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Abstract

Numerical dating methods in Quaternary science are faced with the need to adequately visualise data consisting of
estimates that have differing standard errors. Recent approaches either focus on the display of age frequency distributions
that ignore the standard errors or on radial plots, that allow comparisons between estimates allowing for their differing
precisions, but without giving an explicit picture of the age frequency distribution. Hence, visualising both aspects
requires at least two plots. Here, an alternative is introduced: The abanico plot. It combines both aspects and therefore
allows comprehensive presentation of chronometric data with individual standard errors. It extends the radial plot by
a kernel density estimate plot, histogram or dot plot and contains elements that link both plot types. As part of the
R package ’Luminescence’ (version > 0.4.5), the abanico plot is designed as the final part of a comprehensive analysis
chain of luminescence data but is open to a wide range of other Quaternary dating communities, as illustrated by several
examples.
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1. Introduction

Many geo-scientific dating communities, such as lumi-
nescence (optically stimulated luminescence; OSL, ther-
moluminescence, TL), fission track (FT) and cosmogenic
nuclides (CN), including radiocarbon (14C) generate data
that consist of age estimates with individual standard er-
rors 1. There are several plot types for such chronometric
data. Among them are rather simple representations of
age estimates, without focus on errors (e.g., histograms or
kernel density estimates). More insight into the data is
possible when plotting standard errors explicitly in some
relation to ages (e.g., plots of ages with error bars in ranked
order or the radial plot). However, there is always a trade-
off between adequate visualisation and straightforward in-
terpretation of variability in ages and variability in errors.
Galbraith and Roberts (2012) provide a thorough overview
and discussion of currently available plot types for chrono-
metric data with individual standard errors, focused on
OSL data.

In this article, we argue for an enhancement of the
radial plot (Galbraith, 1988). A radial plot is a scatter
plot, showing data precision (reciprocal standard error)

∗corresponding author
Email address: mdietze@gfz-potsdam.de (Michael Dietze)

1The term age is used throughout this article for simplicity and
consistency although for example in luminescence dating typically
equivalent dose (De) are used rather than ages.

on the x-axis and a standardised estimate of age on the
y-axis. Thereby, data precision increases along the x-axis
and data variation around a given central value (e.g., the
weighted mean) manifests as dispersion along the y-axis.
Hence, these two sources of variability are geometrically
separated. The radial plot further allows projecting each
measured value on a z-axis depicting a scale of ages, and
thereby in principle gives a sense of the corresponding
ages and their distribution. Nevertheless, this view on
age distributions is not really intuitive. Each age needs
to be mapped by mentally drawing a line from the origin
of the scatter plot (zero at the x- and y-axis), through
the data point, to the z-axis. This drawback might be
reduced by adding rugs, short lines perpendicular to the
z-axis at the projected position of each data point, to the
z-axis (e.g., as in Galbraith 1988). But still, the radial
plot is no intuitive tool to put emphasis on age frequency
distribution. It therefore seems useful to combine the ad-
vantages of the radial plot with those of age frequency
distribution plots, such as kernel density estimate plots,
histograms or dot plots. The abanico plot explicitly fo-
cuses on age frequency distributions. Accordingly, it is
not intended to replace the radial plot, which provides an
excellent approach to illustrating distribution of standard-
ised estimates and precision. A radial plot (also available
as function plot_RadialPlot() in the R package ’Lumi-
nescence’, R Luminescence Developer Team 2015) can be
a sufficient or even more appropriate solution, for example
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when individual standard errors vary significantly or are
high in general.

Typically, the above mentioned plots can be produced
by specific software, such as Radial Plotter (Vermeesch,
2009), Analyst (e.g., Duller, 2007a,b, 2015), S-scripts, SigmaPlotTM

and so on. In any case, it requires to prepare, import and
modify the age data, create the plot and export/save it
for potential further modification steps. Usually, this in-
volves dealing with several programs, although it might be
reasonable to work with just one software. Kreutzer et al.
(2012) introduced a collection of functions for the statisti-
cal programming language R (R Development Core Team,
2015): the package ’Luminescence’ (current version 0.4.5).
The primary goals of the package are to provide a free,
open, transparent, modifiable and comprehensive tool for
luminescence data analysis. Specifically, the package sup-
ports nearly all published age models and plot types to
handle luminescence data. However, its applicability is
not restricted to luminescence data. Other dating com-
munities share a considerable portion of data analysis and
might also benefit from the package.

The scope of this article is to introduce the abanico
plot, a plot type that merges a radial plot with a kernel
density estimate plot (or other univariate plot types if the
user decides so). Thus, it combines the benefits of both
plot types to provide a comprehensive view on chronomet-
ric data. The contribution shows options to modify the
abanico plot for different display purposes. Several exam-
ples highlight the overall applicability of the abanico plot
to different dating disciplines. A supplementary document
provides a tutorial-like, step-by-step introduction to data
import and how to create and customise the abanico plot.

2. The abanico plot

2.1. Philosophy and construction

The abanico plot is named after its fan-like appearance
(el abanico [span.] – the fan, [aβa’niko]). The initial con-
cept of this plot emerged during the revision of an S-script
by Rex Galbraith to create radial plots and is based on the
combination of a radial plot and a kernel density estimate
curve as suggested by Galbraith and Green 1990, Fig. 4, p.
204. Such aligned plots have been already adopted by fis-
sion track dating groups (e.g., Clift et al. 2013). However,
a comprehensive view on both, standard error and data
distribution characteristics requires further steps. Along
with a list of the benefits of the radial plot, Galbraith and
Roberts (2012) point at the necessity to look at more than
one plot type in order to get a comprehensive view on the
analysed data, i.e. to explore ages and associated stan-
dard errors in different ways. This is exactly the motiva-
tion to introduce the abanico plot to the scientific commu-
nity. Although the abanico plot could have been built as
a stand-alone programme (e.g., like the JavaTM-program
Radial Plotter ; Vermeesch 2009)2 the authors decided to

2http://www.ucl.ac.uk/~ucfbpve/radialplotter/

integrate it in the R package ’Luminescence’ (R Lumi-
nescence Developer Team, 2015). This strategy ensures
continuous development and support as well as the pos-
sibility to handle the complete workflow of data analysis,
plotting and further statistical evaluations in one software
environment.

As stated above, the abanico plot consists of two parts
(Fig. 1): a bivariate part (showing standardised estimates
in relation to the precisions) and a univariate part (show-
ing the age frequency distribution). The two parts are
linked by a z-axis giving an age scale that is common to
both. In a radial plot the z-axis is usually drawn as an
arc of a circle, but here it is drawn as a straight line so
that it can also be used for the univariate part. In general,
a data set consists of n measured values zi, i = [1, ..., n],
each with an associated standard error σi (i.e., a measure
of deviation, not scatter). When no log transformation is
used, zi denotes the estimated age for the íth individual
sample and σi is its standard error. When the log scale is
used, zi is the natural log of the age estimate and σi is the
standard error of the log of the age estimate. In the latter
case σi is closely approximated by the relative standard
error of the age estimate (i.e., the standard error of the
age estimate divided by the age estimate). The precision
(x-axis in the plot) is defined as the reciprocal value of the
individual standard error:

xi =
1

σi
(1)

Standardisation of the data (y-axis of the plot) means here
subtracting a convenient central value z0 from each value
zi and subsequent division by the individual standard error
σi, i.e.,

yi =
zi − z0
σi

(2)

The default central value is the weighted mean with weights
proportional to 1/σ2

i (cf. Appendix, Galbraith 1988). This
results in a transformed data set, centred at z0 and where
each yi has unit standard error. This makes comparisons
between the estimates easy, taking into account their dif-
fering precisions. For example, a set of estimates that
agree with a common value will scatter with unit standard
error about a line that corresponds to that value (about
95 % of them will be in a ±2 range centred on that value).
The default plot includes a ±2 range (called a ’disper-
sion bar’) around the central value (the dark grey area in
Fig. 1).

The data set can be plotted in linear or logarithmic
form. This decision has consequences on the plot result.
Fig. 2 illustrates the effects for two arbitrary data points
with identical relative standard errors. If the abanico plot
is drawn with a logarithmic z-scale zi represents the log-
arithms of the measured values, i.e. zi becomes log(zi),
and σi is approximated by the relative standard error, i.e.
σi(log(zi)) ≈ σi/zi (cf. Galbraith et al., 1999). Hence, the
data are plotted without any difference along the x-axis.
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Figure 1: The abanico plot as created by the default R function call (plot AbanicoPlot(...)) using the example data provided with the R
package ’Luminescence’ (ExampleData.DeValues$CA1, De results based on single grain (200–250 µm) quartz measurements, performed on a
Risoe TL/OSL DA-20 reader at the University of Cologne). The plot consists of two parts, a bivariate plot (a radial plot) on the left side
and a univariate plot (by default a kernel density estimate) on the right side. De values are shown on a log-scale. For further details on the
plot construction see the supplementary materials. Details on the dataset are given in the package manual.

However, in linear form, precision is calculated as recipro-
cal of the absolute standard errors, which places the value
with 10 Gy standard error towards lower precision.

The univariate part of the abanico plot can be one or
more out of the following: (1) a kernel density estimate
plot, (2) a histogram and (3) a dot plot. A kernel density
estimate (KDE) is a curve that depicts the empirical es-
timate of the density function of the distribution that the
measured ages were drawn from (Galbraith and Roberts
2012). The size of the kernel (i.e. the bandwidth) has
important effects on the appearance (smoothness) of the
resulting curve. There are several suggestions for optimal
kernel sizes, most of them are implemented in R. However,
in practice, relatively large kernel sizes are favoured and,
hence, over-smoothed curves are produced (cf. Galbraith
and Roberts 2012). By default, the abanico plot uses the
method of Sheather and Jones (1991) to derive a suitable
bandwidth (cf. Jones et al. 1996 for a methodological com-
parison). KDE plots are the default option for the univari-

ate part of the abanico plot, mainly because they provide
a reasonable picture of the underlying distribution of zi
for a sufficiently large number of samples. Furthermore,
KDE curves are efficient in visualising more than one data
set at a time, i.e. it is possible to plot several curves over
each other. For a literal explanation of the ideas, benefits
and shortcomings of KDE plots see Galbraith and Roberts
(2012).

Galbraith (2010) stresses some limitations of KDE plots.
The abanico plot compensates those by linking univariate
information to information from the bivariate part. In
general, we consider a KDE as a more appropriate solu-
tion to illustrate age distributions than a histogram, given
the bandwidth is sufficiently small and the number of mea-
sured values is sufficiently large. A KDE plot avoids graph-
ically cutting the data set into bins of predefined class limit
position. As it is combined with the bivariate plot part, it
appears also unnecessary to explicitly display the sample
size (cf. Galbraith and Roberts 2012), although this could
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Figure 2: Abanico plot examples with synthetic data (two values, both with a relative standard error of 5 %) to illustrate the influence of
z-axis scaling on data representation. A: with logarithmic scaling (default option), precision is calculated from relative standard errors and
both values plot at the same location along the x-axis. B: with linear scaling precision is calculated from the absolute standard errors and
results in different locations along the x-axis. In both plots the rug option of the function is used, the dispersion bar is omitted and plots are
centred at 150 Gy.

be indicated by adding rugs to the z-axis.
Nevertheless, there are cases when KDE plots are not

useful. For example if the data distribution is not contin-
uous (although this can be handled with a small enough
bandwidth) or if only very few measured values are avail-
able. In the former case a histogram might be more ap-
propriate, in the latter case a dot plot may be chosen.
A histogram displays the frequency distribution of mea-
sured values, grouped in intervals (i.e., bins). As with ker-
nels in KDE plots, the bin width and locations of break
points is crucial for histograms to adequately visualise the
data distribution properties as unbiased as possible. In
the abanico plot bin size and break point location can be
set manually to override the default values. For an elabo-
rated discussion of histograms with respect to chronomet-
ric data see Galbraith and Roberts (2012). Dot plots are
very simple displays of data frequency distributions, sim-
ilar to histograms. They show stacked dots, proportional
to the number of values in bins and allow a fast and direct
visualisation of individual values.

The two parts of the abanico plot are linked by their
common z-axis, representing the age scale. This is made
visually explicit by a set of ’isochrons’, i.e. lines of syn-
chronous ages, that are horizontal in the univariate part
and slope to the origin in the bivariate part (grey lines
in Fig. 1). One or more bolder isochrons can be added
to depict user-defined values (cf. Sec. 2.2). As a further

visual aid, there is an option to shade in a ’scatter poly-
gon’ (e.g., the light grey polygon in Fig. 1) highlighting the
area between the lower and upper quartiles in the univari-
ate plot and the corresponding isochrons on the radial plot
(by default). This shows where the middle half of the zi s
lies in both plots. As in Fig. 1, the scatter polygon may
overlap with the dispersion bar. It is the dispersion bar,
not the scatter polygon, that indicates agreement or oth-
erwise of estimates with a specified value. In contrast, the
scatter polygon characterises the age frequency distribu-
tion. Hence, by definition the two elements have different
meanings and usually do not cover the same range.

In summary, the abanico plot amalgamates many of
the advantages of a radial plot with those of a KDE. It
allows assessing variation of data precision (along the x-
axis), scatter around a user-defined central value, agree-
ment of different values with each other, agreement be-
tween subsets of observations (all along the y-axis) and
characteristics of the age distribution (along the z-axis).

2.2. Fine-tuning the plot

The abanico plot can be created by typing the function
name in R, followed by brackets, containing the variable
name of data to be plotted: plot_AbanicoPlot(data = age.data).
A typical R-script might look like the following:

1 ## load the package
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2 l ibrary ( Luminescence )
3

4 ## s e t working d i r e c t o r y
5 setwd ( ”path/to/data/d i r e c t o r y ” )
6

7 ## read chronometric data
8 data <− read . table ( ” data . txt ” )
9

10 ## c r e a t e the p l o t
11 plot AbanicoPlot (data = data )

Or even more compact:

1 ## c r e a t e the p l o t
2 Luminescence : : plot AbanicoPlot (data = read . table (

”path/to/data/data . txt ” ) )

This produces a plot as shown in Fig. 1. However, the
function has a significant number of additional parameters
(added and separated by commas), which allow a flexible
use of the plot for a range of purposes. The plot may be ad-
justed by applying general arguments of the R-language.
It is possible to modify plot title (main), subtitle (mtext),
axes labels (xlab, ylab, zlab), colours for data points
(col), dispersion displays (polygon.col, bar.col) and
grid lines (grid.col), to add legends (legend, legend.pos),
and to adjust display ranges (xlim, ylim, zlim).

Apart from these rather general adjustments, more plot-
specific and sophisticated modifications are possible. The
univariate part can show one or more out of the follow-
ing plot types: KDE (kde = TRUE, the default option),
histogram (hist = TRUE) and dot plot (dots = TRUE).
However, only a KDE is useful if more than one data
set is shown. Manual adjustment of the KDE bandwidth
is possible with the parameter bw, which can be set to
a numeric value or to a keyword indicating the method
used for computation (e.g., bw = "nrd0"). Breakpoints
(or bin limits) for the histogram and dot plot can be spec-
ified, as well; either as the number of breakpoints to be
computed or as vector of actual breakpoint values (e.g.,
breaks = 20). The parameter plot.ratio controls the
relative width ratio of the bivariate and univariate part.
It is set to 0.75 by default. The frame of the abanico plot
can be controlled by four options: frame = 0 (no frame
is drawn), frame = 1 (a frame is drawn that originates
at zero precision and zero standardised estimate and ex-
tends along the range of the z-axis, the default option),
frame = 2 (the frame includes the dispersion bar) and
frame = 3 (the frame appears as a rectangle and includes
the entire plot area). As shown in Galbraith and Green
(1990), it is also possible to draw the entire plot vertically
(rotate = TRUE, cf. Fig. 5), which puts more emphasis on
the univariate plot part. The z-axis can be plotted in linear
(log.z = FALSE) or logarithmic (log.z = TRUE, default)
scale. Rugs can be added for better perception of the dis-
tribution of individual values (rug = TRUE, cf. Fig. 5).
Plotting of the y-axis may be omitted (y.axis = FALSE)
in cases where the scatter of the standardised estimates
is too small for appropriate visualisation. Error bars may
be added (error.bars = TRUE, cf. Fig. 3) for small data
sets or when it is necessary to show individual errors in

relation to each other. Since the R package ’Lumines-
cence’ version 0.4.0 a function is provided to calculate a
wide range of descriptive statistics, both in unweighted
and weighted mode. The output of this function can be
passed to the abanico plot. Thus, it is possible to show
any of the following statistic measures, either as a subtitle
(summary.pos = ’sub’) or legend-like item (e.g., summary.pos = ’topleft’):
’n’ (number of samples), ’mean’ (mean), ’mean.weighted’
(weighted mean), ’median’ (median), ’sdrel’ (relative
standard deviation), ’sdabs’ (absolute standard devia-
tion), ’serel’ (relative standard error), ’seabs’ (abso-
lute standard error) and ’in.2s’ (percent of data in 2 σ).
As noted by Galbraith (1994), there can be good reasons to
use another value than the default weighted mean to cen-
ter the z-axis. The function can calculate different values
for standardising the data (z.0 = ...), i.e. the weighted
mean (’mean.weighted’), the unweighted mean (’mean’)
or the median (’median’). It is also possible to center the
z-axis at a user-defined value (e.g., z.0 = 100). To display
more than one age population in a data set, it is possible
to add further dispersion bars (e.g., bar = c(100, 130),
cf. Fig. 6). It is possible to omit plotting both, the dis-
persion bar (bar.col = FALSE) and the scatter polygon
(polygon.col = FALSE). Also, the default range for the
scatter polygon (dispersion) can be changed, e.g., to ac-
count for non-normal distributions. It is possible to select
’sd’ (one standard deviation), ’2sd’ (two standard devi-
ations), ’qr’ (the quartile range, the default) and ’pnn’

(an arbitrary symmetric percentile range, whereby ’nn’

must be an integer number depicting the lower percentile,
e.g., 5–95 %: dispersion = ’p5’). The abanico plot sup-
ports multiple data sets (or subsets of one data set, cf.
Fig. 5). The different subsets must be passed to the func-
tion as a list of data frames (a native data structure of the
R package), e.g., data <- list(data.1, data.2).

2.3. Integration in the R package ’Luminescence’

The R package ’Luminescence’ (R Luminescence De-
veloper Team, 2015) is the essence of joint work of the au-
thors since 2012 and is supported by a website (http://
www.r-luminescence.de) with several tutorials (to which
new users are kindly referred) as well as a discussion fo-
rum for the growing user community (evidenced by at least
9000 package downloads to date) and published documen-
tation and guidance articles (Kreutzer et al., 2012; Dietze
et al., 2013; Fuchs et al., 2015). Designed as a toolbox,
the R package ’Luminescence’ intends to support routine
work, e.g., Risø BIN-file data import and processing, as
well as exploratory luminescence data analysis, e.g., spec-
tra visualisation and investigation.

R (R Development Core Team, 2015) itself is a com-
mand line-oriented statistical programming language. Thus,
it enables full access to each and every command and
especially plot parameter, even after years - a charac-
teristic that (almost) all mouse-input interfaces are lack-
ing. This is where we see the main strength of R, along
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with minimum effort in reproducing and modifying calcu-
lations and outputs. It is recommended to use the package
along with the programming environment RStudio (http:
//www.rstudio.org/) for a convenient workflow. Never-
theless, it is beyond the scope of this article to give a sys-
tematic introduction to R; for this see, e.g., Ligges 2008;
Adler 2012; Albert and Rizzo 2012; Tippmann 2015. The
supplementary material provides more detailed explana-
tions and elaborated examples. It also contains the code
that was used to create all figures of this article, although
some were edited afterwards, for example to add informa-
tion (Fig. 1).

3. Applications

Like the radial plot (Galbraith, 1988, 1994), the aban-
ico plot is devoted to a broad scientific community to
display data adequately and straightforward, but also to
maintain the possibility to adjust the plot layout for spe-
cific purposes. In the following paragraphs we show se-
lected examples of possible applications in chronometric
disciplines without any intention to re-interpret the pub-
lished data but rather to highlight which aspects might be
revealed by data visualisation using the abanico plot. Fur-
thermore, the data sets used to create the plots might not
always be ideally suited, e.g. in terms of sample size, na-
ture of errors, amount of auxiliary data. However, we tried
to find a reasonable balance between these drawbacks and
the goal to show the flexibility of the plot, possible fields of
application, appropriateness and shortcomings of default
plot settings and the need to adjust specific parameters.

The first example (Fig. 3) is a radiocarbon data set
from a study of the southeastern sector of the Scandina-
vian ice sheet by Rinterknecht et al. (2006). Since the
data repository of the cited publication does not provide
any information on base of the reported individual errors
we treated them conservatively as one standard error. The
abanico plot allows a straightforward overview of outliers,
apparent age components and agreement of dates with re-
spect to a central value (in this case the weighted mean)
as well as containment of values in 2 σ (standardised es-
timates in dispersion bar) or containment in the quartile
range (ages in scatter polygon). The lower outlier appears
extreme in the univariate plot part but when taking its pre-
cision into account in the bivariate part, this impression
becomes rather relative - mainly due to its comparably low
precision. The presented data might either result from two
distinct age populations or represent just one common age.
In the latter case, their reported standard errors would be
underestimated, which would have consequences for inter-
preting the youngest age as an outlier or not. The article
by Rinterknecht et al. (2006) also presents a large data set
of 10Be exposure ages of moraines for which the abanico
plot would be well-suited.

The second example (Fig. 4) shows cosmogenic 10Be
ages of a late-glacial moraine (Fenix I) in Argentina in-
vestigated by Douglass et al. (2006). The abanico plot

clearly reveals the influence of boulder height (circle diam-
eter) and lithology (circle colour) on both, the deviation
from the weighted mean age and the precision. Appar-
ently, higher boulders yield lower precisions and the con-
glomerate sample shows a very high precision. Except for
the lower outlier, all measurements fall into the dispersion
bar and point at a consistent common value. The KDE
curve mainly shows similar distribution trends like the his-
togram. However, in this case the KDE curve provides
a more explicit visualisation of the outlier that does not
correspond to the population comprising all other values.
Also, the apparent modes of the suspected distributions
are different for histogram versus KDE curve. Ideally, the
histogram would have to be drawn with a larger than the
default number of classes. Likewise, 10 samples are not
sufficient to create meaningful KDE curves. Hence, the
curve may just allow a rough perception of the distribu-
tion of ages rather than interpreting a meaningful pat-
tern. The example demonstrates the different meanings
of dispersion bar and scatter polygon. The dispersion bar
cuts the isochrons, whereas the scatter polygon follows the
isochrons. The two plot elements do not share the same
range, as they obviously illustrate different data distribu-
tion properties.

Fig. 5 visualises the results of an inter-laboratory com-
parison of 21Ne concentration measurements of one sam-
ple published by Vermeesch et al. (2012). The two CRPG
samples are excluded and samples 6 to 8 from GFZ were
also omitted because these were pretreated differently, which
resulted in deviating measurement results. KDE curves
are drawn for each laboratory data set separately. In
an inter-laboratory comparison, the focus is not only on
the similarities of measured values but also on individ-
ual precisions within and between laboratories. Both aims
are readily visible in the abanico plot. The KDE curves
give a straightforward impression of differences in vari-
ance and central tendency as well as locations of outliers,
although it might be misleading to plot apparently erratic
values as a density estimate curve. It is relevant to note
that the individual standard errors are of interest in their
own right. Additionally, they convey important informa-
tion for comparing different measurements, within and
among laboratories. Measurements from ETH and GFZ
plot mainly inside the dispersion bar while others (espe-
cially the BGC data) fall obviously outside it, indicating
no common value. As pointed out by Vermeesch et al.
(2012) scatter among the laboratories is higher than could
be explained by the laboratory-internal scatter. The aban-
ico plot provides a clear view on exactly this. The ETH
values cluster with comparably high precision and with
generally low scatter around the central value (weighted
mean in this default case). The BGC values show a sys-
tematic positive offset from the other measurements. This
is visible in the bivariate plot part as a shift parallel to
the central value line towards 3 σ and in the univariate
plot part where this shift manifests as a discrete mode be-
tween 365 ·106 at/g and 385 ·106 at/g. The plot also shows
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Figure 3: Abanico plot of 12 radiocarbon dates, discussed by Rinterknecht et al. (2006). Data are plotted with linear z-scale, centered at the
weighted mean, and with error bars. The black line depicts four identical ages, equal to 28.55 cal. ka BP, also visible as a mode in the KDE
plot. Their standard errors are 230, 360, 380 and 380, which means that the two dates with the same standard error plot at the same point
so that only three points are visible. The lower outlier is clearly visible. The statistical summary shows results of all different methods to
calculate measures of centrality available for the abanico plot function.

the relationship between standardised estimate scatter and
KDE curve shape (but not precision). In this version of
the plot, the scatter polygons were not drawn because of
significant overlapping.

The last example refers to fission track data. Fig. 6
illustrates the ability of the abanico plot to include addi-
tional information of multivariate data. It plots the results
of one zircon fission track sample (50 individual crystals,
sample SH4), published by Kirstein et al. (2009), along
with the published finite mixture model ages as denoted
by the three labelled lines in the plot. Each individual
measured value is displayed with a size corresponding to
its uranium content. This reveals several trends in the
data set; for example, precision increases with increasing
uranium content, reflecting precision of detection. Addi-
tionally, younger samples show higher uranium contents.
The three dispersion bars were centered at the means of
the modelled component ages and allow connecting mea-
sured values with modelled component results. Although
a sample size of 50 is sufficient to generate a KDE plot
the resulting curve does not provide a good picture of the
three components.

For further, non-chronometric applications of radial
plots, and therewith the abanico plot, the reader is re-

ferred to Galbraith (1988).

4. Conclusion

The abanico plot overcomes most of the limitations
assigned to existing plot types for showing chronometric
data with individual standard errors. Thereby, it does not
represent a fundamentally new invention, but rather the
combination of established plot types, each with its own
strengths and limitations. The abanico plot can be used to
separate two sources of uncertainty: individual data pre-
cision and deviation from a common value. At the same
time it allows for inspection of the data in their original
age distribution. It is suitable for displaying multivariate
data and can be used to show both, characteristics of indi-
vidual values and the contribution of each value to a joined
data distribution. Based on selected examples its flexibil-
ity and applicability has been demonstrated for different
scientific fields focusing on Quaternary dating techniques.
Due to its integration in the R package ’Luminescence’,
the abanico plot can be utilised to visualise the results of
age models, used in different scientific fields. Hence, we
consider the abanico plot to be a valuable plot type de-
signed for chronometric data, but potentially applicable
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Figure 4: Abanico plot visualising cosmogenic nuclide data. 10 10Be surface exposure ages from boulders on a moraine in Argentina (Fenix I
moraine, Douglass et al. 2006). Circle diameters are proportional to boulder height and circle colours depict lithology. The scatter polygon
is defined as the 17–83 percentile range, the central value is defined by the weighted mean. Note the high precision (and low deviation from
the central value) of the one conglomerate sample and how highly protruding boulders yield rather high deviations from the global central
value and low precisions. For illustrative reasons, both, a histogram and KDE curve are plotted, although both graphics are of limited use
for such high and diverse errors.

for a wider range of scientific fields. We kindly ask scien-
tists to share with us their experiences, emerging problems
and limitations as well as discussions on how to improve
plot functionalities in the future via the package forum
(http://forum.r-luminescence.de).
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6. Appendix

zi measured values for i = {1, ..., n}; n ∈ N.

σi standard error associated with zi.

xi precision defined as xi = 1
σi

yi individual standardised estimate defined as yi = zi−z0
σi

z0 central value of zi values, e.g., the weighted mean: µ̂ =∑
ziwi∑
wi

with weights defined as wi = 1
σ2
i
, σi 6= 0.

xzi x coordinate of a data point on the z-axis of the plot,
xzi = r0 with r0 = 1.03 times the maximum value of
x.
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Figure 5: Abanico plot showing results of an inter-laboratory comparison of 21Ne measurements (Vermeesch et al., 2012), colour-coded by the
respective laboratories. Samples with different treatment (GFZ 6 to GFZ 8) were excluded. The abanico plot is drawn in vertical form. KDE
curves are drawn for each laboratory separately, weighted means are used as central values. Scatter polygons are omitted due to overlapping
ranges. Note the high precision and small scatter of the ETH results, the systematic overestimation of the BGC data.

yzi y coordinate of a data point on the z-axis of the plot,
yzi = (zi − z0)xzi
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