

Originally published as:

Chen, Y., Xu, Y., Xu, T., Si, S., Liang, X., Tian, X., Deng, Y., Chen, L., Wang, P., Xu, Y., Lan, H., Xiao, F., Li, W., Zhang, X., Yuan, X., Badal, J., Teng, J. (2015): Magmatic underplating and crustal growth in the Emeishan Large Igneous Province, SW China, revealed by a passive seismic experiment. *- Earth and Planetary Science Letters*, *432*, pp. 103–114.

DOI: http://doi.org/10.1016/j.epsl.2015.09.048

| 1 Magmatic underplating and crustal growth in the Emeishan L | arge |
|--------------------------------------------------------------|------|
|--------------------------------------------------------------|------|

| •  | т       | <b>n</b> '   |          | 1 11          |     | •              | • •      | •         |    |
|----|---------|--------------|----------|---------------|-----|----------------|----------|-----------|----|
| ·) | anoone  | Provinco     | NW Ching | rovoolod h    | VO  | noccivo        | COICMIC  | ovnorimor | ۱T |
| 4  | ISUCOUS | I I UVIIICC. | SW China | . I CVCAICU D | v a | <b>Dassive</b> | SCISIIIC |           | 11 |
|    |         |              |          | ,             |     |                |          |           |    |

| 3  | Yun Chen <sup>a,*</sup> , Yigang Xu <sup>b</sup> , Tao Xu <sup>a</sup> , Shaokun Si <sup>c</sup> , Xiaofeng Liang <sup>a</sup> , Xiaobo Tian <sup>a</sup> ,     |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4  | Yangfan Deng <sup>b</sup> , Lin Chen <sup>a</sup> , Peng Wang <sup>d</sup> , Yihe Xu <sup>a,e</sup> , Haiqiang Lan <sup>a</sup> , Fuhui Xiao <sup>a</sup> , Wei |
| 5  | Li <sup>a,e</sup> , Xi Zhang <sup>a</sup> , Xiaohui Yuan <sup>f</sup> , José Badal <sup>g</sup> , Jiwen Teng <sup>a</sup>                                       |
| 6  | <sup>a</sup> State Key Laboratory of Lithospheric Evolution, Institute of Geology and                                                                           |
| 7  | Geophysics, Chinese Academy of Sciences, Beijing 100029, China                                                                                                  |
| 8  | <sup>b</sup> State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of                                                                               |
| 9  | Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China                                                                                              |
| 10 | <sup>c</sup> Department of Deep-sea Investigation, National Deep Sea Center, Qingdao 266061,                                                                    |
| 11 | China                                                                                                                                                           |
| 12 | <sup>d</sup> Institute of Earthquake Science, China Earthquake Administration, Beijing 100036,                                                                  |
| 13 | China                                                                                                                                                           |
| 14 | <sup>e</sup> University of Chinese Academy of Sciences, Beijing 100049, China                                                                                   |
| 15 | <sup>f</sup> Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany                                                                         |
| 16 | <sup>g</sup> Physics of the Earth, Sciences B, University of Zaragoza, Pedro Cerbuna 12, 50009                                                                  |
| 17 | Zaragoza, Spain                                                                                                                                                 |
|    |                                                                                                                                                                 |

- 18 \* Corresponding author. Tel.: +86 10 8299 8339; fax: +86 10 8299 8001.
- 19 E-mail address: yunchen@mail.iggcas.ac.cn (Y. Chen)

#### 21 ABSTRACT

22 In an attempt to characterize the subsurface structure that is related to fossil mantle 23 plume activity, a comprehensive geophysical investigation was conducted in the 24 Emeishan Large Igneous Province (ELIP). The nature and geometry of the crust were 25 examined within the scheme of the domal structure of ELIP, which comprises the Inner, Intermediate and Outer zones, which are defined on the basis of the 26 27 biostratigraphy of pre-volcanic sediments. The bulk crustal properties within the Inner 28 Zone are characterized by high density, high P-wave velocity, high Vp/Vs ratios and 29 large crustal thickness. A visible continuous seismic converter is present in the upper 30 part of the crust in the whole Intermediate Zone and the eastern part of the Inner Zone, 31 but it is absent in the Inner Zone, where another seismic converter is observed in the 32 lower part of the crust. The geometric configuration of these converters is attributable 33 to the addition of mantle-derived melts to the pre-existing crust and subsequent 34 interaction between them. The crustal geometry, which is delineated by the migrated image of receiver functions from the passive seismic experiment, and the crustal 35

| 36 | properties collectively suggest that a mafic layer of 15-20 km thickness and 150-180      |
|----|-------------------------------------------------------------------------------------------|
| 37 | km width exists at the base of the crust in the Inner Zone. Such a mafic layer reflects a |
| 38 | vertical crustal growth through magmatic underplating at the base of the crust and        |
| 39 | intraplating within the upper crust. The salient spatial correlation between the deep     |
| 40 | crustal structure and the dome strongly supports a genetic link between crustal           |
| 41 | thickening and plume activity, if the pre-volcanic domal uplift is generated by the       |
| 42 | Permian Emeishan mantle plume. This arrangement is further supported by the               |
| 43 | consistency of the extent of crustal uplift estimated by isostatic equilibrium modeling   |
| 44 | and sedimentary data. This study therefore characterizes and provides evidence for a      |
| 45 | plume-modified crust in a large igneous province.                                         |
| 46 |                                                                                           |
| 47 | Keywords: receiver function; crustal property; magmatic underplating; crustal growth;     |

48 mantle plume; Emeishan Large Igneous Province

49

# 50 **1. Introduction**

51 The Permian, which is characterized by emplacements of a number of large igneous

| 52 | provinces (LIPs), is an important period in the earth's history (Wignall et al., 2009). |
|----|-----------------------------------------------------------------------------------------|
| 53 | Recently, recognition of the potential role of LIPs in affecting biotic evolutionary    |
| 54 | pathways and metallogenic systems has led to growing interest in these provinces (Xu    |
| 55 | et al., 2014). The Emeishan flood basalt in SW China (Fig. 1) has been recognized as    |
| 56 | one of the major mafic LIPs (Xu et al., 2004; Xu et al., 2007). It was emplaced over a  |
| 57 | short time with a termination age of 259.1±0.5 Ma, which is very close to the           |
| 58 | Guadalupian-Lopingian Boundary (Zhong et al., 2014). Thus, it is possibly               |
| 59 | synchronous with a number of major global events during the late Paleozoic, such as     |
| 60 | the double mass extinctions, ocean superanoxia, sharp C and Sr isotopic excursions,     |
| 61 | sea-level drop and the Illawara geomagnetic reversal (Wignall et al., 2009; Xu et al.,  |
| 62 | 2014). There are many mafic-ultramafic intrusions within the Emeishan LIP (hereafter    |
| 63 | ELIP) that host Fe-Ti-V and Ni-Cu-PGE deposits (Zhou et al., 2008), which have          |
| 64 | already become important targets for mineral exploration.                               |
| 65 | Over the past decade, multidisciplinary investigations have been conducted in ELIP      |
| 66 | on the origin of this LIP, the mineralization system associated with a mantle plume,    |
| 67 | and paleoclimatic reconstructions and their implications for the Permian mass           |

| 68 | extinctions. A mantle plume model has been used to explain the physical and chemical   |
|----|----------------------------------------------------------------------------------------|
| 69 | features of ELIP, including the eruption of high magnesian lavas and evidence for pre- |
| 70 | volcanic crustal domal uplift. Xu et al. (2007) summarized the identifications of      |
| 71 | mantle plume in ELIP and argued that there would be at least seven pieces of           |
| 72 | evidence that support a Permian mantle plume origin for this province. Most of the     |
| 73 | evidence for the mantle plume is from geochemical, paleontological, paleomagnetic,     |
| 74 | and geochronological studies, but the geophysical constraints are very limited. Most   |
| 75 | of the seismic evidence for mantle plumes is confined to the modern, active hotspots   |
| 76 | such as Hawaii, Kerguelen, Iceland and Yellowstone (Montelli et al., 2004). The        |
| 77 | thermal effects of high temperature and low viscosity magma-derived and subsequent     |
| 78 | geophysical responses (especially low seismic velocity) within the deep interiors are  |
| 79 | the most important clues to tracing a modern mantle plume for seismic investigation.   |
| 80 | The ELIP is related to an ancient plume, whereas the thermal effects that are plume-   |
| 81 | derived would have decayed with a time constant of approximately 60 Myr                |
| 82 | (McKenzie, 1984). Since the termination of the volcanism, ELIP has traveled more       |
| 83 | than three thousand kilometers away from its putative source (Fig. 1), and the mantle  |

| 84 | has continuously cooled down for over 250 Myr. Both the thermal decay and the            |
|----|------------------------------------------------------------------------------------------|
| 85 | drifting away from the original site would result in great difficulty in tracing an      |
| 86 | ancient plume for geophysical investigation. Fortunately, as an archive of the earth's   |
| 87 | history, the solidified continental crust has the most possible ability to preserve the  |
| 88 | imprints of the earth's evolution, by its composition and structure (Hawkesworth et al., |
| 89 | 2013). Thus, in this sense, the constraints on the crustal composition and geometric     |
| 90 | structure from the geophysical investigations could provide an opportunity to identify   |
| 91 | an ancient mantle plume. However, to understand the origin of an ancient LIP, great      |
| 92 | care must be taken when a real-time geophysical observation on the deep-seated and       |
| 93 | hence volatile structures (e.g., the mantle transition zone) is used as a discriminator  |
| 94 | (He et al., 2014).                                                                       |

In an attempt to trace the geological records that were left by the proposed ancient mantle plume, a series of geophysical investigations were conducted in ELIP discontinuously from November 2010 to April 2013. Four east-west trending profiles that are approximately along the latitude 27°N are involved in a COMprehensive investigation on ELIP: 1) a linear PASSive seismic array (COMPASS-ELIP

experiment, ca. 850 km long); 2) a WIDE-angle reflection/refraction seismic profile (COMWIDE-ELIP experiment, ca. 650 km long); synchronous measurements of 3) 101 102 GRAvity (COMGRA-ELIP experiment, ca. 800 km long) and 4) geoMAGnetism 103 (COMMAG-ELIP experiment). In this paper, we will present observations of the crustal nature and geometry mainly from the COMPASS-ELIP experiment and 104 105 discuss their implications in the origin of voluminous mafic basalts and the crustal 106 growth mechanism in this igneous province.

107

100

#### 2. Geological settings 108

109 The Permian Emeishan basalts are erosional remnants of voluminous mafic 110 volcanic successions that are located at the western margin of the Mesoproterozoic 111 Yangtze Craton and the southeastern margin of Tibet, SW China (Xu et al., 2004; Ali et al., 2005). They are exposed in a roughly rhombic area of 250,000 km<sup>2</sup> that is 112 113 bounded by the Lijiang-Xiaojinhe thrust fault (LXF, F4 in Fig. 2) in the northwest and the Ailaoshan-Red River slip fault (ARF, F3 in Fig. 2) in the southwest. The thickness 114 of the entire volcanic sequence in this province varies considerably, from over 5000 m 115

| 116 | in the west to a few hundred meters in the east (He et al., 2003). The province consists  |
|-----|-------------------------------------------------------------------------------------------|
| 117 | of dominant basaltic lavas and subordinate pyroclastic rocks. The Emeishan volcanic       |
| 118 | successions unconformably overlie the late middle Permian Maokou Limestone and            |
| 119 | are in turn covered by the uppermost Permian sediments in the east and west and by        |
| 120 | the upper Triassic or Jurassic sediments in the central part (He et al., 2003). Here, the |
| 121 | carbonate beds of the underlying Maokou Formation have been systematically thinned        |
| 122 | by erosion toward the center of the flood basalt province, which suggests a pre-          |
| 123 | volcanic crustal domal uplift. The extent of erosion of the Maokou Formation              |
| 124 | indicates that ELIP can be divided into three roughly concentric zones (Fig. 2): the      |
| 125 | Inner, Intermediate, and Outer zones (He et al., 2003; He et al., 2010). The Inner Zone   |
| 126 | (INZ) has a radius of ca. 200 km, where the erosion of the Maokou Formation is most       |
| 127 | intensive and the uplift is estimated to be at least 500 m and probably could exceed      |
| 128 | 1000 m, and is considered to be the impact site of the rising plume head. The             |
| 129 | Intermediate Zone (IMZ) has a radius of 425 km, an average uplift of ca. 300 m and a      |
| 130 | modest extent of erosion. The Outer Zone (OTZ) has a radius of 800 km, a minimum          |
| 131 | uplift and a minor extent of erosion. Such a division of the domal structure is           |

132 important because it provides a natural basis to subdivide ELIP (Xu et al., 2004;

#### 133 Campbell, 2005).

134 In addition, to the west of INZ, the tectonic feature is characterized by two roughly 135 north-south trending right-lateral strike-slip faults: the Nujiang River fault (F1 in Fig. 136 2) and the Langcangjiang River fault (F2 in Fig. 2). This zone is the northernmost of 137 the Southeast Asia extrusion system. Its active movement is mainly responsible for 138 the eastward extrusion, which has been related to the India-Eurasia collision since the 139 Cenozoic (Yin, 2010). Three large rivers (Nujiang, Langcang, and Jingsha rivers) 140 course down from Southeast Tibet and travel in parallel through this area. Herein, this 141 area is briefly called the Three-river Zone (TRZ) for simplification (Fig. 2).

## 142

#### 143 **3. Data and methods**

The COMPASS-ELIP experiment was conducted along the latitude of 27°N between Fugong in western Yunnan and Guiding in central Guizhou, crossing TRZ, INZ, IMZ, and OTZ from west to east (Fig. 2). The profile has a total length of ca. 850 km, and 59 seismographs (Reftek-130 data loggers plus Guralp CMG3-ESP

| 148 | sensors of 50Hz-30s/60s) were deployed with a station interval of ca. 15 km.            |
|-----|-----------------------------------------------------------------------------------------|
| 149 | According to the observation periods, the profile was divided into two segments: the    |
| 150 | West- and East-Lines. A total of 29 seismographs (namely, E01-E31, with the absence     |
| 151 | of E03 and E04 due to the inaccessibility of the Nushan Mountain in western Yunnan)     |
| 152 | were deployed for the West-Line between November 2010 and November 2011. After          |
| 153 | the completion of the experiment along the West-Line, 30 seismographs (namely,          |
| 154 | E32-E61) were then deployed along the East-Line from December 2011 to April 2013.       |
| 155 | During the two-phase observations, 579 and 398 earthquakes with a magnitude of          |
| 156 | greater than Ms 5.0 in the distance range of 30 to 90 degrees (Fig. 3) were recorded by |
| 157 | the West-Line and East-Line arrays, respectively.                                       |
| 158 | Teleseismic P-wave Receiver Functions (RFs) were calculated using time-domain           |
| 159 | iterative deconvolution of vertical and radial seismograms (Ligorria and Ammon,         |
| 160 | 1999). We obtained 6793 RFs (4503 for West-Line and 2290 for East-Line) for the 59      |
| 161 | stations along the profile after eliminating those records for which the Moho Ps        |
| 162 | conversions have a low signal-to-noise ratio. The larger number of useful events and    |
| 163 | RFs for the West-Line mainly results from the higher earthquake activity in 2011. The   |

| 164 | stacked RFs (the summed trace of the move-out corrected RFs) for all 59 stations                   |
|-----|----------------------------------------------------------------------------------------------------|
| 165 | along the profile are shown in Fig. 4. The P and Moho converted Ps-phases can be                   |
| 166 | observed very clearly. The delay time between the P and Ps converted phases                        |
| 167 | fluctuates along the profile: approximately 6.0 s under TRZ, 7.0 s under INZ, 5.5 s                |
| 168 | under IMZ, and 4.5 s under OTZ (Fig.4). These delay time variations reflect the Moho               |
| 169 | topography and can be taken as the first-order constraints on the crustal thickness. The           |
| 170 | longer the delay time is, the greater the crustal thickness. In this sense, the large delay        |
| 171 | time suggests a thick crust in INZ.                                                                |
| 172 |                                                                                                    |
| 173 | 4. Crustal structure of ELIP                                                                       |
| 174 | With the advantage of suppressing the trade-off between the crustal thickness (H)                  |
| 175 | and the bulk Vp/Vs ratio ( $\kappa$ ), the H- $\kappa$ stacking procedure (Zhu and Kanamori, 2000) |
| 176 | has been used routinely for teleseismic RFs at each individual seismic station. At each            |
| 177 | station of the COMPASS-ELIP array, we first processed the available data set of RFs                |

- 178 using the H-κ stacking method based on the averaged crustal P-wave velocity model
- 179 (Fig. 5b) derived from the COMWIDE-ELIP experiment (Xu et al., 2015) (Fig. 5d),

| 180 | and estimated the standard errors of H and Vp/Vs ratio by the bootstrap method                    |
|-----|---------------------------------------------------------------------------------------------------|
| 181 | (Efron and Tibshirani, 1986) for 100 trials. To smooth out the rapid lateral variations           |
| 182 | within each zone, an arithmetic average and the standard errors of H and the Vp/Vs                |
| 183 | ratio were further calculated using a three-station sliding-average scheme. The lateral           |
| 184 | variations of H and the Vp/Vs ratio and their uncertainties along the profile are listed          |
| 185 | in Table 1 and are shown in Fig. 5e, f. In general, the uncertainties for H- $\kappa$ stacking of |
| 186 | stations in TRZ and INZ are much smaller than those in IMZ and OTZ because of a                   |
| 187 | larger number of events and useable RFs in the West-line (Table 1). The average                   |
| 188 | standard error of H and the Vp/Vs ratios from H- $\kappa$ stacking for stations in TRZ and        |
| 189 | INZ is less than 1.1 km and 0.017, respectively.                                                  |
| 190 | To construct a depth-domain crustal conversion image, a migration scheme of                       |
| 191 | Common Conversion Points (CCP) stacking (Yuan et al., 1997) was used to focus the                 |
| 192 | converted signal from the time series of each RF to its relevant conversion point. In             |
| 193 | the traditional approach, the CCP-stacking migration needs a reference velocity model,            |
| 194 | and the IASP91 model (Kennett and Engdahl, 1991) is used widely. However, in this                 |
| 195 | study, we used a modified model that was based on the crustal P-wave velocity (Fig.               |

| 196 | 5b) derived from the COMWIDE-ELIP experiment (Xu et al., 2015) and the crustal                 |
|-----|------------------------------------------------------------------------------------------------|
| 197 | Vp/Vs ratio (Fig. 5f) from H- $\kappa$ stacking. By comparing it with the IASP91 model (Fig.   |
| 198 | 6a), we found that the modified model (Fig. 6b) made the amplitudes focus better at            |
| 199 | the Moho discontinuity and manifest some intracrustal interfaces at certain depths.            |
| 200 | Therefore, the migrated image based on the modified velocity model provides a fine             |
| 201 | skeleton drawing of the geometric crustal structure. The signature of the Moho                 |
| 202 | discontinuity in the migrated image (Fig. 5c) is well consistent with the depth that is        |
| 203 | estimated by H- $\kappa$ stacking (Fig. 5e). Additionally, three other dominant signatures can |
| 204 | be recognized within the crust (they will be interpreted as the underplating interface         |
| 205 | (UI), Conrad discontinuity (CD) and crystalline basement (CB) in the following                 |
| 206 | section): 1) the signature at a depth of ca. 35 km in INZ (UI, in Fig. 5c), bounded by         |
| 207 | LXF (F4 in Fig. 2) and LYF (F5 in Fig. 2); 2) the signature at a depth of 20~25 km             |
| 208 | (CD, in Fig. 5c) in the east part of INZ and almost the whole IMZ, bounded by LYF              |
| 209 | and SZF (F8 in Fig. 2); 3) the signature at a depth of 15 km (CB, in Fig. 5c) bounded          |
| 210 | by SZF in the west, which corresponds to the noticeable tectonic feature of                    |
| 211 | Shuicheng-Ziyun Aulacogen (SZA) in the western margin of OTZ. Both the Moho                    |

212 and these intracrustal signatures can also be recognized in the stacked RFs in time

213 domain (Fig. 4).

214

## 215 **5. Discussion**

# 216 5.1. Spatial variations in the crustal thickness and Vp/Vs ratios

| 217 | According to the results yielded by H-κ stacking at each station and the subsequent         |
|-----|---------------------------------------------------------------------------------------------|
| 218 | sliding-average along the profile (Fig. 5e, f), the following features of the variations in |
| 219 | H and the Vp/Vs ratio are noted: 1) Both TRZ and INZ have a thick crust (50-60 km)          |
| 220 | and high Vp/Vs ratios (1.75-1.85); 2) IMZ has a lower crustal thickness (40-50 km)          |
| 221 | and moderate Vp/Vs ratios (1.70-1.80); 3) OTZ has a relatively thin crust (ca. 40 km)       |
| 222 | and low Vp/Vs ratios (1.65-1.75); and 4) Within the east part of INZ, the crustal           |
| 223 | thickness reaches a maximum of 60 km. In general, both the crustal thickness and the        |
| 224 | Vp/Vs ratios decrease progressively from west to east along the profile, which is           |
| 225 | roughly consistent with previous independent estimates from tomography (Xu and              |
| 226 | Song, 2010) and joint inversions of receiver functions and surface waves (Sun et al.,       |
| 227 | 2014; Bao et al., 2015). For example, high Vp/Vs ratios and thick crustal thicknesses       |

were also detected to the West of XJF by a seismic array south to our profile (Sun etal. 2014).

230 We plotted the values of H vs. Vp/Vs for each zone, to visualize their spatial 231 variations (Fig. 7). Intriguingly, the data from different zones delineates distinct 232 patterns, which are enclosed by the best-fitting ellipses with a criterion of minimum 233 area. The center of the ellipse corresponds to the average H and Vp/Vs ratio of the 234 zone. Noticeably, a relatively high average Vp/Vs ratio (ca. 1.77) and the largest 235 crustal thickness (ca. 54 km) are located in INZ. 236 The Vp/Vs ratio is related to the mineralogy and composition and even to the 237 physical state of the crust (Zandt and Ammon, 1995; Christensen, 1996). In general, 238 either mafic/ultramafic compositions, fluids, high temperature, or partial melting will 239 induce high Vp/Vs ratios. The surface heat flow, along with information about the 240 thermal conductivity and heat production rate in the crust, is the essential data for 241 understanding the crustal temperature (Tao and Shen, 2008). The heat flow 242 distribution in the Chinese continent and its adjacent areas was mapped by Hu et al. (2000) and later updated by Tao and Shen (2008). Although the heat flow 243

| 244 | observations in China are still sparse and unevenly distributed, more than 35 available |
|-----|-----------------------------------------------------------------------------------------|
| 245 | measurements in West and Central Yunnan (Tao and Shen, 2008) provided good              |
| 246 | constraints along our profile, especially for TRZ and INZ. We extracted the data along  |
| 247 | the latitude of 27°N from the heat flow dataset produced by Tao and Shen (2008). The    |
| 248 | lateral variation of the heat flow clearly shows a concave-shaped decrease at the       |
| 249 | center of the INZ relative to the adjacent regions, which basically forms a mirror-     |
| 250 | symmetric relationship with the variation in the Vp/Vs ratios (Fig. 5f). The feature of |
| 251 | low heat flow and high Vp/Vs ratios, combined with the properties that are              |
| 252 | characterized by high gravity anomaly (Fig. 5a) high P-wave velocity (Fig. 5b) with     |
| 253 | no significant low velocity zone (LVZ) within the crust (Fig. 5d) in INZ, enables us to |
| 254 | exclude the existence of massive fluids, permanent high temperatures and/or partial     |
| 255 | melting in the current crustal interior of INZ.                                         |
| 256 | Alternatively, we propose that the high Vp/Vs ratios in INZ are most likely caused      |
| 257 | by the frozen mafic/ultramafic magmatic underplating that is associated with the        |
|     |                                                                                         |

259 least one order of magnitude lower than that in felsic rocks (Furlong and Chapman,

258

ancient mantle plume. In general, the heat production in mafic/ultramafic rocks is at

260 2013). The replacement of felsic rocks with mafic or ultramafic rocks through 261 magmatic underplating or igneous intrusion will reduce the heat production in the 262 crust and thus will decrease the surface heat flow in the long term. This arrangement 263 is again consistent with the low surface heat flow at the center area of the INZ (Fig. 264 5f). In contrast, given the high bulk crustal Vp/Vs ratio and high heat flow (Fig. 5f) in TRZ, we favor an interpretation of an ongoing addition of high-Vp/Vs materials into 265 266 the crust, either a basaltic underplating related to upwelling that results from the 267 eastward subduction of the Indian Plate beneath Burma Arc (Lei et al., 2009) or by a 268 lower crustal flow that is related to the south-eastward escaping of the Tibetan deep 269 crust (Royden et al., 1997).

#### 270 5.2. Interpretations of the seismic signatures within the crust

Besides the Moho discontinuity, three other intracrustal signatures were recognized and described in section 4. With the caution that the interference of multiple conversions within crust could be present in the stacked RFs in time-domain (Fig. 4), and, hence in the migrated image in depth-domain (Figs. 5c, 6), these signatures are interpreted as seismic expressions of the crustal geometry of ELIP, which is depicted 276 in Fig. 8.

#### 277 5.2.1. Moho discontinuity

278 In most of the crustal studies, the RFs method images the Moho discontinuity with 279 a high reliability. In our study, the signature of Moho discontinuity can be visibly 280 recognized not only in the stacked RFs in time-domain (Fig. 4) but also in the 281 migrated image in depth-domain (Figs. 5c, 6), which is characterized by strong 282 continuous positive amplitudes at the corresponding time or depths. More specifically, 283 two strong converters in OTZ are imaged both in both time- and depth-domains (Figs. 284 4 and 6). We interpret the shallower converter (ca. 4.5 s or ca. 40 km) as the Moho, 285 and the deeper converter (close to 7.0 s or ca. 60 km) as an interface in the uppermost 286 mantle in OTZ. We will discuss the details of the deeper converter and its implication 287 in another paper. Assuming a perfect Airy-type crustal isostacy, the crustal thickness 288 *H* can be estimated by

289 
$$H = \frac{\rho_c}{\rho_m - \rho_c} h + H_0 \tag{1}$$

290 where,  $\rho_c$  and  $\rho_m$  are the crustal and upper mantle densities (ca. 2.75 g/cm<sup>3</sup> and 3.20 291 g/cm<sup>3</sup> generally), respectively; *h* is the present-day topography; and  $H_0$  is the

| 292 | reference crustal thickness (a global average of 33 km). In our case, the average        |
|-----|------------------------------------------------------------------------------------------|
| 293 | topography (green line in the upper panel of Fig. 5c), which is computed by a running    |
| 294 | average along our profile within a radius of 60 km, is substituted, and then, the Airy   |
| 295 | Moho is obtained (green line in Fig. 5e). Except for INZ, to the first order, the Airy   |
| 296 | Moho matches the trends of the Moho that is estimated independently by H-ĸ               |
| 297 | stacking (Fig. 5e) or recognized from the RFs sections in time- and depth-domains        |
| 298 | (Figs. 4, 5c and 6). This match strongly suggests that the shallower converter in time-  |
| 299 | or depth-domains in OTZ should be the present-day Moho, which is also confirmed          |
| 300 | by the COMWIDE-ELIP experiment (Xu et al., 2015) (Fig. 5d) and another previous          |
| 301 | controlled-source seismic survey that was conducted in 1984 (Xiong et al., 1986).        |
| 302 | Meanwhile, the mismatch, where the Moho depth in INZ is much deeper than Airy            |
| 303 | Moho (Fig. 5e), strongly suggests the existence of a high-density crust in this zone.    |
| 304 | Generally, this feature of the Moho topography not only reflects the modern day          |
| 305 | processes related to the lateral variations of the surface elevations along the profile, |
| 306 | but also reveals the distinct crustal property (high density) of INZ that is highly      |
| 307 | consistent with the feature of the gravity data (Fig. 5a).                               |

| 309 | The signature CB marks the strong positive amplitudes that appear at ca. 1.5 s (Fig.    |
|-----|-----------------------------------------------------------------------------------------|
| 310 | 4) or at the depth of ca. 15 km (Fig. 5c), with a horizontal extent of ca. 50 km. It is |
| 311 | located in the westernmost end of OTZ, which is marked by SZF (F8 in Fig. 2), the       |
| 312 | boundary fault of the Shuicheng-Ziyun Aulacogen (SZA). SZA is an NW-trending            |
| 313 | Paleozoic aulacogen, which is featured by a notable linear basin with an approximate    |
| 314 | dimension of 400-km long and ca. 10-80-km wide (Wang et al., 2006). SZA plays           |
| 315 | important roles in the crustal evolution and the ore-forming process in Western         |
| 316 | Guizhou. Given the consistency of the features between the signature CB and the         |
| 317 | realistic SZA, we interpret the signature CB as the crystalline basement of SZA. Wang   |
| 318 | et al. (2006) investigated the sedimentary filling succession and suggested that the    |
| 319 | aulacogen was initiated at the early Devonian and was uplifted during the volcanism     |
| 320 | of ELIP with differential erosion during the late middle Permian. As a result of the    |
| 321 | Dongwu Movement in South China (He et al., 2010), the surface uplift reached up to      |
| 322 | 200-400 m, as estimated by the unconformity between the upper and middle Permian        |
| 323 | paleokarst formations (Wang et al., 2006).                                              |

338

| 326 o  | or at the depth ca. 20-25 km (Fig. 5c). It appears in the whole IMZ and in the east part |
|--------|------------------------------------------------------------------------------------------|
| 327 o  | of INZ, bounded by LYF (F5 in Fig. 2) to the west and by SZF (F8 in Fig. 2) to the       |
| 328 e  | east flanks and is absent in the west part of INZ (Figs. 4, 5c). The depth range (20-25  |
| 329 k  | cm) that CD appears at corresponds to the base of the upper crust (Fig. 5d) that is      |
| 330 r  | evealed by the COMWIDE-ELIP experiment (Xu et al., 2015), and thus it is likely          |
| 331 tl | he Conrad discontinuity that is considered to be the interface between the upper and     |
| 332 tl | he lower continental crust. The features on the appearance and termination of the        |
| 333 u  | apper crustal reflectivity were also recognized by the previous controlled-source        |
| 334 s  | eismic survey mentioned above (Xiong, et al., 1986). Therefore, we interpret the         |
| 335 s  | ignature CD as the Conrad discontinuity in the east part of INZ and throughout IMZ.      |
| 336 5  | 5.2.4. Underplating interface (UI)                                                       |
| 337    | The signature UI marks the continuous positive amplitudes at 4.5-5.0 s (Fig. 4) or       |

339 extent and 15-20 km thickness above Moho. It is characterized by the distinct bulk

at the depth of ca. 35 km (Fig. 5c). It appears in INZ with 150-180 km east-west

| 340 | crustal properties of high Bouguer gravity anomaly (Fig. 5a), high P-wave velocity                       |
|-----|----------------------------------------------------------------------------------------------------------|
| 341 | (Fig. 5b, d), high Vp/Vs ratio and low heat flow (Fig. 5f), and the large crustal                        |
| 342 | thickness that is clearly divergent from the Airy Moho (Fig. 5e). The local Bouguer                      |
| 343 | gravity anomaly in INZ has a wavelength ( $\lambda$ ) of ca. 200-250 km (Fig. 5a), which can             |
| 344 | place an indirect constraint on the depth $(z)$ of density anomaly in a first-order                      |
| 345 | approximation by                                                                                         |
| 346 | $\lambda \sim 2\pi z$ (2)                                                                                |
| 347 | Therefore, the depth of this density anomaly is estimated to be 30-40 km, which is                       |
| 348 | consistent with the depth of the signature UI that is observed here (Fig. 5c) and that of                |
| 349 | the high velocity layer (HVL, 7.0-7.2 km/s) that appears in the crustal P-wave                           |
| 350 | velocity section (Fig. 5d). Deng et al. (2014) investigated the residual gravity anomaly                 |
| 351 | in South China and its relationship to ELIP. They found that the inverted density                        |
| 352 | anomaly of ELIP is +0.06 g/cm <sup>3</sup> in INZ and decreases to approximately +0.03 g/cm <sup>3</sup> |
| 353 | in OTZ. Recently, a new gravity inversion has been conducted based on the                                |
| 354 | observations of our COMGRA-ELIP experiment (Deng et al., 2015). The positive                             |
| 355 | gravity anomaly in INZ (Fig. 5a) was well fitted with a dense layer of ca. $3.14 \text{ g/cm}^3$         |

| 356 | above Moho that extends at a depth of approximately 41 km. The observed positive         |
|-----|------------------------------------------------------------------------------------------|
| 357 | residual gravity and the corresponding high density (Deng et al., 2014; 2015), high      |
| 358 | velocity, high Vp/Vs, and low heat flow (Fig. 5) can be attributed to cooled             |
| 359 | mafic/ultramafic rocks generated by large-scale magmatic intrusion (Thybo and            |
| 360 | Artemieva, 2013; Furlong and Chapman, 2013). Hence, accounting for these distinct        |
| 361 | crustal properties (high Vp/Vs ratio, high density, high P-wave velocity, low heat flow, |
| 362 | and large crustal thickness) as the discriminator for the underplated intrusive mafic    |
| 363 | materials in INZ, we interpret the signature UI as the interface of the magmatic         |
| 364 | underplating that is related to the Permian mafic LIP.                                   |

#### 365 5.3. Crustal underplating and vertical growth

The mantle plume hypothesis provides a simple explanation for the essential features of classic LIPs, and its predictions have been confirmed by many observations (Campbell, 2005). The multidisciplinary data obtained in ELIP argue for the existence of a Permian mantle plume (Xu et al., 2007; Ali et al., 2010). Magmatic underplating is an integrated part of the continental flood basalt (CFB) volcanism (Furlong and Foutain, 1986). It has been suggested that most of the magma that

| 372 | reaches the crust could solidify as underplated material and remain hidden underneath   |
|-----|-----------------------------------------------------------------------------------------|
| 373 | some LIPs (Cox, 1980, 1993; Thybo and Artemieva, 2013). The interaction of the          |
| 374 | mantle plumes with the continental lithosphere could play an important role in the      |
| 375 | lithospheric growth, modification and destruction, both at the plate margins and in the |
| 376 | intraplate regions (Sun, 1989; Albarede, 1998). The mantle melting and infiltration of  |
| 377 | the basaltic magmas are not restricted to the mantle part of the lithosphere, but often |
| 378 | result in emplacement of magmatic bodies into the crust or at its base, i.e. crustal    |
| 379 | underplating (Cox, 1980, 1993; Furlong and Fountain, 1986; Fyfe, 1992; Thybo and        |
| 380 | Artemieva, 2013). This process could not only enhance the crustal growth from below     |
| 381 | by the addition of high density material to the deep crust (Rudnick, 1990), but also    |
| 382 | introduce the vertical growth within the upper parts of the crust by physical (e.g.,    |
| 383 | thermal density buoyancy) and chemical (e.g., melting, crystallization, and             |
| 384 | differentiation) effects that are associated with the subsequent magmatism process      |
| 385 | until its eruption at the surface (Cox, 1980, 1993; Furlong and Fountain, 1986;         |
| 386 | Rudnick, 1990; Xu and He, 2007; Thybo and Artemieva, 2013). If the crustal              |
| 387 | underplating is related to the strong interaction that is triggered by the dynamic and  |

388 thermal effects of the plume activity (Campbell, 2005), then the position where the 389 plume head used to be located would have fossilized characteristics associated with 390 the past magmatism process. 391 Besides the sedimentary features (He et al., 2003, 2010), other convincing 392 evidences, such as the incompatible trace element contents of the picrites and basalt 393 (Chung and Jahn, 1995), and the distributions of high-Ti and low-Ti lavas in ELIP 394 (Xu et al., 2004) also suggested INZ was close to the plume axis at the time of 395 volcanism. The distinct crustal properties and geometry (Fig. 5) that were obtained by 396 our targeted geophysical investigations in INZ have been discussed above. The 397 continuation of the signature CD at the base of the upper crust in INZ is terminated 398 where the signature UI starts to appear (Fig. 5c). A similar observation made by Xiong 399 et al. (1986) in an early controlled-source seismic survey showed that the upper crust 400 in this region is transparent and free of upper crustal reflectivity. We interpret the lack 401 of the signature CD and the appearance of the signature UI in INZ as the result of 402 magmatic intraplating during the Emeishan volcanism (Xu and He, 2007).

403 In INZ, where the plume head is expected to be located, the extent of mantle

| 404 | melting (and consequently melt volume) is much larger than in IMZ and OTZ. A                |
|-----|---------------------------------------------------------------------------------------------|
| 405 | larger degree of melting not only generated thicker volcanic successions in INZ, but        |
| 406 | also produced unusual crustal properties in this region as illustrated in Fig 5. The        |
| 407 | addition of magmas at various levels of the crust and the subsequent interactions with      |
| 408 | the pre-existing crust might have considerably modified the crustal properties and          |
| 409 | demolished its original crustal geometry, such as signature CD that is observed in          |
| 410 | IMZ (Fig. 8). This argument is further supported by other independent studies. Chen         |
| 411 | et al. (2013) found that there is a coherent relationship between the deep crustal          |
| 412 | deformation by crustal anisotropy (Pms splittings) and the shallow deformation by           |
| 413 | GPS movement in INZ. Such a strong coupling between the shallow and deep parts of           |
| 414 | the crust most likely reflects the strong vertical interaction that is related to the plume |
| 415 | activity.                                                                                   |
| 416 | The topographic uplift is the most dramatic surface expression for the vertical             |
| 417 | crustal growth. The addition of voluminous basic magma to the lithospheric column           |
| 418 | would cause a permanent surface uplift. Assuming a perfect Airy-type isostatic              |
|     |                                                                                             |

419 equilibrium, the amount of uplift u (Shoko and Gwavava, 1999), can be estimated by

420 
$$u = (1.0 - \rho_x / \rho_a) x$$
 (3)

| 421 | where, x and $\rho_x$ are the thickness and density of the added material, respectively, and              |
|-----|-----------------------------------------------------------------------------------------------------------|
| 422 | $\rho_a$ is the density of the asthenosphere (ca. 3.4 g/cm <sup>3</sup> generally). In our case, x is ca. |
| 423 | 15-20 km (Fig. 5c) and $\rho_x$ is ca. 3.14 g/cm <sup>3</sup> (Deng et al., 2015). Hence, the uplift u    |
| 424 | can be estimated as approximately 1000-1500 m. Furthermore, assuming a complete                           |
| 425 | melt segregation and accumulation, Furlong and Fountain (1986) evaluated the                              |
| 426 | potential for crustal underplating to increase the total thickness of the crust by the                    |
| 427 | deep melt. The modeling results indicated that if more than 15 km thick mantle-                           |
| 428 | derived materials are added to the crust at depths of 30 to 50 km, the melt-generation                    |
| 429 | depth would be greater than 125 km, which is already below the 110-km depth of the                        |
| 430 | lithosphere-asthenosphere boundary (LAB) beneath INZ, as imaged by S-wave RFs                             |
| 431 | (Chen et al., 2015). According to our observation, a 15-20 km thick layer is the                          |
| 432 | minimum estimate of the added materials through magmatic underplating in INZ (Fig.                        |
| 433 | 5c), because the volumes of massive eruption and accumulation (magma dykes)                               |
| 434 | within the upper parts of the crust are not included. Therefore, not only the surface                     |
| 435 | uplift but also the melt-generation depth related to the crustal underplating would be                    |

436 much larger than the estimate made above.

| 437 | He et al. (2003) carried out the biostratigraphic and sedimentologic investigations    |
|-----|----------------------------------------------------------------------------------------|
| 438 | for the middle Permian Maokou Formation that immediately underlies the Emeishan        |
| 439 | flood basalts. A rapid, kilometer-scale crustal doming prior to the eruption of the    |
| 440 | Emeishan flood basalts is proposed with a time scale less than 3 Myr and a magnitude   |
| 441 | of uplift greater than 1000 m. Specifically, a layer of conglomerate of variable       |
| 442 | thickness is found underneath the main phase of the Emeishan basalts and above the     |
| 443 | earlier phase of basalts in the northeastern flank of the domal structure along the    |
| 444 | eastern boundary of the Xiaojiang fault (XJF, F6 in Fig. 2). It was suggested that the |
| 445 | conglomerate layer was formed due to a differential uplift of the blocks in the        |
| 446 | northeastern flank of the domal structure, and thus, XJF would be a syn-doming         |
| 447 | normal fault that was deformed during the crustal doming period.                       |
| 448 | Because of the superposition of the subsequent tectonic movements (such as the         |
| 449 | ongoing Indo-Eurasian collision since Cenozoic), the present elevation of ELIP (upper  |
| 450 | panel of Fig. 5c) is in fact much higher than that estimated above either by the       |
| 451 | isostatic theory or by the sedimentary records. Meanwhile, the major faults in ELIP    |

| 452 | are characterized mainly by the kinematic and dynamic features that are related to the    |
|-----|-------------------------------------------------------------------------------------------|
| 453 | present-day tectonic settings. For example, the present movement of XJF is featured       |
| 454 | as left-lateral slipping (Yin, 2010). Based on the sedimentary records in ELIP (Wang      |
| 455 | et al., 2006; He et al., 2003; 2010), the kinematic features of the major faults (such as |
| 456 | XJF, SZF) during the period of Permian volcanism could be unified into a dynamic          |
| 457 | framework that is related to the crustal vertical growth that results from the mafic-     |
| 458 | magma underplating, which was eventually related to the activity of the Permian           |
| 459 | ancient plume.                                                                            |
| 460 | Fig. 8 is a cartoon that summarizes coherently the observations that regard the           |
| 461 | crustal structures and dynamic responses in ELIP. The hot buoyant mantle material         |
| 462 | ascended from the mantle toward the Earth's surface, penetrated into the crust and        |
| 463 | gave rise to large-scale crustal underplating that accumulated near the Moho. The         |
| 464 | Conrad discontinuity (CD in Fig. 8) that is observed in IMZ was diluted by the            |
| 465 | magmatic process in INZ. The Moho depth in INZ is in average greater than that of         |
| 466 | other zones (Figs. 4, and 7), with an approximately domal shape below the                 |
| 467 | underplating layer (Figs. 5e, and 8). The deepest Moho, however, lies immediately         |

| 468 | east of the underplating zone. This feature may reflect some relics of the dynamic     |
|-----|----------------------------------------------------------------------------------------|
| 469 | response of the impact that is related to the plume activity, and the recent crustal   |
| 470 | modification by the lateral compression induced by the India-Eurasia collision since   |
| 471 | Cenozoic. The consequence of all was a significant vertical growth within the crust.   |
| 472 | In addition to magmatic penetration into the crust, the mantle plume initiated         |
| 473 | kilometer-scale topographic uplift, thereby causing the domal deformation of the crust |
| 474 | and activating some large regional faults.                                             |
|     |                                                                                        |

475

## 476 6. Conclusions

Our comprehensive geophysical investigations revealed distinct features of the crustal nature and geometry in INZ of ELIP. Several distinct crustal properties, including high density, high P-wave velocity, high Vp/Vs ratio, low heat flow, a thick crust and the geometry of intra-crustal features, strongly support a mafic layer of 15-20 km thick and 150-180 km in lateral extent at the base of the crust in INZ,. This mafic layer is interpreted as a result of magmatic underplating related to the Permian mantle plume. The continuous seismic signature CD, which is interpreted as the

| 484 | Conrad discontinuity, is present in the whole IMZ and in the eastern part of INZ, but     |
|-----|-------------------------------------------------------------------------------------------|
| 485 | is absent in the central and western parts of INZ. Instead, the seismic signature UI is   |
| 486 | observed in these areas and is interpreted as the interface of the underplating materials |
| 487 | Such a spatial configuration of the signatures UI and CD is attributable to the addition  |
| 488 | of plume-derived melts into the pre-existing crust and intensive interaction between      |
| 489 | them. Assuming a crustal isostacy, such large-scale magmatic underplating near the        |
| 490 | Moho would introduce a permanent kilometer-scale surface uplift, which is well            |
| 491 | recorded by the biostratigraphy of the pre-volcanic sediments. All of these findings,     |
| 492 | therefore, lend strong support to the mantle plume model that was proposed for the        |
| 493 | generation of ELIP.                                                                       |

494

## 495 Acknowledgments

We would like to express our sincere appreciation and deep-felt memory to our former group leader and good friend, Prof. Zhongjie Zhang, who suddenly passed away on September 6, 2013. Zhongjie was the principal scientist of the geophysical project on ELIP. Without his effort, inspiring ideas and continuous encouragement,

| 500 | this research would not have been initiated at the beginning and could not have been  |
|-----|---------------------------------------------------------------------------------------|
| 501 | finally achieved. We thank the vehicle drivers, Lijun Wang and Changping Cai, and     |
| 502 | the other field personnel for their assistance during the field work. We also wish to |
| 503 | thank Prof. Wei Tao for her contribution of the regional heat flow data, and Profs.   |
| 504 | Xiong Xiong, Bihong Fu, Rui Gao, Yanghua Wang, Fuqin Zhang, andCarlos López           |
| 505 | Casado for their helpful discussions. Constructive comments and suggestions from      |
| 506 | two anonymous reviewers significantly improved the quality of this paper. This study  |
| 507 | is financially supported by the National Basic Research Program of China (973         |
| 508 | Program, grant 2011CB808904, 2011CB808906) and is also supported by the               |
| 509 | National Natural Science Foundation of China (grants 41374063 and 41074057). The      |
| 510 | Seismic Array Laboratory, IGGCAS, provided the instrumental equipment.                |
| 511 |                                                                                       |

## 512 **References**

513 Albarede, F., 1998. The growth of continental crust. Tectonophysics 296, 1-14.

514 Ali, J.R., Fitton, J.G., Herzberg, C., 2010. Emeishan large igneous province (SW

515 China) and the mantle-plume up-doming hypothesis. J. Geol. Soc. Lond. 167, 953-

516 959.

- 517 Ali, J.R., Thompson, G.M., Zhou, M.F., Song, X.Y., 2005. Emeishan large igneous
- 518 province, SW China. Lithos 79, 475-489.
- 519 Bao, X.W., Sun, X.X, Xu, M.J., Eaton, D.W., Song, X.D., Wang, L.S., Ding, Z.F., Mi,
- 520 N., Li, H., Yu, D.Y., Huang, Z.C., Wang, P., 2015. Two crustal low-velocity channels
- 521 beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver
- 522 functions. Earth Planet. Sci. Lett. 415, 16-24.
- 523 Bryan, S.E., Riley, T.R., Jerram, D.A., Stephens, C.J., and Leat, P.T., 2002. Silicic
- 524 volcanism: An undervalued component of large igneous provinces and volcanic rifted
- 525 margins, in Menzies, M.A., Klemperer, S.L., Ebinger, C.J., and Baker, J., eds.,
- 526 Volcanic Rifted Margins: Boulder, Colorado, Geol. Soc. America Special Paper 362, p.
- 527 99-120.
- 528 Campbell, I.H., 2005. Large igneous provinces and the mantle plume hypothesis.
- 529 Elements 1(5), 265-269.
- 530 Chen, Y., Zhang, Z.J., Sun, C.Q., and Badal, J., 2013. Crustal anisotropy from Moho
- 531 converted Ps wave splitting analysis and geodynamic implications beneath the eastern

- 532 margin of Tibet and surrounding regions. Gondwana Res. 24(3-4), 946-957.
- 533 Chen, Y., Yuan, X.H., Tian, X.B., Liang, X.F., Si, S.K., Xu, Y.G., Teng, J.W., 2015.
- 534 Lithospheric structure and origin of the Emeishan Large Igneous Province (SW China)
- revealed by the COMPASS-ELIP experiment. Geochem. Geophys. Geosyst. (inpreparation).
- 537 Christensen, N.I., 1996. Poisson's ratio and crustal seismology. J. Geophys. Res.
- 538 101(B2), 3139-3156.
- 539 Chung, S.L., Jahn B.M., 1995. Plume-lithosphere interaction in generation of the
- 540 Emeishan flood basalts at the Permian-Triassic boundary. Geology 23, 889-892.
- 541 Cox, K.G., 1980. A model for flood basalt volcanism. J. Petro. 21(4), 629-650.
- 542 Cox, K.G., 1993. Continental magmatic underplating. Philos. Trans. R. Soc. Lond.
- 543 342, 155-166.
- 544 Deng, Y.F., Chen, Y., Wang, P., Essa, K.S., Xu, T., Tian, X.B., Liang, X.F, Badal, J.,
- 545 Teng, J.W., 2015. Magmatic underplating beneath the Emeishan Large Igneous
- 546 Province (South China) revealed by the COMGRA-ELIP experiment. Tectonophysics
- 547 (under review).

- 548 Deng, Y.F., Zhang, Z.J., Mooney, W., Badal, J., Fan, W.M., Zhong, Q., 2014. Mantle
- 549 origin of Emeishan large igneous province (south China) from the analysis of residual
- 550 gravity anomalies. Lithos 204, 4-13.
- 551 Efron, B., Tibshirani R., 1986. Bootstrap methods for standard errors, confidence
- intervals, and other measures of statistical accuracy. Statistical Science 1(1), 54-77.
- 553 Furlong, K.P., Chapman, D.S., 2013. Heat flow, heat generation, and the thermal state
- of the lithosphere. Annu. Rev. Earth Planet. Sci. 41: 385-410.
- 555 Furlong, K.P., Fountain, D.M., 1986. Continental crustal underplating: thermal
- 556 considerations and seismic-petrologic consequences. J. Geophys. Res. 91(B8), 8285-

557 8294.

- 558 Fyfe, W.S., 1992. Magma underplating of continental crust. J. Volcanol. Geotherm.
- 559 Res. 50, 33-40.
- 560 Hawkesworth, C., Cawood, P., Dhuime, B., 2013. Continental growth and the crustal
- record. Tectonophysics 609, 651-660.
- 562 He, B., Xu, Y.G., Chung, S.L., Xiao, L., Wang, Y.M., 2003. Sedimentary evidence for
- 563 a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood

- basalts. Earth Planet. Sci. Lett. 213, 391-405.
- 565 He, B., Xu, Y.G., Guan, J.P., Zhong, Y.T., 2010. Paleokarst on the top of the Maokou
- 566 Formation: further evidence for domal crustal uplift prior to the Emeishan flood
- 567 volcanism. Lithos 119, 1-9.
- 568 He, C.S., Santosh, M., Wu, J.P., Chen, X.H., 2014. Plume or no plume: Emeishan
- 569 Large Igneous Province in Southwest China revisited from receiver function analysis.
- 570 Phys. Earth Planet. Int. 232, 72-78.
- 571 Hu, S.B., He, L.J., Wang, J.Y., 2000. Heat flow in the continental area of China: a new
- 572 data set. Earth Planet. Sci. Lett. 179, 407-419.
- 573 Kennett, B.L.N., Engdahl, E.R., 1991. Traveltimes for global earthquake location and
- 574 phase identification. Geophys. J. Int. 105, 429-465.
- 575 Lei, J.S., Zhao, D.P., Su, Y.J., 2009. Insight into the origin of the Tengchong intraplate
- 576 volcano and seismotectonics in southwest China from local and teleseismic data. J.
- 577 Geophys. Res. 114, B05302, doi:10.1029/2008JB005881.
- 578 Ligorria, J.P., Ammon, C.J., 1999. Iterative deconvolution and receiver-function
- 579 estimation. Bull. Seismol. Soc. Am. 89, 1395-1400.

- 580 Mckenzie, D., 1984. A possible mechanism for epeirogenic uplift. Nature 307, 616-
- 581 618.
- 582 Montelli, R., Nolet, G., Dahlen, F.A., Masters, G., Engdahl, E.R., Huang, S.H., 2004.
- 583 Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303,584 338-343.
- 585 Royden, L.H., Burchfiel, B.C., King, R.W., Wang, E., Chen, Z.L., Shen, F., Liu, Y.P.,
- 586 1997. Surface deformation and lower crustal flow in Eastern Tibet. Science 276, 788-587 790.
- 588 Rudnick, R., 1990. Growing from below. Nature 347, 711-712.
- 589 Shoko, D.S.M., Gwavava, O., 1999. Is magmatic underplating the cause of post-rift
- 590 uplift and erosion within the Cabora Bassa Basin, Zambezi Rift, Zimbabwe? J.
- 591 African Earth Sci. 28(2), 465-485.
- 592 Sun, S.S., 1989. Growth of lithospheric mantle. Nature 340, 509-510.
- 593 Sun, X.X., Bao, X.W., Xu, M.J., Eaton, D.W., Song, X.D., Wang, L.S., Ding, Z.F., Mi,
- 594 N., Yu, D.Y., Li, H., 2014. Crustal structure beneath SE Tibet from joint analysis of
- receiver functions and Rayleigh wave dispersion. Geophys. Res. Lett. 41, 1479-1484.

- 596 Tao W, Shen Z.K., 2008. Heat flow distribution in Chinese continent and its adjacent
- 597 areas. Progress in Natural Science 18, 843-849.
- 598 Thybo, H., Artemieva, I.M., 2013. Moho and magmatic Underplating in continental
- 599 lithosphere. Tectonophysics 609, 605-619.
- 600 Wang, S.Y., Zhang, H., Wang, T.H., Wang, C.H., Peng, C.L., Hu, R.F., Chen, M.H.,
- 601 Shi, L., 2006. Filling and evolution of the Late Paleozoic shuicheng-Ziyun aulacogen
- 602 in western Guizhou, China. Geological Bulletin of China 25(3), 402-407 (in Chinese
- 603 with abstract in English).
- 604 Wignall, P.B., Sun, Y.D., Bond, D.P.G., Izon, G., Newton, R.J., Vedrine, S.,
- 605 Widdowson, M., Ali, J.R., Lai, X.L., Jiang, H.S., Cope, H., Bottrell, S.H., 2009.
- Volcanism, mass extinction, and carbon isotope fluctuations in the middle Permian of
- 607 China. Science 324, 1179-1182.
- 608 Xiong, S.B., Teng, J.W., Yin, Z.X., Lai, M.H., Huang, Y.P., 1986. Explosion
- seismological study of the structure of the crust and upper mantle at southern part of
- 610 the Panxi tectonic belt (in Chinese with abstract in English). Chinese J. Geophys.
- 611 29(3), 235-244.

- Ku, T., Zhang, Z.J., Liu, B.F., Chen, Y., Zhang, M.H., Tian, X.B., Xu, Y.G., Teng, J.W.,
- 613 2015. Crustal velocity structure in the Emeishan large igneous province and evidence
- of the Permian mantle plume activity. Sci. China-Earth Sci. 58(7), 1133-1147.
- 615 Xu Y.G., He, B., Chung, S.L., Menzies, M.A., Frey, F.A., 2004. Geologic,
- 616 geochemical, and geophysical consequences of plume involvement in the Emeishan
- 617 flood-basalt province. Geology 32(10), 917-920.
- 618 Xu, Y.G., He, B., 2007. Thick, high-velocity crust in the Emeishan large igneous
- 619 province, southwestern China: Evidence for crustal growth by magmatic underplating
- or intraplating. GSA Special Papers 430, 841-858.
- 621 Xu, Y.G., He, B., Huang, X.L., Luo, Z.Y., Chung, S.L., Xiao, L., Zhu, D., Shao, H.,
- 622 Fan, W.M., Xu, J.F., Wang, Y.J., 2007. Identification of mantle plumes in the
- Emeishan Large Igneous Province. Episodes 30(1), 32-42.
- 624 Xu, Y.G., Wang, C.Y., Shen, S.Z., 2014. Permian large igneous provinces:
- 625 Characteristics, mineralization and paleo-environment effects. Lithos 204, 1-3.
- 626 Xu, Z.J., Song, X.D., 2010. Joint inversion for crustal and Pn velocities and Moho
- 627 depth in Eastern Margin of the Tibetan Plateau. Tectonophysics 491, 185-193.

- 628 Yin A., 2010. Cenozoic tectonic evolution of Asia: A preliminary synthesis.
- 629 Tectonophysics 488, 293-325.
- 630 Yuan, X., Ni, J., Kind, R., Mechie, J., Sandvol, E., 1997. Lithospheric and upper
- 631 mantle structure of southern Tibet from a seismological passive source experiment. J.
- 632 Geophys. Res. 102, 27491-27500.
- 633 Zandt, G., Ammon, C.J., 1995. Continental crust composition constrained by
- measurements of crustal Poisson's ratio. Nature 374, 152-154.
- 635 Zhong, Y.T., He, B., Mundil, R., Xu, Y.G., 2014. CA-TIMS zircon U-Pb dating of
- 636 felsic ignimbrite from the Binchuan section: Implications for the termination age of
- 637 Emeishan large igneous province. Lithos 204, 14-19.
- 638 Zhou, M.F., Arndt, N.T., Malpas, J., Wang, C.Y., Kennedy, A.K, 2008. Two magma
- 639 series and associated ore deposit type in the Permian Emeishan large igneous province,
- 640 SW China. Lithos 103, 352-368.
- 641 Zhu, L.P., Kanamori, H., 2000. Moho depth variation in southern California from
- teleseismic receiver functions. J. Geophys. Res. 105, 2969-2980.
- 643

644

#### 645 **Table caption**

646 **Table 1.** The average crustal thickness (H) and the bulk Vp/Vs ratio ( $\kappa$ ) beneath each

647 station of the COMPASS-ELIP seismic array.

648

#### 649 **Figure captions**

Fig. 1. The emplacement site of Emeishan Large Igneous Province (ELIP) shown in a paleogeographic map of late Permian (a) (modified from Ali et al., 2005) and its present location (b) with other LIPs exposed on the Earth (modified from Bryan et al., 2002). Note the very large dimensions that the ELIP has traveled in space and time since its formation and, hence, the mismatch between the locations of the Permian plume source and the present-day ELIP and the exhaustion of thermal effect in ELIP.

657

Fig. 2. Shaded topographic map that shows the regional geologic features in ELIP and the location of the COMPASS-ELIP seismic array. The red triangles with black frames indicate the stations in the West-Line, which were operated from November 2010 to November 2011. The red triangles without outlines indicate the stations in the East-Line, which were operated from December 2011 to April 2013. The gray thick line indicates the location of the COMWIDE-ELIP experiment (Xu et al., 2015). The green areas show the distribution of ELIP basalts. The upper-right inset

| 665 | is a map of East Asia, in which a red bar indicates the approximate location of the   |
|-----|---------------------------------------------------------------------------------------|
| 666 | array. Abbreviations for faults: F1, Nujiang Fault; F2, Langcang Fault; F3, Ailaosan- |
| 667 | Red River Fault (ARF); F4, Lijiang-Xiaojinghe Fault (LXF); F5, Lvzhijiang-            |
| 668 | Yuanmou Fault (LYF); F6, Xiaojiang Fault (XJF); F7, Shizong-Mile Fault; F8,           |
| 669 | Shuicheng-Ziyun Fault (SZF); F9, Zunyi-Guiyang Fault; and F10, Zhenyuan-              |
| 670 | Guiyang Fault. Abbreviations for zones: TRZ, Three-river Zone; INZ, Inner Zone;       |
| 671 | IMZ, Intermediate Zone; OTZ, Outer Zone. Acronyms in the upper-right inset: NCC       |
| 672 | North China Craton; YC, Yangtze Craton; and ICB, Indo-China Block.                    |
| 673 |                                                                                       |

Fig. 3. Map of events with magnitudes of Ms > 5.0 and epicentral distances between
30° and 90° used in this study. The red circles indicate 579 events recorded by the
West-Line of the array (Fig. 2), while the green circles indicate 398 events recorded
by the East-Line of the array. The red triangle with black frame indicates the
approximate location of the COMPASS-ELIP array.

679

**Fig. 4.** Stacked receiver function profile in time-domain obtained by the stacking of move-out corrected traces in 50-km-width moving longitude bins with an overlapping step of 10 km, and based on the locations of the piercing point at 50 km depth. The inclined numbers at the bottom denote the numbers of stacked RFs for each bin. The geological features are marked on the top at their corresponding locations in Fig. 2. The labeled gray dashed lines indicate the signature that is

recognized in Fig. 5. Abbreviations for faults: ARF, Ailaoshan-Red River Fault;
LXF, Lijiang-Xiaojinghe Fault; LYF, Lvzhijiang-Yuanmou Fault; XJF, Xiaojiang
Fault; and SZF, Shuicheng-Ziyun Fault.

689

690 Fig. 5. Multidisciplinary geophysical observations along the profile. (a) Gravity 691 anomaly derived from the COMGRA-ELIP experiment (Deng et al., 2015). The 692 blue circles denote the Bouguer gravity. The red circles denote the residual Bouguer 693 gravity, i.e., the remains of Bouguer gravity after subtracting the regional correction 694 that was calculated by a one-order polynomial fit. (b) Averaged P-wave velocity 695 derived from the crustal velocity section (d). (c) Migrated image of the crustal 696 structure based on RFs. The stations of the COMPASS-ELIP experiment and 697 topography along the profile are shown in the upper panel. The green line indicates 698 the average topography along the profile computed by a running average within a 699 60-km radius. The signatures recognized here are the following: crystalline 700 basement (CB), Conrad discontinuity (CD), underplating interface (UI) and Moho. 701 (d) Crustal P-wave velocity along the profile derived from the COMWIDE-ELIP 702 experiment (Xu et al., 2015). (e) Crustal thickness derived from the H- $\kappa$  stacking 703 analysis of RFs (blue circles, also marked by the black circles in (c)), and the Moho 704 depth estimated from the Airy isostatic equilibrium (Airy Moho, green line) based 705 on the average topography along the profile. (f) Vp/Vs ratios (blue circles) derived 706 from the H-k analysis of RFs, and heat flow (red line) along the profile extracted 707 from the dataset that produced the heat flow map of Chinese continent and its 708 adjacent areas (Hu et al., 2000; Tao and Shen, 2008). The vertical bars in (e) and (f) 709 denote the standard errors of the arithmetic averages computed by the three-point 710 sliding average within each zone along the profile. Note that, the Inner Zone is 711 characterized by high density, high P-wave velocity, high Vp/Vs ratios, low heat 712 flow, large crustal thickness that deviates from the Airy Moho, and no significant 713 low-velocity zone within the crust. The abbreviations for the faults and zones are 714 the same as in Figs. 2 and 4.

715

716 Fig. 6. The migrated RF profiles in depth-domain obtained by Common Conversion 717 Point (CCP) stacking (Yuan et al., 1997) using the IASP91 model (a) and a 2D 718 modified model (b). The modified model contains lateral variations in the bulk 719 crustal Vp-velocity (Fig. 5b) derived from the COMWIDE-ELIP experiment (Xu et 720 al., 2015) (Fig. 5d) and the bulk crustal Vp/Vs ratios (Fig. 5e) from H-κ stacking. 721 The amplitude scale is the same for both profiles. The conversions are more sharply 722 imaged and properly located with the modified model. The surface elevation, 723 geological features and stations along the profile are marked in the top panel. The 724 abbreviations for the faults and zones are the same as in Figs. 2 and 4.

725

726

727 Fig. 7. Crustal thickness (H) versus Vp/Vs ratios along the COMPASS-ELIP profile.

44

The values that are associated with the four zones were enclosed by individual bestfitting ellipses with the minimum area. The Crosses in different colors show the measurements at different zones. The diamonds at the center of each ellipse correspond to the average H and Vp/Vs ratio of the zone. As a reference, the gray dashed line indicates the Vp/Vs ratio of 1.75.

733

734 Fig. 8. Interpretative cartoon that summarizes the observations of the crustal 735 structures and the dynamic responses in ELIP. The crustal skeleton is delineated by 736 the seismic signatures that were extracted from the migrated image (Fig. 5c). The 737 inferred surface responses of the crustal vertical growth in the Inner Zone of ELIP at 738 the time of the Permian magmatism are sketched without a strict scale. The green 739 dashed line above the inferred surface indicates the flood basalts produced by the 740 Permian volcanism. SZA: Shuicheng-Ziyun Aulacogen; SCLM: Subcontinental 741 Lithospheric Mantle. The other abbreviations are the same as in Figs. 2 and 4.



(a) Topographic map showing the regional geologic features in the Emeishan Large Igneous Province(ELIP) and the location of the seismic array.



(b) Interpretative cartoon summarizing the observations of the crustal structures and the dynamic responses in ELIP.











Figure-05 Click here to download Figure: Fig05\_R2.pdf









#### Table-01 Click here to download Table: table\_01\_R2.docx

| Zone         | Station    | Longitude | Latitude  | Elevation | Н-к                        | stacking <sup>a</sup>                  | Sliding                      | average <sup>b</sup>                   | No. of RFs |
|--------------|------------|-----------|-----------|-----------|----------------------------|----------------------------------------|------------------------------|----------------------------------------|------------|
|              |            | (°E)      | $(^{0}N)$ | (m)       | H (km)                     | Vp/Vs                                  | H (km)                       | Vp/Vs                                  |            |
|              | E01        | 98.855    | 26.927    | 1708      | 46.5±0.3                   | $1.750 \pm 0.017$                      | 47.5±1.1                     | $1.755 \pm 0.015$                      | 178        |
|              | E02        | 98.890    | 26.940    | 2002      | $48.0 \pm 3.5$             | $1.735 \pm 0.044$                      | 47.5±1.1                     | $1.755 \pm 0.015$                      | 26         |
|              | E05        | 99.110    | 26.892    | 2493      | $48.0 \pm 0.7$             | $1.780 \pm 0.020$                      | 48.3±0.4                     | $1.775 \pm 0.040$                      | 101        |
|              | E06        | 99.190    | 26.865    | 1782      | 49.0±0.3                   | $1.810 \pm 0.010$                      | 50.2±2.3                     | $1.820 \pm 0.041$                      | 115        |
|              | E07        | 99.361    | 26.884    | 2090      | $53.5 \pm 2.0$             | $1.870 \pm 0.010$                      | 52.5±3.6                     | $1.810 \pm 0.042$                      | 205        |
| Three-river  | E08        | 99.512    | 26.818    | 2618      | 55.0±0.3                   | 1.750±0.010                            | 53.7±1.0                     | $1.792 \pm 0.084$                      | 166        |
|              | E09        | 99.654    | 26.803    | 2811      | 52.5±0.2                   | 1.755±0.005                            | 52.0±3.0                     | $1.752 \pm 0.003$                      | 225        |
|              | E10        | 99.804    | 26.802    | 2240      | 48.5±0.1                   | $1.750 \pm 0.004$                      | 51.5±2.3                     | 1.743±0.013                            | 162        |
|              | E11        | 99.895    | 26.835    | 1926      | 53.5±0.2                   | 1.725±0.004                            | 51.0±3.1                     | 1.783±0.053                            | 193        |
|              | E12        | 100.005   | 26.830    | 2307      | 51.0±0.2                   | $1.875 \pm 0.007$                      | 52.5±1.5                     | $1.772 \pm 0.087$                      | 206        |
|              | E13        | 100.103   | 26.834    | 2458      | 53.0+1.5                   | 1.715+0.023                            | 52.5+1.5                     | $1.772 \pm 0.087$                      | 87         |
|              | E14        | 100.258   | 26.848    | 2382      | 48.0+3.9                   | 1.895+0.037                            | 51.8+4.1                     | 1.800+0.099                            | 43         |
|              | E15        | 100.386   | 26.829    | 2748      | 54.0+0.5                   | $1.775 \pm 0.009$                      | 51.8+4.1                     | 1.800+0.099                            | 139        |
|              | E16        | 100.573   | 26.805    | 1525      | 53.5+0.2                   | $1.720 \pm 0.005$                      | 54.0+0.4                     | $1.758 \pm 0.032$                      | 175        |
|              | E17        | 100.695   | 26.808    | 2378      | 54 5+0 2                   | 1 780+0 005                            | 55.0+1.5                     | $1.755\pm0.039$                        | 85         |
|              | E17<br>F18 | 100.852   | 26.800    | 2898      | 57.0+2.4                   | $1.765\pm0.003$                        | 55.0±1.5                     | $1.755 \pm 0.057$<br>1 778+0 010       | 204        |
|              | E10        | 101.000   | 26.803    | 3090      | $57.0 \pm 2.1$<br>53 5+0 2 | $1.709 \pm 0.097$<br>1.790 $\pm 0.009$ | 53 8+3 2                     | $1.798\pm0.033$                        | 201        |
|              | E1)        | 101.000   | 26.806    | 1971      | 51.0±0.2                   | $1.790\pm0.009$<br>1.840±0.004         | 50.7±2.8                     | $1.770 \pm 0.035$<br>1 823 $\pm 0.035$ | 189        |
|              | E20<br>E21 | 101.140   | 26.800    | 1333      | $17.0\pm0.2$               | 1.840±0.004                            | $50.7\pm2.8$<br>51.0+2.5     | $1.823\pm0.033$<br>1 827+0 016         | 167        |
| Inner        | E21<br>E22 | 101.307   | 26.800    | 1355      | $47.5\pm 5.2$              | $1.840\pm0.000$                        | $40.5\pm4.1$                 | $1.827 \pm 0.010$<br>1 820 ± 0.024     | 107        |
|              | E22<br>E22 | 101.400   | 20.009    | 12/4      | $34.3\pm0.2$               | $1.800 \pm 0.003$                      | 49.3±4.1                     | $1.620\pm0.024$                        | 175        |
|              | E23<br>E24 | 101.039   | 20.790    | 1010      | 40.J±1.9                   | $1.620\pm0.017$<br>1.725±0.010         | 53.0±4.8                     | $1.765\pm0.029$<br>1.765±0.050         | 123        |
|              | E24<br>E25 | 101.012   | 20.004    | 1110      | 50.0±0.5                   | $1.733\pm0.010$<br>$1.740\pm0.006$     | 569,26                       | $1.703\pm0.039$                        | 130        |
|              | E25        | 101.951   | 20.795    | 1118      | 55.5±0.2                   | $1.740\pm0.006$                        | 50.8±2.0                     | $1.745 \pm 0.011$                      | 247        |
|              | E20<br>E27 | 102.065   | 20.815    | 10/4      | 59.0±0.5                   | $1.760\pm0.005$                        | 57.2±3.9                     | $1.733 \pm 0.020$                      | 149        |
|              | E27        | 102.247   | 26.784    | 2158      | 59.0±3.2                   | 1.700±0.044                            | 58.8±0.2                     | 1.732±0.036                            | 188        |
|              | E28        | 102.350   | 26.747    | 1333      | 58.5±1.9                   | 1.735±0.019                            | 58.7±0.4                     | 1.712±0.020                            | 181        |
|              | E29        | 102.470   | 26.772    | 1950      | 58.5±0.6                   | 1.700±0.017                            | 56.7±2.2                     | 1.738±0.027                            | 176        |
|              | E30        | 102.673   | 26.761    | 2335      | 53.0±0.3                   | 1.780±0.005                            | 56.0±3.3                     | 1.748±0.053                            | 160        |
|              | E31        | 102.801   | 26.768    | 1834      | 56.5±0.6                   | 1.765±0.015                            | 56.0±3.3                     | 1.748±0.053                            | 59         |
|              | E32        | 102.932   | 26.751    | 17/1      | 50.0±3.4                   | 1.795±0.049                            | 50.2±0.2                     | 1.717±0.090                            | 117        |
|              | E33        | 103.138   | 26.739    | 2598      | $50.0\pm1.3$               | $1.655 \pm 0.050$                      | 50.2±0.2                     | $1./1/\pm 0.090$                       | 36         |
|              | E34        | 103.251   | 26.734    | 2481      | 50.5±1.2                   | 1.700±0.016                            | 50.3±0.4                     | 1.695±0.040                            | 65         |
|              | E35        | 103.415   | 26.728    | 2118      | 50.5±2.1                   | 1.730±0.022                            | 48.7±2.2                     | 1.750±0.052                            | 59         |
|              | E30<br>E27 | 103.5493  | 26.716    | 1810      | $45.0\pm4.2$               | 1.820±0.064                            | 48.2±3.2                     | $1.758 \pm 0.052$                      | 80         |
| T            | E3/        | 103.080   | 20.700    | 2140      | $49.0\pm1.5$               | $1.725\pm0.022$                        | $45.2\pm 3.8$                | $1.798 \pm 0.036$                      | 80         |
| Intermediate | E38<br>E20 | 103.829   | 20.070    | 2282      | $41.5 \pm 4.0$             | $1.850 \pm 0.070$                      | $44.5\pm7.1$                 | $1.752\pm0.074$                        | 89         |
|              | E39<br>E40 | 103.993   | 20.007    | 2200      | $43.0\pm1.7$               | $1.080 \pm 0.033$                      | $42.3\pm3.8$                 | $1.765 \pm 0.104$                      | 45         |
|              | E40<br>E41 | 104.082   | 20.000    | 1957      | $42.5 \pm 1.4$             | $1.765 \pm 0.027$<br>$1.750 \pm 0.042$ | $43.5\pm0.9$                 | $1.752 \pm 0.057$                      | 84<br>109  |
|              | E41<br>E42 | 104.309   | 20.002    | 1902      | $43.0\pm1.3$               | $1.730\pm0.042$<br>1.760±0.014         | $42.3\pm1.6$<br>$45.0\pm3.5$ | $1.738 \pm 0.009$<br>$1.747 \pm 0.010$ | 108        |
|              | E42<br>E42 | 104.425   | 20.004    | 2025      | 40.0±0.3                   | $1.700\pm0.014$<br>1.720±0.014         | $43.0\pm3.3$                 | $1.747\pm0.010$<br>$1.728\pm0.022$     | 62         |
|              | E43<br>E44 | 104.555   | 20.047    | 2033      | $50.0\pm0.9$<br>51.0±0.3   | $1.730\pm0.014$<br>1.695±0.007         | $47.0\pm7.3$                 | $1.728\pm0.032$<br>$1.747\pm0.040$     | 139        |
|              | E44<br>E45 | 104.700   | 26.637    | 1066      | $10 \pm 0.5$               | $1.075\pm0.007$<br>1.815±0.054         | 18 8+2 2                     | $1.747 \pm 0.040$<br>1 793+0 100       | 95         |
|              | E45<br>F46 | 104.810   | 26.616    | 1782      | $47.0\pm1.1$<br>46 5+0 4   | 1.815±0.054                            | 48.8±2.2                     | $1.793\pm0.100$<br>1 793±0 100         | 82         |
|              | F47        | 105 119   | 26.606    | 1580      | 42 0+1 0                   | 1 700+0 022                            | 41.3+2.1                     | $1.773 \pm 0.100$<br>1.652+0.048       | 82         |
|              | E47<br>F48 | 105.282   | 26.000    | 1592      | 42.0±1.0<br>39.5+1.6       | $1.700 \pm 0.022$<br>1.655+0.022       | $41.3\pm2.1$<br>41.3+2.1     | $1.052 \pm 0.040$<br>1.652 + 0.048     | 103        |
|              | E40<br>E49 | 105.202   | 26.595    | 1483      | 41 5+1 9                   | 1.600±0.022                            | 395+14                       | $1.052 \pm 0.040$<br>1 707+0 091       | 75         |
|              | E50        | 105.573   | 26.586    | 1672      | 37.5+3.3                   | 1.865+0.020                            | 38.5+3.1                     | 1.725+0.159                            | 38         |
|              | E51        | 105.721   | 26.571    | 1723      | 36.5+3.0                   | $1.710 \pm 0.055$                      | 38.2+1.4                     | 1.753+0.116                            | 31         |
|              | E52        | 105.851   | 26.554    | 1455      | 40.5+1.4                   | 1.685+0.081                            | 39.0+2.7                     | $1.682 \pm 0.028$                      | 39         |
|              | E53        | 106.012   | 26.531    | 1381      | 40.0±0.7                   | $1.650 \pm 0.015$                      | 40.2+0.4                     | 1.675±0.020                            | 62         |
| Outer        | E54        | 106.175   | 26.533    | 1283      | 40.0±0.4                   | $1.690 \pm 0.008$                      | 38.8+1.4                     | 1.707±0.058                            | 51         |
| Outer        | E55        | 106.309   | 26.511    | 1250      | 36.5±1.6                   | 1.780±0.032                            | 39.2±2.1                     | 1.710±0.053                            | 116        |
|              | E56        | 106.445   | 26.500    | 1242      | 41.0±0.6                   | 1.660±0.013                            | 39.0±2.9                     | 1.723±0.072                            | 61         |
|              | E57        | 106.586   | 26.484    | 1233      | 39.5±0.3                   | 1.730±0.014                            | 40.0±1.1                     | 1.705±0.048                            | 69         |
|              | E58        | 106.760   | 26.504    | 1114      | 39.5±0.4                   | 1.725±0.024                            | 40.5±1.2                     | 1.705±0.029                            | 98         |
|              | E59        | 106.914   | 26.480    | 1247      | 42.5±0.9                   | $1.660 \pm 0.028$                      | 42.0±2.5                     | 1.688±0.042                            | 35         |
|              | E60        | 107.068   | 26.488    | 1020      | 44.0±0.3                   | 1.680±0.012                            | 43.0±0.9                     | 1.657±0.017                            | 116        |
|              | E61        | 107.239   | 26.500    | 1071      | 42.5±0.7                   | 1.630±0.014                            | 43.0±0.9                     | 1.657±0.017                            | 61         |

<sup>a</sup> Uncertainties are the standard errors estimated by bootstrap trials for each station; <sup>b</sup>Uncertainties are the standard errors estimated by sliding average for every three-station within each zone.