and grey dots in Figure 5a represent the cluster with negative
trends, large positive trends and weak positive trends, respectively. The cluster with large positive trends
contains most of the stations along the Danube River and in the Rhine catchment. To compare this result

Prob(s € cluster k)= (17)

(a) o
15-
0
® 3 g 1
Elevation(m) 8 .§
2000
1500
1000
B 5
anubeRiver 0- II III hll Ihll“
! -0.01 0.00 0.01
Trend

Figure 5. (a) Clusters for the full pooling model M2 (K=3) determined by the largest posterior belonging probability for each station. (b)
Histogram of 1i; estimated in the local analysis for each cluster of M2 (K=3).
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2). (b) Boxplot of the trend estimated in M6

2), which is the temporal trend reconstructed through the flow network, rather than the yx; estimated in M6 (K
plot of trend parameter yu; of each station for no pooling model. Red boxes represent the stations with significant positive trend,

while the blue boxes are for the stations with significant negative trend. The solid and hollow dots in Figures 6a and 6b represent

the cluster of each station.

Figure 6. (a) Boxplot plot of trend parameter u; of each station estimated in M4 (K

(K:

2). (c) Boxplot

with the local analysis, we plot the histogram (Figure 5b) of the temporal trend u; estimated in the local
model (equation (5)) against the membership of each station illustrated in Figure 5a. The histograms in

blue, black and red show the trends with negative values, near zero values and large positive values,
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Figure 7. Correlation between station Achleiten (red triangle) and the other stations. The
squares show the stations whose empirical correlation with station Achleiten on the origi-
nal data is larger than 0.4. Grey dots show the same, but on the residual of M4. The
pointed station is the only station whose empirical correlation with station Achleiten on
the residual of M6 is larger than 0.4.

respectively, which is consistent
with the result of model M2
(K=3). Thus model M2 (K=3)
provides a good classification
when clustering on the temporal
trend and the shape parameter.

The main drawback of the full
pooling model is that it does not
provide a site specific value for
the trend, because stations
within each cluster share the
same trend. To determine
whether trend exists at a site,
one needs to verify whether the
90% coverage of the posterior
distribution of the estimated
trend does not across zero. The
partial pooling model presented
next explores this issue.

3.3.3. Partial Pooling Models

In the partial pooling models, all
stations are merged into a single
cluster when only the slope is
used for clustering (M3 and M5),
while two clusters are identified
when using both slope and
shape for clustering (M4 and
M6). The reduction in the num-
ber of clusters is expected since
we now allow heterogeneity of
response within each cluster. Fig-
ure 6a shows the posterior distri-
bution of the trend p; for each

station for M4, which ignores the spatial dependence. It indicates that most stations with large positive and
negative trends are in one cluster and the remaining stations are in the other cluster (with some exceptions
like station 36 and 53). This classification is consistent with that found in the full pooling model, while allow-

ing variation of trends across stations in a cluster.

As discussed in section 3.2.2, when spatial dependence exists and is ignored, estimation uncertainties will
be under-estimated due to the strong correlation between stations. As a result, for the stations with small
trends, the under-estimation of uncertainty will cause these trends to be falsely considered significant. To
justify the approach for spatial dependence described in section 3.2.2, we investigate the residuals of differ-
ent models. If the correlation between residuals is low, spatial dependence is appropriately described by
the covariates in the regression. We firstly verify the correlation between the stations on our original data

Table 3. Summary of Model Performance

Partial Pooling Model Partial Pooling Model
Ignoring Spatial Considering Spatial
Full Pooling Model Dependence Dependence
M1 M2 M3 M4 M5 M6
Identify clusters il v N Vv
Detect at-site trends J V J v
Reduce uncertainty J J J N v v
Model Spatial dependence J J
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Figure 8. The reconstructed temporal trend from the partial pooling model including
inter-site dependence M6 (K=2). Red triangles are the stations with significant positive
trend, while the blue triangles are for stations with significant negative trend. Grey dots
are the stations without significant trend.

set. If strong correlation exists, it
is necessary to consider spatial
dependence. Then we verify the
correlation between the resid-
uals of M4, which is data remov-
ing the temporal trend
estimated in M4. In the end,
we check the correlation of
residuals in M6. Figure 7 shows
the correlation between the sta-
tion Achleiten and other sta-
tions. The squares show the
stations whose empirical corre-
lation with station Achleiten on
original data is larger than 0.4,
while grey dots show the same
but on the residuals of M4. It is
found that more than 20 sta-
tions have a large correlation
with station Achleiten on both
original data set and the resid-
uals of M4. It indicates that it is
necessary to consider spatial
dependence, since the statisti-
cally significant correlation can-

not be explained by temporal
trends. However, there is only one station that has a larger correlation on the residual of Mé. This indicates
that the spatial dependence of the stations can be mostly explained through the immediate upstream sta-
tions, which suggests that M6 is an appropriate model for considering the spatial dependence.

Figure 6b shows the posterior distribution of the reconstructed trend from M6. The uncertainty of u; is
larger in Figure 6b than in Figure 6a. This confirms our argument that ignoring spatial dependence leads
the under-estimation of estimation uncertainties. The membership shown in Figure 6a is based on the flow
observed at each station, while the membership in Figure 6b is based on the flow subtracting the contribu-
tion of immediate upstream. This is the why the membership identified is different in Figures 6a and 6b.
Compared with the local analysis (Figure 6¢), the estimation uncertainty in the clustering model (Figure 6b)
is notably reduced, leading to a better identification of the trend.

Table 3 summarizes the performance of the six models introduced in Table 1. Among the six models, M6
covering all the four points on the list, is therefore more suitable than the other models for this case study.
In fact, the order of introducing M1 to M6 shows an exploratory demonstration of developing specific clus-
tering models for a specific case study.

As a result, from the partial pooling model with spatial dependence (M6, Figure 8), 45 out of 68 (66.2%) sta-
tions detect a significant trend, which is many more than that detected using a no-pooling model. Large,
consistent and significant temporal trends are found for the stations along the Danube River, but the trend
on upstream branches is generally small or not significant. The Rhine and its tributaries Neckar and Main
also show a high fraction of stations with significant positive trends. There are also some small, however
significant positive trends at the stations in the North, i.e., at the rivers Elbe, Weser and Ems.

4, Discussion and Conclusions

We presented a regional hierarchical Bayesian clustering model to study the temporal trend annual maxi-
mum daily stream flow across Germany. Under this model, a variety of possible modeling structures, fre-
quency distributions, and regression functions can be explored, and compared in terms of the maximum
posterior criteria as well as the resulting solutions and what they highlight. Unlike some methods [e.g., Pujo!
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et al, 2007] where stations are clustered first using some criterion, and then the analysis is done for each
cluster, the hierarchical Bayesian model presented allows the clustering and the parameter estimation to
proceed simultaneously. Compared with the local analysis, the clustering model reduced the estimation
uncertainty by transferring information across gauges with similar characteristics.

A GEV distribution with a temporal linear regression function on the location parameter was applied to the
example data set for Germany, on standardized annual maximum flows. The trend and/or the shape param-
eter were used for clustering. It was found that including the shape parameter as a criteria for clustering led
to a better identification of clusters. Both the full pooling and partial pooling models provided generally
consistent clusters and identified the significant trends in the southern and western stations. The partial
pooling model with the consideration of spatial dependence is the most appropriate model among the dis-
cussed models. According to this model, significant trends were detected on the gauges alone the Danube
River and Rhine River, and small to moderate trends for gauges in Central and Northern Germany.

The hierarchical clustering model developed in this paper is a flexible way to incorporate different components
into clustering. These components are not limited to the climate effect, temporal trend or shape. Other compo-
nents like the mean, standard deviation or seasonality can also be employed for clustering. Aswe demon-
strated in this paper, adding an appropriate component will strength the identification of clusters. However, if
too many components are used for clustering, it is challenging to obtain convergence of the MCMC in a high
dimensional space. Thus an exploratory analysis is necessary to point to the components which should be
used for clustering for regional frequency analysis models in nonhomogeneous regions. An extension of the
model can include using inter-site dependence for clustering [Bernard et al., 2013].

In this example application, we demonstrated that the partial pooling model with Markovian spatial
dependence on the river network has the best results. In general, when comparing no pooling, full pooling
and partial pooling model, the no pooling (local) model has the largest uncertainty due to the low signal-
to-noise ratio in a single site data. Both full pooling and partial pooling models are regional approaches
which strengthen the signal-to-noise ratio by grouping the stations in the space. When choosing between
full pooling and partial pooling, in a specific case the issue is whether trend or climate effects are believed
to be identical or to be random with a common mean and variance over the domain. The former provides
only regional estimation, while the latter retain also site-specific estimation. In both regional models, consid-
ering spatial dependence can avoid under-estimate uncertainties.

A few comments about possible extensions and applications of the model are presented in closing. In this
paper, we used the immediate upstream stations to consider inter-site dependence in the regional models.
However, annual maximum stream flow of some gauges is highly correlated even though these gauges are
not nested, i.e., they belong to different watersheds. This indicates that large-scale climate variations may
play an important role in the variation of maximum stream flow across Germany. Further improvement on
modeling spatial dependence can focus on jointly considering the distribution of spatial data [e.g., Devineni
et al.,, 2013; Sun et al., 2014], which will be able to account the dependence is nonnested stations. This is not
evident in the current model because the membership of stations are unknown prior to the estimation. In
subsequent work, the clustering model developed in this paper will be used to study the consistency of cli-
mate effects on extreme stream flow over different regions. The clustering model described in this paper
can also be used to predict the new values on the gauged stations following by the mathematical formula
[Gelman et al., 2014, p. 7] and practical guidance [Renard, 2011] in Bayesian framework.
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