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What Makes People Respond to “Did You

Feel It?”?

by Sum Mak and Danijel Schorlemmer

ABSTRACT

The data compilation of “Did You Feel It?” (DYFI) and other
similar Internet-based macroseismic intensity databases relies
on the voluntary responses from Internet users. A region of
no responses could mean no perceivable ground shakings or
no volunteers submitting responses. We examined the earth-
quake and socioeconomic conditions that affected the number
of DYFI responses received for a region. A resulting statistical
model described the expected number of DYFI responses re-
ceived for an earthquake. We also showed that residents in Cal-
ifornia and the central and eastern United States followed
similar behavior in responding to DYFI, despite the vast differ-
ence in seismicity for the two regions. This study allows for a
quantitative definition of completeness for DYFI data. The pre-
sented modeling technique is applicable to other Internet-
based macroseismic intensity databases.

INTRODUCTION

The earthquake ground-motion record is a scarce resource to
seismologists. Although the number of seismometer installa-
tions solely determines the availability of instrumental records,
the availability of macroseismic intensity (Griinthal, 2011) re-
cords is essentially anthropogenic. Intensity records are self-se-
lective, meaning that an intensity value itself (i.c., the observable
effects of the earthquake) may affect whether the intensity re-
port exists. For historical earthquakes, regions that were sparsely
populated and/or suffered relatively minor damage might be less
documented in the literature, rendering seismologists with no
basis to produce an intensity value. Damage investigations for
recent carthquakes have been more systematically performed
by government agencies and other parties, improving the com-
pleteness of records for many events (see, e.g., Dewey ez al.,
2002, p. 6, for a description of damage investigation procedures
for a modern earthquake).

For modern and future earthquakes, except for those having
induced significant damage to qualify case-specific investigations,
the major source of intensity reports is likely online question-
naires passively received from Internet users (e.g., the “Did You
Feel It?” system, hereafter referred to as DYFL, Wald ez al., 1999,
2011; and the “Hai Sentito il Terremoto?” system, Sbarra ez 4/,
2010). The availability of Internet-based macroseismic intensity
data (hereafter referred to as “ilntensity”) is likely affected by the
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self-selection bias because responses are mostly voluntary. A per-
son may be less motivated to submit an online questionnaire if
he or she has not been sufficiently “shaken.” The natural resule
for this bias is that, compared with a stronger shaking, a weaker
shaking (assuming it was felt) is less likely to be reported.

Another obvious factor that affects the availability of iln-
tensity is the population size of the affected region. Wald ez 4/.
(2011, p. 694) attributed the population density as a key factor
to the quantity (and quality) of DYFI data for an earthquake.
Naturally, fewer reports are expected for a ground motion felt
by only a few individuals, compared with the same ground mo-
tion but felt by a crowed.

To the first order, the population size and the ground-shak-
inglevel jointly determine the availability of ilntensity. Boatwright
and Phillips (2013) estimated the average proportion of the pop-
ulation of a postal ZIP code region that responded to DYFI for
various intensity levels. A quantitative estimation of the availabil-
ity of ilntensity can be used to infer the completeness of intensity
data. Data completeness is often influential in how the data
should be used. For example, Gasperini (2001), Gémez Capera
(2006), and Pasolini e 4/ (2008) discarded low-intensity data
when studying the attenuation of intensity with distance because
the workers considered them potentially less complete. Gémez
Capera ez al. (2010) did the same when evaluating the seismic
hazard of Italy using intensity data. On the other hand, Albarello
and D’Amico (2004) conducted a statistical analysis on data of
both low-intensity and high-intensity values and concluded that
they have similar skewness; they therefore considered that low-
intensity data were not incomplete. It is, of course, valid to discard
data of questionable quality. It is, however, more desirable if the
completeness of quality data can be quantitatively assessed.

The estimation of data availability of ilntensity using only
the population size and the ground-shaking level assumes that
every potential respondent behaves identically and every earth-
quake is equally perceived. This could be an oversimplification.
The aim of the present study is to quantitatively investigate factors
affecting the availability of DYFI data. An expression of the com-
pleteness of quality ilntensity is a natural product of the study.

MODELING THE NUMBER OF RESPONSES

The macroseismic intensity of an earthquake is often graphi-
cally displayed as a spatial distribution of intensity data points
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(IDPs; Musson and Cecié, 2012, section 12.1). For DYFI in the
United States, a community decimal intensity (CDI) is com-
puted for each postal ZIP code region using all responses (i.
e, online questionnaires) received from that ZIP region. An
IDP for DYFI, therefore, is a ZIP-based intensity value calculated
using all responses received from that ZIP region. The availabil-
ity of DYFI data can be represented by the number of question-
naires (N ) received for a ZIP region (ie., for each IDP). Such a
number is presumably related to the ground-shaking level (rep-
resented by the intensity value) and the population of the ZIP
region, as well as other factors describing the perceptibility of the
carthquake and the willingness of people to submit an online
questionnaire. Figure 1 shows the medians of N binned by
CDI and population size. They confirm that /Ny monotonically
increases with both CDI and population size. Such a simple
graphical inspection cannot be applied if more factors, in addi-
tion to CDI and population size, are considered. A regression
analysis is a more suitable tool. In this regression analysis, the
response variable (regressand) is N, and the factors affecting
the availability of DYFI data, including CDI and population size,
arc the explanatory variables.

N, being a nonnegative integer, can be considered as a kind
of count data (in this case, the count of DYFI responses). A re-
gression analysis on count data is often treated using a general-
ized linear model (GLM; e.g., Zuur ez al., 2009, chapter 9). A
GLM regression is similar to an ordinary least-squares regression
(ie., the simplest form of least-squares curve fitting) in many
aspects, except that the response variable does not follow a Gaus-
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sian distribution. IV q could potentially be zero, meaning that the
ground motion has not been reported to DYFL The unreported,
and therefore unknown, intensity value is a kind of missing data.
Onmitting the missing data will induce a bias to the regression.

One way to deal with the missing data is to separately es-
timate the unreported intensity values. One possible estimation
is through interpolating an isoseismal map. It is often perceived
that the spatial distribution of intensity is smooth so that in-
terpolation should be straightforward. This is not the case,
however, in the context of the present study, because regions
of missing data often lie at the perimeter or beyond, instead of
within, regions where the intensity data are available. There-
fore, extrapolation, of which the result is often questionable, is
more often needed than interpolation. Another possible esti-
mation is by inference from instrumental records, when avail-
able, through a ground motion-to—intensity conversion
equation (e.g., Worden ¢f al, 2012). Although inferring an
carthquake parameter (e.g., estimating the magnitude of a his-
torical earthquake) or ground motion (e.g., the use of Shake-
Map in the central and eastern United States [CEUS]) from
macroseismic intensity has been a well-adopted practice and
sometimes is the only option, it is a general rule that conversion
between intensity measures should be avoided when possible.

The other way to deal with the missing data is to allow
them to be missing while correcting the regression to avoid the
bias that would otherwise be induced. The zero-truncated
model (e.g., Zuur ez al., 2009, section 11.2) has been developed
for this purpose. The essence for a zero-truncated model is to
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A Figure 1. Median values (grayscale) of the number of responses (N;) of ZIP-based intensity data points (IDPs) for (a) California and
(b) central and eastern United States (CEUS), binned by community decimal intensity (CDI) and population size. The boundaries of the bins
are shown by the axis labels. Bins with too few data were combined, so the bin widths are not identical. Population is binned in logarithmic
scale. The number in each box indicates the number of IDPs in each bin. The discrete grayscale is selected such that roughly the same
number of bins fall into each scale. The data selection process is described in the Influential Factors to the Number of Responses section.
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Table 1
Data Winnowing
Location Filter Steps Number of IDPs® Number of Earthquakes Number of ZIPs
California Total (2000-2014) 140,840 6578 2164
R <200 km 124,048 6293 1747
CDI > 1 114,300 6221 1747
M >4 43,580 527 1695
Population > 500 42,871 525 1577
Central and Eastern United States Total (2000-2014) 86,189 2032 18227
R <500 km 74,549 2017 16854
CDI > 1 70,575 2013 16657
M >4 37,546 89 15700
Population > 500 36,306 89 14905
*ZIP-based intensity data points (IDPs).

convert the probability distribution of a nonnegative variable
into that of a strictly positive one. In a GLM regression on non-
negative count data, the distribution of the response variable

Ny is assumed to follow a probability distribution function

(PDE), f (N | N 2 0). For strictly positive count data, the PDF
will become

_S(NIN, 2 0)
SN > 0) D

This normalization of the PDF is similar to the conversion
from a Gutenberg—Richter relation to a truncated Guten-
berg-Richter relation (e.g, McGuire, 2004, section 3.3.1).

The remaining works for the modeling are identical to the
conventional GLM regression analysis: (1) choose a link func-
tion, (2) choose a probability distribution model, (3) choose
the explanatory variables, (4) determine the coefficients (usu-
ally numerically) by maximizing the likelihood, and (5) justify
the choices made in steps 1-3 by model diagnostics.

INFLUENTIAL FACTORS TO THE NUMBER OF
RESPONSES

(1)

The present study requires three kinds of information, namely
the DYFI IDPs, physical parameters of the earthquakes that
might affect their perceptibility, and socioeconomic status of
the respondents that might affect their willingness to submit
an online questionnaire. IDPs and the associated earthquake
parameters came from the DYFI system. ZIP-based IDPs from
California, which comprise the majority of the DYFI dataset
due to the high seismicity in California, were used as the pri-
mary dataset in the present study. It is interesting to see if peo-
ple living in a more seismically silent part of the United States
behave differently from Californians. Therefore, IDPs from the
CEUS (defined as east to 105° W) were also analyzed. The data
were collected from the beginning of the establishment of
DYFI (i.e., the year 2000) to the end of 2014.

ZIP-based socioeconomic information came from the
summary file 1 of the US. decennial census 2010 and from the
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table DP02 of the American Community Survey 2012 (see
Data and Resources). The decennial census is a comprehensive
survey that sampled almost the entire United States popula-
tion, directly surveying basic demographics like the population
size, age, and race distribution. The American Community
Survey estimates more detailed socioeconomics of the popula-
tion by random sampling, focusing on populous regions only.

It is practically impossible to completely identify all factors
that may affect the DYFI response rate, nor to fully understand
the effective mechanism of any particular factor. In this study,
we identified and used earthquake and socioeconomic param-
cters available from the DYFI system and the census database
that could conceivably bear some relation to the human reac-
tion to earthquakes as explanatory variables in the regression.
The selected explanatory variables and their potential mecha-
nisms are explained below.

Earthquake Parameters
Community Decimal Intensity

CDI is explained in the Modeling the Number of Responses
section. The CDI is semicontinuous with an increment of 0.1,
but values between 1.0 and 2.0 are not defined. This large gap
may violate the linearity assumption of the GLM analysis (see
the Modeling Result and Diagnostics section). Therefore, IDPs
with CDI of 1.0 were excluded from the analysis.

Magnitude

An earthquake with larger magnitude may be more visible than
one with smaller magnitude (e.g., attracting much media cover-
age) and so may be more likely to induce responses. Earth-
quakes with magnitude less than 4 were excluded from the
analysis, because the human response to microseismicity is un-
interesting for most real-world applications. Discarding small
carthquakes significantly reduced the amount of data (Table 1)
and so relieved much of the computational effort.

Epicentral Distance

People tend to be concerned with things, such as earthquakes,
that occur nearby. This is equivalent to the principle of prox-
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imity in journalism (e.g., International Press Institute, 1953,
pp- 67, 73; Boyd, 2001, p. 19). Far-field IDPs were excluded
from the analysis because the linearity assumption of the GLM
analysis (see the Modeling Result and Diagnostics section) may
not hold for a wide range of distances. Residents in the far field
are unlikely to feel the earthquake, and so their motivation to
respond to DYFI may not be correctly described by the explana-
tory variables considered here. IDPs beyond 200 and 500 km
from the epicenter, respectively, for California and the CEUS
were excluded from the analysis. These thresholds were selected
to discard about 10% of IDPs (Table 1).

Focal Depth

A deeper earthquake is often felt in a wider region, increasing
the number of people who respond to DYFL. An example is the
widely felt M7y 5.1 earthquake that occurred near the city of
Parma, Italy, on 23 December 2008, with a depth of 26.7 km
(Sbarra ez al., 2010, p. 574).

Occurrence Time

The occurrence time of an earthquake may determine people’s
motion status during the ground shaking, thereby affecting
their perception. On the other hand, people who are sleeping
(at night) or busy (at day) might be less willing to fill in an on-
line questionnaire. We categorized the earthquake occurrence
time as “day” (07:00-15:00), “evening” (15:00-23:00), and
“night” (23:00-07:00).

Date

The DYFI system was established at the end of the year 1999.
The visibility of the system might increase with time due to, for
example, the diligence of the US. Geological Survey (USGS)
public affairs officers. In addition, the Internet access rate likely
increased with time. We counted the date as the number of
days from 1 January 2000.

Socioeconomic Status
Population Size

Socioeconomic status is explained in the Modeling the Num-
ber of Responses section. All ZIP-based socioeconomic infor-
mation considered in the present study describes the status of
residents. They are meaningful to the regression only if respon-
dents are residents of that ZIP region. This assumption might
be less correct when there are few residents in the ZIP region.
Therefore, ZIP regions with less than 500 residents were ex-
cluded from the analysis.

Percentage of Hispanic Population

California has a large Hispanic population. Some ZIP regions
are primarily (close to 100%) Hispanic. Ethnic features such as
language skills, social circle, interest to public affairs, etc., may
affect people’s tendency to respond to DYFL The census data-
base also contains the information of other minor ethnic groups,
but, because they often consist of very small proportions of the
population, they were not included in the analysis.

122 Seismological Research Letters Volume 87, Number 1

Percentage of Educated Population

Those individuals who received higher education (Bachelor’s
degree or above) might be more connected to the society
and so more likely to have heard about the DYFI system.

Percentage of Poor-English-Speaking Population

The DYFI webpage is given in English. People not fluent in
English (census definition: speaking English less than “very
well”) may be reluctant to use the webpage and so are less likely
to become respondents.

Percentage of Buildings with Complex Structure

The architecture of a building may affect the occupant’s per-
ception to ground shakings. A building with more than 10
units (e.g,, apartments) is defined as complex. Complex build-
ings are likely taller, and occupants at higher stories might feel
earthquake ground motions more clearly.

Percentage of Population Living below the Poverty Line; Percent-
age of Foreign-Born Population

As opposite to the educated population, poor people and im-
migrants might be less connected to the society and so less
likely to have heard about the DYFI system.

Percentage of Veteran Population
Those who have served in the military might be more dutiful in
reporting an earthquake to the authority.

Average Household Size

It may be uncommon for multiple people living in the same
household to submit separate DYFI questionnaires. For the same
population size, a smaller average houschold size means a larger
number of households, and so a larger number of responses may
be expected. A very small number of ZIP regions in the dataset
have nonzero population but zero houscholds because all resi-
dents are living in group quarters (e.g. student dormitory).
These ZIP regions were excluded from the analysis.

Median Population Age

DYFI relies on the participation of Internet users. It is well
known that older people are less-frequent users of the Internet.
Fewer responses may be expected from regions with a high pro-
portion of senior citizens.

The amount of selected data after each step of data win-
nowing is given in Table 1. The distribution of each explanatory
variable is given in Figure 2. Most variables do not distribute
uniformly but have a long tail, especially for the CEUS dataset.
This is not desirable for regression analysis but is common for
real-world data. Some variables are intercorrelated (e.g., intensity,
magnitude, and distance; foreign-born and poor-English speak-
ing). The correlations did not cause numerical difficulties in the
present study and so were tolerated.

We have no intention to claim that the above-mentioned
factors are complete in determining the number of responses to
DYFL For example, Wald ez 4l (2011, p. 694) attributed the
prevalence of Internet access as a factor that affects the number
of DYFI responses. Although this appears logical, we were not
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A Figure 2. Distribution of explanatory variables. The plot for epicentral distance uses different abscissae for the two lines (bottom,
California; top, CEUS). The plots are arranged in the same order as the explanatory variables given in Table 2.

able to locate an authoritative data source of the spatial and
temporal distribution of Internet access rate and so did not
included this factor in the present study.

MODELING RESULT AND DIAGNOSTICS

We used a logarithmic link function to relate the selected ex-
planatory variables to the number of responses received for a
ZIP region:

Seismological Research Letters Volume 87, Number 1

lnﬁ\q =po+ Zﬁi(xi - 55\;): (2)

in which N, is the expected number of DYFI responses
received for a ZIP region, x; are the explanatory variables de-
scribed in the Influential Factors to the Number of Responses
section, x; is the mean value of the corresponding explanatory
variable for the California dataset, and 3, are the coefficients to
be determined. The means were subtracted from the covariates
in order to bestow on fitted constant (i.e., ffy) the physical
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meaning as the expected logarithmic number of responses dur-
ing the day time, given that all other conditions are the Cal-
ifornia average. The mean-removal process is implemented for
continuous explanatory variables (i.e., covariates) only. Cat-
egorical explanatory variables (i.c., factors; the only factor used
in the current study is occurrence time) have no mean values.
There is no physical reason why the expected number of re-
sponses has to be related to the explanatory variables linearly.
The linearity was assumed to capture the first-order effect of
the factors while keeping the model-fitting process simple.

For GLM regression on count data, the two most popular
probability distributions (i.c., /(-) in equation 1) that the re-
sponse variable is assumed to follow are the Poisson and the
negative binomial distributions; the former is a special case
of the latter with a shape parameter of unity. We used the neg-
ative binomial model. The result justified this choice, because
the shape parameter obtained is significantly different from
unity. With the zero-truncation adjustment explained in equa-
tion (1), the likelihood function for a negative binomial model
is (Zuur et al., 2009, their equation 11.7):

;o N{ I[Ny + o) ( c )"
R, L@V + 1) JTZ;=+0'

7

(m ) TR e

in which I'(-) is the gamma function, ¢ is the shape parameter
of the model, V is the total number of IDPs, and N; and N,

are the observed and expected number of responses, respec-
tively, for the 7th IDP; the latter is described by equation (2).
A set of coefficients was determined by numerically maximiz-
ing the log likelihood (Table 2). Population size and distance
were logarithmically transformed to enhance numerical stabil-
ity. A likelihood-ratio test (e.g., DeGroot and Schervish, 2012,
pp- 543-555) shows that all the explanatory variables are sig-
nificant (Table 3), and so the full model (i.e., the model includ-
ing all explanatory variables) is preferred.

Model diagnostics using residual plots are given in Fig-
ures 3—4. In general, a sufficient regression model should pro-
duce pattern-free residual plots. For residual diagnostics of
GLM regression, there are additional cautions compared with
that of ordinary least-squares (OLS) regression. First, the Pear-
son residual (residual divided by standard deviation), instead of
the residual, was used because of the heteroskedastic nature of
GLM regression. Second, the definition of a “pattern-free”
residual plot is sometimes unclear due to the nonsymmetry
of the negative binomial distribution, especially under unbal-
anced data. A set of synthetic residual plots is therefore given in
Figure 5 as an example of residual plots from a good-fit model.
The synthetic residuals were generated using synthetic N val-
ues that were randomly generated following a negative bino-
mial model with coefficients given in Table 2. Patterns in
Figures 3—4 that are not seen in Figure 5 are signals of potential
model insufficiency.

The residuals show no unusual pattern for most variables
except for intensity and distance, in which the residuals for
large intensity and small distance values are concentrated (com-
pared with those in Fig. 5). This implies that a linear relation

Table 2

Fitted Coefficients to be Used in Equation (2)
Fitted Coefficient Explanatory Variable (x;) Acronym California CEUS X;
Bo (Constant) 2.046 2.075
P Population size log. (pop) 0.6891 0.7830 10.01
P Macroseismic intensity CDI 0.8051 0.5381 2628
Pa Magnitude mag 1.490 1.267 4579
P Distance loge R -1.229 =117 4337
P Focal depth Depth 0.03960 0.04183 9.506
Be Occurrence time (evening) Time 0.2647 0.7850
B Occurrence time (night) Time —-0.1943 —0.1905
B Date 0.0002307 0.0003055 2972
s Percentage of Hispanic population PctHisp —0.01281 —0.01195 31.69
P Percentage of educated population PctHighEd 0.01312 0.01880 32.86
B Percentage of poor-English-speaking population PctPoorEng 0.0113 0.02048 16.00
P Percentage of complex building PctHU10unit 0.002198 0.004993 15.78
P Percentage of poverty population PctPoverty —0.01438 —0.004600 10.51
b3 Percentage of foreign-born population PctForeignBorn  —0.01047 —0.02102 23.63
Pus Percentage of veteran population PctVeteran —0.007800 0.01935 8.196
Pis Average household size AvgHHsize —-0.5107 —0.7196 2.808
Ps Median age MedianAge —0.02622 —0.02564 31.76
c (Shape parameter) 0.5296 0.5252
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Table 3
Likelihood Ratio Test
California CEUS
Explanatory Variable d.d. P d.d. P
log(pop) 5930 <1x10™* 8437 <1x107*
CDI 2334 <1x107* 1276 <1x10™*
Mag 5799 <1x107* 4207 <1x10~*
loge R 6295 <1x10™* 5375 <1x10™*
Depth 838.8 <1x10™* 430.0 <1x10™*
Time 646.9 <1x107* 1695 <1x107*
Date 1820 <1x107* 385.9 <1x10™*
PctHisp 315.6 <1x107* 62.11 <1x107*
PctHighEd 357.5 <1x10™* 1214 <1x10™*
PctPoorEng 25.58 <1x107* 21.69 <1x10™*
PctHU10unit 10.56 1.154 x 1073 21.95 <1x10™*
PctPoverty 131.1 <1x107* 13.62 2.24 x 1074
PctForeignBorn 34.71 2.41x 1073 57.05 <1x10™*
PctVeteran 10.57 1.149 x 1073 69.95 <1x10™*
AvgHHsize 332.0 <1x10™* 295.4 <1x10™*
MedianAge 263.7 <1x10™* 187.7 <1x10™*
A small p value means the full model is significantly better. See the first paragraph of the Discussion section for the meaning of
deviance difference (d.d.).

may not be sufficient for the two variables; there may be a sat-
uration effect at large intensity and small distance. The relation
between intensity and number of responses could be compli-
cated, including at least two effects: (1) the proportion of peo-
ple feeling the ground shaking increases with intensity, and
(2) the motivation of people who felt the ground shaking to
report it may increase if the shaking is more severe. The first
effect, and likely also the second, will saturate at high intensity
levels. On the other hand, Wald ¢z 4/. (2011, p. 700) anticipated
that when the ground motion is strong enough to induce wide-
spread damage, the number of DYFI responses will be reduced
due to the interruption of Internet service and power. This in
fact happened during the 2009 L’Aquila (Italy) carthquake.
Sbarra ez al. (2010, p. 576) reported that no online question-
naires were received from the epicenter region in the first few
days after the carthquake. However, they also reported that,
after a few days, a large number of responses were received from
the epicenter region, primarily submitted by people who suf-
fered relatively minor damage. Factors specifically affecting
large-intensity values may make the linearity assumption of
the regression analysis invalid. In the present study, the number
of IDPs with high intensity and short distance is very small (less
than 5% of IDPs have CDI > 4.4), and so the insufficient linear
functional form might not seriously affect the regression. Be-
cause the purpose of the present study is to capture the first-
order effect, further and more complicated modeling (e.g., us-
ing the generalized addictive model) was not conducted to look
for a more accurate functional form for intensity and distance.
In addition, the small amount of data at those ranges may not
warrant a more complicated model.

The goodness of fit of the model can be visualized through
comparing the model-predicted distribution of N q with the
observed one (Fig. 6). This is similar to the concept of a QQ
plot for OLS regression or the concept of “calibration” used by
meteorologists to assess predictive models (Jolliffe and Ste-
phenson, 2012, chapter 2.10). The comparison shows that, for
Ng >3, the model matched the observations quite well. There
were more IDPs with IV ¢g=1t3 than that predicted by the
model. Rare factors not considered in the Influential Factors to
the Number of Responses section might produce particularly
notable effects on IDPs of small V.. For example, the existence
of a single dedicated seismologist or Earth sciences student who
is diligent in reporting to DYFI whenever there is an earth-
quake would efficiently turn IV, q to one when it otherwise
should be zero by the prediction using factors considered in
the present study. Similarly, an observer’s awareness of carth-
quakes may be substantially increased by subscriptions to In-
ternet services such as the Earthquake Notification Service
(ENS), ShakeCast, and Prompt Assessment of Global Earth-
quakes for Response (PAGER) of the USGS. There is currently

no way to include such factors into the analysis.

DISCUSSION

The signs of the fitted coefficients (Table 2) largely confirmed
the conjectured effects of each explanatory variable described
in the Influential Factors to the Number of Responses section.
The expected number of DYFI responses increased with inten-
sity, magnitude, focal depth, time since the establishment of
DYFI, population, educated population size, and proportion
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A Figure 6. Observed distribution of N, (bars) versus model-pre-
dicted distribution (solid dots) for (a) California and (b) CEUS. N,
has a long tail, and only the lower 80% of data are shown.

of complex buildings. It decreased with distance, Hispanic pop-
ulation, poor-English speaking population, high-poverty pop-
ulation, foreign-born population, average houschold size, and
median population age. The deviance difference (i.c., change in
deviance) after dropping cach explanatory variable from the
full model (Table 3) provides a sense of how each variable con-
tributed to the fit of the model; the larger the difference is, the
more the dropped variable contributes to the fit. The deviance
for GLM regression (Zuur ez al., 2009, section 9.5.3) is the ana-
log of R* (coefficient of determination) for OLS regression.
The deviance difference for GLM, therefore, can be understood
as the difference in R* for OLS between two models. Judging
from the deviance difference, magnitude and distance were the
two most important parameters after intensity and population
size. Generally, the physical earthquake parameters contributed
more to the fit than did the socioeconomic parameters.

Although the interpretations of the effect of many ex-
planatory variables, as given in the Influential Factors to the
Number of Responses section, are straightforward based on
common sense, it is often not difficult to conceive opposite
interpretations that appear to be equally plausible; it is important
to verify any interpretative statements with data. The interpre-
tation is further complicated by the intercorrelation among
multiple variables. For example, a portion of the Hispanic pop-
ulation could be foreign-born and probably does not speak En-
glish fluently. The significance of all three variables (PctHisp,
PctForeignBorn, and PctPoorEng) implies that one cannot sim-
ply attribute the negative effect of the number of DYFI responses
of the Hispanic population to their language proficiency and
foreign-born nature.

An exposure variable (i.e., coefficient fixed to be unity) is
sometimes used in a GLM regression. In the present study, the
population size could be considered as an exposure variable,
implying that, after all corrections, the number of responses
simply scales with the population size. This is the assumption
made by Boatwright and Phillips (2013). The regression result
shows that the coefficient of log, (pop) is significantly different
from unity, meaning that the population size cannot be treated
as an exposure variable. This either means that there are im-
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A Figure 7. ZIP-based probability for Ny > 10 when CDI = 4.0, for
magnitude 5, distance of 30 km, depth of 10 km, and during day
time at the end of the year 2014. The white area is not modeled
because of data nonexistence.

portant explanatory variables missing or the relation between
population size and number of responses is not that simple.
Because, in practical terms, the list of explanatory variables
is never completely clear, it is better to treat the population
size as a combination of both the count of residents and a fea-
ture of the living environment instead of simply as an exposure
variable. There could be alternative representations of resident
count. We tried to replace population size with number of
households, and with the labor force size. The resulting models
were not better in fit. Therefore, the population size is still the
best representation of the count of residents in a ZIP region.

The fitted coefficients for the datasets of California and of
the CEUS are surprisingly similar. The fitted constant (f;) rep-
resents the logarithmic number of responses when all conditions
are the California average. Comparing the fitted constants be-
tween the two datasets is a simple way to inspect the similarity of
the DYFI response patterns of the two regions. The consistent
results on two sets of independent data provide a degree of con-
fidence to the accuracy of the analysis. It also implies that, in
spite of the very different scismicity rates and thereby the res-
idents’s experience on earthquakes, the response patterns for the
two regions follow some similar mechanism. Wald ez 4/. (2011,
p. 694) reported that a surprisingly large number of responses
were received from earthquakes in the eastern United States,
where earthquakes are infrequent and residents have presumably
lower awareness of earthquakes. They considered it as an evi-
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dence of uncorrelation between earthquake awareness and DYFI
response rate. The present study confirms this claim by data
analysis. The major dissimilarity between the two sets of fitted
coefficients is on the variable PctVeteran; the coefficient is neg-
ative for California but positive for the CEUS. The underlying
reason is unclear. Nevertheless, PctVeteran’s contribution to the
model fit was relatively minor (Table 3).

The reliability of a CDI value depends on the number of
responses used to compile an IDP: the larger the number of
responses from which an IDP is compiled, the more stable
the CDI value is (see fig. 3 of Worden ez 4/, 2012). Hough
(2013) found a related phenomenon in historical macroseismic
intensity data: the intensity for a whole city could be dispro-
portionally influenced by a few dramatic effects emphasized by
archival accounts. The present study provides an objective way
to measure the completeness of quality DYFI data. If a quality
IDP is defined as one compiled from at least N ;,, responscs,
the completeness is represented by the probability for a ZIP
region to produce such a quality IDP. Take N ;, = 10, the
probability to have quality IDPs of CDI = 4.0 induced by a
hypothetical earthquake of magnitude 5 at 10 km depth and
30 km from the site during day time at the end of the year 2014
is given in Figures 7-8. Because the population size is a critical
factor in determining the number of responses, the maps are

-100°

largely another form of population map. The two figures show
that the probability for most ZIP regions to produce at least 10
responses under the above-mentioned conditions is mostly
>70%. The darkest regions, corresponding to the probability
of >90%, overlap with the most populated regions. The high
probabilities indicate that IDPs with CDI > 4 are generally very
likely of good quality. Other options of N, may fit other
applications; the model presented here will yield the data com-
pleteness accordingly.

CONCLUSION

We statistically explained and predicted the number of DYFI
responses by population size, intensity, and various earthquake
and socioeconomic parameters. The effects of these parameters
on the number of responses were found to largely agree with
common sense. To correctly predict the number of responses,
the most important factors were found to be population size,
intensity, magnitude, and distance. The response behavior to
DYFI for residents in California and the CEUS were comparable
despite the very different seismicity rates for the two regions. Vol-
untary responses to DYFI appeared to follow a common mecha-
nism with small regional dependence. DYFI data of intensity
values 4 or above were likely of good quality. The present study

-70°

-80°

{T‘

40°

30°

[ ] <50%
I 50-70%
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Bl >00%

Pr(N,>10) for CDI=4.

A Figure 8. Same as Figure 7 but for the CEUS.
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provides a quantitative measure of data completeness and so as-
sists the data selection of potential analyses based on DYFI data.
We consider the presented statistical modeling technique appli-
cable to other similar databases of Internet-based macroseismic
intensity.

DATA AND RESOURCES

All “Did You Feel It?” (DYFI) data used in the analysis were
downloaded from earthquake.usgs.gov/earthquakes/dyfi. Cen-
sus data were downloaded from factfinder.census.gov. Statisti-
cal analyses were conducted using R (R Development Core
Team, 2008), particularly with the package VGAM (cran.
r-project.org/web/packages/VGAM) for the GLM fitting. Fig-
ures 1, 7, and 8 were prepared using Generic Mapping Tools
(Wessel et al., 2013). All websites were last accessed on Decem-
ber 2015. B4

ACKNOWLEDGMENTS

A discussion with Robert Clements initiated this study. A dis-
cussion with David Harte on modeling techniques further
shaped the study. Vince Quitoriano provided crucial help in
data retrieval. David Wald pointed the first author to a few
important references. Jim Dewey and David Wald provided
useful comments on an carly version of the manuscript. Com-
ments from C. Bruce Worden, Rémy Bossu, two additional
anonymous reviewers, and Associate Editor Susan Hough sub-
stantially improved the manuscript. The study was developed
under the financial support by the Global Earthquake Model

Foundation.

REFERENCES

Albarello, D., and V. D’Amico (2004). Attenuation relationship of macro-
seismic intensity in Italy for probabilistic seismic hazard assessment,
Bollettino di Geofisica Teorica ed Applicata 45, no. 4, 271-284.

Boatwright, J., and E. Phillips (2013). Exploiting the demographics of
“Did You Feel It?” responses to estimate the felt areas of moderate
carthquakes, Seismol. Res. Lett. 84, no. 1, 147, poster T1.

Boyd, A. (2001). Broadcast Journalism: Techniques of Radio and Television
News, 5th Ed., Focal Press, Oxford, England. ISBN: 0-240-51571-4.

DeGroot, M. H., and M. J. Schervish (2012). Probability and Statistics, 4th
Ed., Pearson, Boston, Massachusetts, ISBN: 978-0-321-50046-5.

Dewey, . W., M. G. Hopper, D. J. Wald, V. Quitoriano, and E. R. Adams
(2002). Intensity distribution and isoseismal maps for the Nisqually,
Washington, earthquake of 28 February 2001, U.S. Depart. Interior
U. S. Geol. Surv. Open-File Rept. 02-346, 60 pp.

Gasperini, P. (2001). The attenuation of seismic intensity in Italy: a bilinear
shape indicates the dominance of deep phases at epicentral distances
longer than 45 km, Bull. Seismol. Soc. Am. 91, no. 4, 826-841, doi:
10.1785/0120000066.

Goémez Capera, A. A. (2006). Seismic hazard map for the Italian territory
using macroscismic data, Earth Sci. Res. J. 10, no. 2, 6790.

Seismological Research Letters Volume 87, Number 1

Gémez Capera, A. A., V. D’Amico, C. Meletti, A. Rovida, and D. Albarello
(2010). Seismic hazard assessment in terms of macroseismic intensity
in Italy: A critical analysis from the comparison of different computa-
tional procedures, Bull. Seismol. Soc. Am. 100, no. 4, 1614-1631, doi:
10.1785/0120090212.

Griinthal, G. (2011). Earthquake, intensity, in Encyclopedia of Solid Earth
Geophysics, Encyclopedia of Earth Sciences, H. K. Gupta (Editor),
Springer, Dordrecht, The Netherlands, 237-242, ISBN: 978-90-
481-8701-0.

Hough, S. E. (2013). Spatial variability of “Did You Feel it?” intensity
data: Insights into sampling biases in historical earthquake intensity
distributions, Bull. Seismol. Soc. Am. 103, no. S, 2767-2781, doi:
10.1785/0120120285.

International Press Institute (1953). The Flow of the News, International
Press Institute, Zurich, Switzerland, ISBN: 0405047517.

Jolliffe, I. T, and D. B. Stephenson (Editors) (2012). Forecast Verification—A
Practitioners Guide in Atmospheric Science, 2nd Ed., Wiley-Blackwell,
Chichester, England, ISBN: 978-0-470-66071-3.

McGuire, R. K. (2004). Seismic Hazard and Risk Analysis, Earthquake en-
gineering research institute, Oakland, California, ISBN: 0943198011.

Musson, R. M., and L Ceci¢ (2012). New Manual of Seismological
Observatory Practice (NMSOP-2), IASPEL in Intensity and Inten-
sity Scales, chapter 12, GFZ German Research Centre for Geosci-
ences, Potsdam, Germany.

Pasolini, C., P. Gasperini, D. Albarello, B. Lolli, and V. D'Amico (2008).
The attenuation of seismic intensity in Italy, part I: Theoretical and
empirical backgrounds, Bull. Seismol. Soc. Am. 98, no. 2, 682-691,
doi: 10.1785/0120070020.

R Development Core Team (2008). R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing,
ISBN: 3-900051-07-0.

Sbarra, P,, P. Tosi, and V. De Rubeis (2010). Web-based macroseismic
survey in Italy: Method validation and results, Naz. Hazards 54,
563-581, doi: 10.1007/s11069-009-9488-7.

Wald, D., V. Quitoriano, L. Dengler, and J. Dewey (1999). Utilization of
the Internet for rapid community intensity maps, Seismol. Res. Lett.
70, 680-697, doi: 10.1785/gsstl.70.6.680.

Wald, D. J., V. Quitoriano, B. Worden, M. Hopper, and J. W. Dewey
(2011). USGS “Did You Feel It?” Internet-based macroseismic inten-
sity maps, Ann. Geophys. 54, no. 6, 688-707, doi: 10.4401/ag-5354.

Wessel, P, W. H. E. Smith, R. Scharroo, J. F. Luis, and F. Wobbe (2013).
Generic Mapping Tools: Improved version released, Eos Trans.
AGU 94, 409-410, doi: 10.1002/2013EO450001.

Worden, C. B, M. C. Gerstenberger, D. A. Rhoades, and D. J. Wald
(2012). Probabilistic relationships between ground-motion param-
eters and modified Mercalli intensity in California, Bull. Seismol.
Soc. Am. 102, no. 1, 204-221, doi: 10.1785/0120110156.

Zuur, A. E, E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith
(2009). Mixed effects models and extensions in ecology with R, in
Statistics for Biology and Health, Springer, New York, New York,
ISBN: 978-0-387-87457-9.

Sum Mak

Danijel Schorlemmer

Helmboltz Centre Potsdam GFZ German Research Centre for
Geosciences

Helmboltzstrafse 6

14467 Potsdam, Germany

smak@gfz-potsdam.de

January/February 2016 131


http://earthquake.usgs.gov/earthquakes/dyfi
http://earthquake.usgs.gov/earthquakes/dyfi
http://earthquake.usgs.gov/earthquakes/dyfi
http://factfinder.census.gov
http://cran.r-project.org/web/packages/VGAM
http://cran.r-project.org/web/packages/VGAM
http://dx.doi.org/10.1785/0120000066
http://dx.doi.org/10.1785/0120090212
http://dx.doi.org/10.1785/0120120285
http://dx.doi.org/10.1785/0120070020
http://dx.doi.org/10.1007/s11069-009-9488-7
http://dx.doi.org/10.1785/gssrl.70.6.680
http://dx.doi.org/10.4401/ag-5354
http://dx.doi.org/10.1002/2013EO450001
http://dx.doi.org/10.1785/0120110156

