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S U M M A R Y
Globally gridded estimates of monthly-mean anomalies of terrestrial water storage (TWS)
are estimated from the most recent GRACE release 05a of GFZ Potsdam in order to pro-
vide non-geodetic users a convenient access to state-of-the-art GRACE monitoring data. We
use an ensemble of five global land model simulations with different physics and different
atmospheric forcing to obtain reliable gridded scaling factors required to correct for spatial
leakage introduced during data processing. To allow for the application of this data-set for
large-scale monitoring tasks, model validation efforts, and subsequently also data assimilation
experiments, globally gridded estimates of TWS uncertainties that include (i) measurement,
(ii) leakage and (iii) re-scaling errors are provided as well. The results are generally consistent
with the gridded data provided by Tellus, but deviate in some basins which are largely affected
by the uncertainties of the model information required for re-scaling, where the approach
based on the median of a small ensemble of global land models introduced in this paper leads
to more robust results.

Key words: Satellite geodesy; Time variable gravity; Loading of the Earth; Hydrology.

1 I N T RO D U C T I O N

Satellite observations of temporal variations of the Earth’s gravity
field from the Gravity Recovery and Climate Experiment (GRACE)
satellite mission (Tapley et al. 2004) offer a new possibility to
monitor a wide range of Earth system dynamics that are related to
large-scale mass re-distribution. Over the continents, the mission
is in particular sensitive to several aspects of the terrestrial branch
of the global water cycle: it allows measurements of the mass bal-
ance of continental ice-sheets and glaciers (Jacob et al. 2012), deep
soil moisture variability and its consequences for drought and flood
potentials (Houborg et al. 2012), as well as groundwater deple-
tion arising from growing water demands for irrigation and human
consumption in agricultural regions world-wide (Voss et al. 2013).

The anomaly of terrestrial water storage (TWS) with respect to a
long-term average is the most direct hydrological quantity obtain-
able from the GRACE science products. TWS is understood here
as the sum of all storage compartments of water at and underneath
the land surface. This includes soil moisture; the water content in
snow-pack and land ice; ground water in shallow and deep aquifers;
canopy water; and also the content of surface water bodies as rivers,
lakes, and occasionally flooded wetlands. As a new observable that
is available globally from space-based instruments, GRACE-based
TWS serves an important role in assessing the closure of the ter-
restrial water balance at global and regional scales and allows for

a new way to assess and even improve the quality of hydrological
model simulations (Syed et al. 2008; Frappart et al. 2013; Eicker
et al. 2014).

Due to its observing principle, GRACE data is highly accurate
at hemispheric spatial scales but provides no information on TWS
variability at spatial scales smaller than a few hundred km. GRACE
monthly mean gravity fields and their associated uncertainties are
typically provided in terms of global spherical harmonic coeffi-
cients – a mathematical representation that substantially hampers
the application of GRACE mission results in non-geodetic branches
of the physical geosciences. In order to overcome this limitation, we
describe in this paper a globally gridded data-set of TWS anomalies
at monthly resolution that is corrected for known systematic errors
and other deficits by applying state-of-the-art post-processing meth-
ods. To allow for a subsequent application of the data-set in model
validation efforts or even data assimilation experiments, globally
gridded observational uncertainties are derived as well. Similar
gridded TWS products are also available at the Tellus website
(http://grace.jpl.nasa.gov/data/get-data/monthly-mass-grids-land/)
which are calculated using a different processing scheme as
described by Landerer & Swenson (2012). For simplicity, we use
the term Tellus to refer to this data-set throughout the manuscript.

The structure of our paper is as follows: The post-processing
procedure to derive globally gridded TWS anomalies out of the
GRACE monthly mean gravity fields will be introduced in detail
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in Section 2. Subsequently, we introduce our method to correct for
the leakage and bias using median scaling factors estimated from a
small ensemble of five hydrological model simulations in Section 3.
In Section 4, we present our gridded error estimates, whose consis-
tency with uncertainties directly obtained from the Stokes coeffi-
cients are demonstrated for the largest 50 basins. We then compare
the basin-averaged TWS from our gridded TWS variations with
those from Tellus for these basins in Section 5 to demonstrate the
consistency and robustness of our method, and end with some con-
cluding remarks on the general applicability of GRACE results for
hydrometerological applications in the final Section 6.

2 G R A C E DATA - S E T S A N D
P O S T - P RO C E S S I N G

GRACE is a twin satellite mission of NASA and the German space
agency DLR that was launched in March 2002 into a polar orbit
at an initial altitude of only 450 km. By means of highly accurate
range-rate measurements between the two spacecrafts that follow
each other with a typical separation distance of 250 km, the mission
is able to map the Earth’s gravity field at approximately monthly
intervals on spatial scales of a few hundred km and larger. After
removing short-term variability due to tides in solid Earth (Petit &
Luzum 2010), oceans (Savcenko & Bosch 2012) and atmosphere
(Biancale & Bode 2006), as well as non-tidal variability in atmo-
sphere and oceans (Dobslaw et al. 2013) from the observations, the
remaining gravity changes on monthly to inter-annual time scales
mainly represent variations in TWS. Since the mission inherently
does not provide vertical resolution but is instead equally sensitive
to mass variability at or beneath the surface, an unambiguous sep-
aration of individual storage compartments by means of GRACE
data only is impossible.

We use the monthly GRACE release 05a Level-2 products
expanded in spherical harmonics up to degree and order 90—
corresponding to a spatial wavelength of 220 km—from GFZ Pots-
dam (Dahle et al. 2012), which show an overall improvement by
a factor of two in terms of noise reduction compared to previ-
ous releases (Chambers & Bonin 2012). The data can be visually
explored and downloaded from the website of the International
Centre for Global Earth Models (ICGEM) available at ‘icgem.gfz-
potsdam.de/ICGEM’. In addition to this routinely updated standard
GRACE solution, we further utilize in this study a recent GRACE
release from the University of Graz (ITSG-Grace2014; Mayer-Gürr
et al. 2014), which additionally provides full variance-covariance
matrices consistent with its unconstrained monthly gravity field so-
lutions.

For the derivation of globally gridded TWS variations from
GRACE gravity fields we essentially follow the strategy chosen by
Bergmann & Dobslaw (2012), which is briefly recalled here. First,
we add global degree-1 coefficients as derived by Bergmann-Wolf
et al. (2014) with the methodology of Swenson et al. (2008), replace
the C20-coefficients with estimates from Satellite Laser Ranging
(Cheng et al. 2011), and remove a multi-year average over the period
of January 2004 to December 2009 which is consistent with Tellus to
arrive at anomalies. Next, we apply the approximate de-correlation
and non-isotropic smoothing method introduced by Kusche (2007)
to remove correlated errors in north-south directions that are related
to the anisotropic sensitivity of the track-aligned range-rate mea-
surement system between the two satellites. Smoothing in space is
enabled through the tuning parameter a = 1013 of the signal covari-
ance matrix, which is known also as DDK2 filter and approximately

corresponds to an isotropic Gaussian filter with 680 km full width
half maximum (Kusche et al. 2009). The filtered spherical harmonic
coefficients are finally synthesized on a 1◦ latitude-longitude grid
following the conventions of Wahr et al. (1998). Since assuming
that mass redistribution occurs at the surface of a sphere may intro-
duce errors when spherical harmonic coefficients are expanded to
higher degrees, we use a reference ellipsoid as defined by the IERS
conventions which is a more suitable approximation of the Earth’s
shape. Note that using instead a spherical surface might only im-
pose differences of up to 0.5 cm equivalent water height (e.w.h.) in
particular at the higher latitudes.

3 C O M P E N S AT I O N O F
F I LT E R - I N D U C E D S I G NA L
AT T E N UAT I O N

The gravitational field of the Earth is conservative in space and
might be thus continued both upward to the satellite orbit and down-
ward to the Earth surface without loss of generality. The signal decay
with height depends on the spatial extent of a gravity disturbance,
so that large-scale anomalies generally cause stronger deviations of
a spacecraft trajectory from its reference orbit. Errors of GRACE-
based TWS variations therefore grow with increasing degree of the
spherical harmonics expansion, and low-pass filtering in space or
spectral domain is consequently required to reduce the contribution
from highly uncertain smaller spatial scales when gridded estimates
are to be calculated.

The process of truncation and filtering, however, typically dimin-
ishes amplitudes of highly localized signals, and increases spatial
leakage of signals from neighbouring regions (Werth et al. 2009).
In order to approximately account for such effects in the post-
processing, Klees et al. (2007) suggested to apply local re-scaling
coefficients derived from TWS predictions from a global numeri-
cal model. The scaling factors estimated from a numerical model
are, however, strongly related to the characteristics of the simu-
lated water distribution in a larger area around the point-of-interest.
Thus, uncertainties of the numerical model in terms of the model
structure, parameter values and meteorological forcing will affect
the estimated scaling factors as well. Recent inter-comparison stud-
ies of hydrological models demonstrated that there can be a large
spread in model performance (see, e.g. Gudmundsson et al. 2012)
for various regions and frequencies. Thus, the sensitivity of the
re-scaling factors to different models is investigated in this paper
more closely by using a small ensemble of five different numerical
model experiments, which includes land surface schemes of both
low and intermediate complexity; global land assimilation systems;
and conceptual hydrological models.

(1) The Land Surface Discharge Model (LSDM; Dill 2008) is
based on a simplified land surface scheme and a hydrological dis-
charge model developed at the Max-Planck-Institute for Meteorol-
ogy (MPI-M) in Hamburg, Germany (Hagemann & Gates 2001,
2003). The simulation used in this study is forced with opera-
tional ECMWF analysis data, which is also the basis for predic-
tions of hydrologically induced vertical crustal deformations for
geodetic applications (Dill & Dobslaw 2013) publicly available at
‘http://www.gfz-potsdam.de/esmdata’.

(2) The Global Land Data Assimilation System (GLDAS) oper-
ated at the National Center for Environmental Prediction (Rodell
et al. 2004) incorporates both ground and space-based observations
into the model results. We analyse a single realization of GLDAS
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370 L. Zhang, H. Dobslaw and M. Thomas

Table 1. Description of different model runs.

Model Meteorological Storage compartments Others
name forcing variables included

LSDM ECMWF Canopy, soil moisture, snow,
surface water

WGHM WFDEI_CRU Canopy, soil moisture, snow, surface Tuned against runoff
water, groundwater

JSBACH WFDEI_CRU Canopy, soil moisture, snow,
ground water

MPI-HM WFDEI_CRU Canopy, soil moisture, snow,
surface water

GLDAS GDAS meteorological data, Canopy, soil Observation data
CMAP precipitation moisture, snow assimilated

Figure 1. Re-scaling factors obtained as the average ratio of DDK2-filtered and unfiltered TWS time-series from five global land model experiments performed
with LSDM (a), WGHM (b), JSBACH (c), MPI-HM (d) and GLDAS (e). In order to reduce the impact of individual model deficiencies, the median value (f)
of all five simulations is applied in the GRACE post-processing.
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Figure 2. Variation coefficients for the re-scaling factors as obtained as the
RMS between individual model-derived re-scaling factors and the median
value normalized by the median.

based on the Noah community land surface model downloaded from
‘mirador.gsfc.nasa.gov’.

(3) As a compartment of the Water Global Assessment and Prog-
nosis model (WaterGAP; Döll et al. 2003), the WaterGAP Global
Hydrological Model (WGHM) has been widely applied in sev-
eral GRACE-related studies (Güntner et al. 2007). The model re-
alization available to us is based on version 2.2 as described by
Müller Schmied et al. (2014) and has been forced with atmo-
spheric data specifically prepared for the Water and Global Change
(WATCH) project, which is based on ERA-Interim re-analysis data
(Dee et al. 2011) and bias corrections for precipitation from the
Climate Research Unit (CRU) station-based monthly climatologies
(WFDEI_CRU; Weedon et al. 2011).

(4) JSBACH (Raddatz et al. 2007; Brovkin et al. 2009) is a land
surface model that forms together with ECHAM6 (Stevens et al.
2013) and MPIOM (Jungclaus et al. 2013) the current Max-Planck-
Institute for Meteorology’s Earth System Model (MPI-ESM). We
use here an experiment with an un-coupled version of JSBACH that
is also driven by daily the WFDEI_CRU atmospheric data.

(5) The final model experiment available is from the Max-Planck-
Institute of Meteorology’s Hydrology Model (MPI-HM; Stacke &
Hagemann 2012), which is a global hydrological model with several
more sophisticated parametrizations, as, for example, the Penman

Montheith for potential evapotranspiration. Its water flux computa-
tions are of similar complexity to land surface models, but it does not
account, however, for any energy fluxes. We have access to a model
run that is once more integrated with WFDEI_CRU atmospheric
forcing data.

Besides the apparent differences in model structure, parametriza-
tion, and atmospheric forcing, the model experiments considered
here also differ with each other by what particular water storage
compartments are actually included in TWS (Table 1). The re-
sults from all the model runs are aggregated into monthly averages
and – where necessary – conservatively interpolated onto a regu-
lar latitude-longitude grid with a horizontal spacing of 1◦. Since
GRACE estimates over Greenland and Antarctica are dominated by
surface mass balance and ice dynamics of the continental ice-sheets,
both regions have been masked out of the model results together
with the global oceans and will not be considered further in the
reminder of this paper.

All model experiments and GRACE data are available to us over
the period 2003–2012. Since local trends are usually poorly pre-
dicted by the models considered here, and since the influence of
GIA signals cannot be completely removed due to a lack of knowl-
edge on both glacial ice load history and mantle viscosity (Steffen
et al. 2008), we concentrate on TWS variability on seasonal to inter-
annual time-scales only. Linear trends are therefore estimated and
subtracted from all data-sets considered.

Local re-scaling factors that compensate for filter-induced signal
alteration have been obtained from all five model runs by calcu-
lating the average ratio between monthly TWS before and after
filtering with DDK2 (Fig. 1). Re-scaling factors are almost zero for
arid regions dominated by leakage-in from neighbouring regions
with stronger signal variability. But factors are also as large as three
for (i) isolated high-variability regions close to the coast, which
are affected by leakage-out due to the much weaker ocean bottom
pressure variability near-by; at (ii) step gradients in orography that
are responsible for locally intensified precipitation; or (iii) along
spatially concentrated surface water bodies with high storage vari-
ability. By comparing re-scaling factors for the different models,
we note moreover substantial discrepancies among the model runs,
in particular at smaller spatial scales. There is, however, no prior
knowledge of which model performs best at different areas of the

Figure 3. RMS variability of GRACE-based terrestrial water storage after applying the DDK2 filter (a), and after re-scaling of the filtered results (b) with
spatially variable median re-scaling factors obtained from five different model data sets.
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Table 2. Re-scaling factors estimated from the WGHM, LSDM, GLDAS, JSBACH and MPI-HM models for the 50 largest discharge basins of the world.
Additionally provided are the median re-scaling factors subsequently applied in the GRACE processing; the variation (VAR) coefficients of the re-scaling
factors quantifying the uncertainty associated with the re-scaling; total error and signal amplitude of the basin-averaged TWS (unit: cm) and the GRACE
signal-to-noise ratio that includes also the impact of uncertain re-scaling; the RMS differences between rescaled TWS from Tellus and our calculation with
median scaling factors. Basin names are taken from the Simulated Topological Network data set (STN-30p; Vörösmarty et al. 2000). GHAAS#Number indicate
unidentified basins, where the number is the unique integer identifier adopted in STN-30p.

Re-scaling coefficients
Discharge VAR- Total Signal GRACE- Tellus-
Basin LSDM WGHM JSBACH MPI-HM GLDAS Median coeff. error amp. SNR Median scaled

Amazon 1.03 1.01 1.02 0.96 1.01 1.01 0.02 1.46 14.28 9.76 1.81
Nile 1.08 1.16 0.97 1.05 0.91 1.05 0.08 1.06 3.46 3.26 1.33
Zaire 1.08 0.96 1.04 1.01 0.99 1.01 0.04 1.32 5.05 3.82 0.98
Mississippi 1.00 1.00 0.97 0.95 0.97 0.97 0.02 0.86 5.67 6.60 0.59
Amur 1.01 0.99 0.96 0.96 0.94 0.96 0.03 0.68 2.17 3.18 0.67
Parana 1.14 1.10 1.06 1.08 1.01 1.08 0.04 1.32 5.92 4.50 1.51
Yenisei 0.96 0.92 1.03 0.98 0.97 0.97 0.03 0.68 4.52 6.67 0.64
Ob 0.94 0.98 1.02 0.96 0.99 0.98 0.03 0.68 5.64 8.31 0.66
Lena 0.94 0.88 1.00 0.98 0.96 0.96 0.04 0.68 4.12 6.01 0.60
Niger 1.04 1.01 1.03 1.05 0.99 1.03 0.02 1.29 6.37 4.93 0.54
Zambezi 1.02 0.98 1.02 1.00 0.97 1.00 0.02 1.57 10.66 6.80 0.91
GHAAS #14 1.42 1.74 1.77 0.70 0.99 1.42 0.30 0.77 0.68 0.88 0.47
Chang Jiang 1.37 0.98 0.89 0.98 0.89 0.98 0.19 1.49 4.61 3.09 1.26
Mackenzie 0.69 1.02 1.00 0.97 0.93 0.97 0.13 0.83 5.15 6.20 0.92
Ganges 0.96 1.09 1.00 1.00 0.97 1.00 0.05 1.94 11.62 5.99 0.81
Chari 1.19 1.08 1.01 1.02 0.97 1.02 0.08 1.50 5.14 3.42 0.92
Volga 1.00 0.99 0.98 0.98 0.98 0.98 0.01 0.84 7.07 8.43 0.68
St. Lawrence 1.02 0.98 0.85 0.75 0.79 0.85 0.13 1.14 5.63 4.94 1.14
Indus 1.17 0.87 1.00 0.95 0.89 0.95 0.12 1.54 3.72 2.42 1.32
Syr-Darya 1.20 0.92 1.01 0.99 1.00 1.00 0.10 1.12 4.08 3.65 0.84
Nelson 0.93 1.01 0.94 0.87 0.94 0.94 0.05 1.12 4.28 3.82 1.26
Orinoco 0.99 1.09 1.07 1.08 0.93 1.07 0.07 3.14 14.88 4.74 1.97
Murray 1.31 1.04 1.07 1.13 0.91 1.07 0.12 1.88 5.13 2.73 1.38
Great Artesian 1.76 1.17 0.97 0.97 1.29 1.17 0.25 1.33 3.54 2.67 1.10
Shatt el Arab 1.19 0.90 1.15 1.01 0.88 1.01 0.12 1.49 5.67 3.81 1.40
Orange 1.00 1.02 1.20 1.08 0.91 1.02 0.09 1.65 2.75 1.67 1.29
Huang He 1.28 0.52 0.99 1.05 1.02 1.02 0.25 1.28 3.00 2.35 0.91
Yukon 1.08 0.83 0.90 0.88 1.12 0.90 0.15 1.19 9.13 7.68 1.24
GHAAS #34 1.14 1.06 1.40 0.84 0.90 1.06 0.19 1.04 1.13 1.09 0.67
Colorado (Ari) 1.39 0.82 1.04 1.11 0.97 1.04 0.18 1.41 3.93 2.78 0.99
Danube 1.01 1.04 0.96 1.00 0.95 1.00 0.03 1.50 7.45 4.96 0.86
Mekong 1.11 1.07 1.02 1.08 0.90 1.07 0.08 3.86 14.42 3.73 2.32
Tocantins 1.06 1.09 1.04 1.21 1.00 1.06 0.07 2.81 16.72 5.95 2.69
Columbia 0.98 0.99 0.98 1.07 0.92 0.98 0.05 1.85 9.87 5.32 1.76
GHAAS #49 0.80 0.97 0.94 0.84 0.92 0.92 0.08 1.86 3.06 1.65 0.97
Kolyma 0.99 0.78 1.03 0.92 1.04 0.99 0.11 0.98 4.55 4.65 1.27
Sao Francisco 1.06 1.04 0.99 1.09 1.04 1.04 0.03 2.81 9.65 3.43 1.80
Amu-Darya 1.32 1.27 1.11 1.20 0.95 1.20 0.13 2.47 7.27 2.95 2.34
Dnepr 0.99 0.98 0.97 0.99 0.98 0.98 0.01 1.32 6.37 4.81 1.09
Don 1.14 1.07 1.12 1.12 1.05 1.12 0.03 1.68 8.67 5.17 1.16
GHAAS #50 1.01 0.85 1.72 0.47 0.81 0.85 0.48 1.20 0.89 0.74 0.70
Zhu jiang 1.07 1.18 1.19 1.37 1.11 1.18 0.10 3.18 7.92 2.49 2.39
Irrawaddy 1.32 1.43 1.40 1.06 1.26 1.32 0.11 4.18 17.44 4.17 10.07
Volta 0.63 0.88 0.98 1.06 0.97 0.97 0.18 3.36 9.94 2.96 1.83
GHAAS #54 0.72 0.74 1.28 0.83 1.10 0.83 0.27 1.66 3.25 1.96 1.03
Khatanga 0.87 0.94 0.87 0.89 0.93 0.89 0.04 1.01 5.48 5.42 1.43
Dvina 1.04 1.03 1.10 1.01 1.00 1.03 0.04 1.25 7.58 6.05 1.02
Urugay 1.21 1.12 1.30 1.21 1.16 1.21 0.06 2.70 7.28 2.70 3.00
Qarqan 0.49 1.07 0.23 1.04 1.33 1.04 0.54 1.14 1.34 1.18 1.63
GHAAS #75 0.26 1.02 0.77 0.51 0.83 0.77 0.44 0.94 0.75 0.80 0.48

world, so that we calculate a median value of the re-scaling coeffi-
cients from the five model runs at each grid point, which is finally
applied to the GRACE data.

To further quantify the uncertainties in the re-scaling factors,
we calculate root mean square (RMS) estimates of the difference

between each re-scaling factor and the median value normalized
by the median itself (Fig. 2). Those variation coefficients show
similarities with the results from Long et al. (2015), which is quite
opposite with the pattern of the signal variability of GRACE-based
TWS (Fig. 3). Largest variability of the re-scaling factors occurs in
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Figure 4. Estimates of GRACE-based TWS errors calculated at 1◦ grid-scale level: measurement errors (a), leakage errors (b), re-scaling errors (c) and total
errors (d).

rather dry areas, like North Africa, South Australia, Middle East,
and Northwest China, which is partly explained by the small values
of the median scaling factors in these regions. Areas dominated by
surface water variability and affected by groundwater abstraction
also show large spreads of the re-scaling factors.

We also look into the re-scaling coefficients estimated from differ-
ent models at basin-scale level (Table 2). Despite of the differences
indicated above, variation coefficients of the re-scaling factors are
mostly below 0.15 when averaged over areas of several 106 km2,
thereby indicating the high consistency of the TWS simulated by
all models in these large areas. Uncertainties grow when smaller
basins with a lower GRACE signal-to-noise ratio (SNR) are consid-
ered. The SNR is calculated as the ratio of the RMS of the GRACE
TWS time-series and the total error estimated from the basin-scale
method which is introduced in Section 4. Both the low GRACE
SNR and the large spread of the scaling factors from hydrologi-
cal models confirm the poor ability of GRACE and hydrological
models to capture the TWS signal in overly dry areas (Gunkel &
Lange 2011). Care should also be taken in some humid areas where
a large spread of the re-scaling factors is found, as, for example,
in the Yukon basin, where a substantial contribution of mountain
glaciers on observed TWS variability can be expected which is
rather poorly represented in all the models. Considering that we
only focus on the seasonal and interannual signals, it is therefore
not suitable to apply such scaling factors in areas which have large
contribution from glaciers. Further, observed TWS in the Chang
Jiang basin is affected by surface water variability, which is not
represented properly in both GLDAS and JSBACH. In the Indus
catchment, intensive irrigation takes place which uses both surface

water and groundwater resources. However, only WGHM and JS-
BACH accommodate groundwater storage changes in their physical
models. Nevertheless, the application of the median value makes
the re-scaling factors less affected by such deficiencies in a single
model and therefore contributes to the robustness of the GRACE
post-processing methodology applied here.

4 T W S E R RO R S F RO M G R A C E

In order to provide a quantitative estimate for the uncertainties asso-
ciated with GRACE-based TWS errors, we individually assess the
contributions of measurement errors, leakage errors, and re-scaling
errors as suggested by Landerer & Swenson (2012). We estimate
the measurement error by error propagation from the ‘calibrated
errors’ provided together with the GRACE monthly-mean Stokes
coefficients. The calibrated errors are further re-scaled to fit the
non-seasonal GRACE residuals after subtracting a constant as well
as annual and semiannual sinusoids following Wahr et al. (2006).
Then gridded re-scaling factors are multiplied with the measure-
ment errors to get the final measurement error distribution in the
spatial domain. The leakage error compartment is calculated for all
five model realizations according to

Eleak = RMS(�So − k�SF )
RMSGRACE

RMSModel
, (1)

where �So and �SF are the original and filtered signals from the
models, respectively, k is the re-scaling factor, and RMSGRACE and
RMSModel are the RMS of the TWS from filtered GRACE and from
one of the unfiltered model data-sets. For the re-scaling error, we
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Figure 5. Estimates of GRACE-based TWS errors for the 50 largest discharge basins derived from 1◦ grid point estimates: measurement errors (a), leakage
errors (b), re-scaling errors (c) and total errors (d).

make use of the scaling ratio for the individual model run shown
in Fig. 1 by multiplying the RMS of the GRACE signals with the
difference between each realization-based re-scaling factor with the
median value. The total error at each grid point is subsequently taken
as the sum of the measurement error, leakage error, and re-scaling
error in quadrature.

While calculating these error compartments individually for each
grid point, we obtain total errors of up to 10 cm in e.w.h. (Fig. 4).
The water storage variation estimated from GRACE is not a point
measurement, but rather a regional spatial average. It therefore does
not make sense to compare GRACE at 1◦ grid-scale level directly
to any other data-set. We use, instead, the gridded error estimates
as a starting point for deriving error estimates of arbitrarily shaped
regional averages. Here, the shapes of the 50 largest river basins
from Table 2 are chosen, but the methodology can be similarly
applied to other areas as well, as for example, climate or altitude
zones associated with particular precipitation regimes, the spatial
extent of a specific aquifer system, or an area particularly affected
by land use and land cover changes. Since the error contributors of
GRACE-based TWS at the grid scale are spatially correlated, the
basin-averaged water storage errors cannot be obtained by simply
averaging the gridded errors for an arbitrarily shaped region. We
use the squared exponential covariance function to estimate the
statistical covariance between two grids as proposed by Landerer
& Swenson (2012) and estimate the error variance of the regional
mean TWS estimate by the following equation:

var =
m∑

i=1

m∑
j=1

wiw jθiθ j exp

(
−d2

i j

2d2
0

)
, (2)

where θ i is the error for grid point i, wi represents the area weight
at the grid i, dij is the distance between the two points and d0 is the
parameter in the Gaussian window representing the de-correlation
length scale. We choose 300, 100 and 10 km as d0 for measurement
error, leakage error and re-scaling error (Fig. 5) separately by fitting
the error budget from the gridded data set to the ones obtained
from estimating errors directly at basin-scale level (Chen et al.
2007; Klees et al. 2007) as shown in Fig. 6. Both methods provide
generally consistent results down to a level of about 20 per cent ,
indicating that the errors at 1◦ spatial resolution might indeed serve
as a starting point for the derivation of realistic errors for regions of
arbitrary shape.

Since only diagonal elements of the covariance matrix have been
provided for GRACE release 05a of GFZ Potsdam, the error cor-
relations between the individual Stokes coefficients are typically
ignored. To assess the impact of neglecting the error correlations,
error estimates from both the diagonal and full variance-covariance
matrices of the ITSG-Grace2014 release (Mayer-Gürr et al. 2014)
are calculated (Fig. 7). The ITSG-Grace2014 measurement errors
propagated from only the diagonal part show consistent results
with GFZ RL05a. The differences between the measurement er-
rors from the diagonal and full covariance matrix reach 0.56 cm
at some basins (Fig. 7). Generally, when the error correlations
are neglected, the measurement errors at the lower latitudes are
overestimated, while at higher latitudes they are underestimated.
GFZ is planning to provide the error variance-covariance matrix as
well (Ch. Dahle, personal communication, 2015), which we believe
is necessary to further improve the reliability of the TWS error
estimates.
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Figure 6. Estimates of GRACE-based TWS errors for the 50 largest discharge basins directly calculated at the basin-scale level out of spherical harmonic
coefficients: measurement errors (a), leakage errors (b), re-scaling errors (c) and total errors (d).

Figure 7. Changes in measurement errors for ITSG-Grace2014 when co-
variances are taken into account in addition to the usually considered vari-
ances.

5 C O M PA R I S O N W I T H G R I D D E D
T W S R E S U LT S F RO M T E L LU S

We now compare the basin-averaged TWS time-series from our
calculation with gridded TWS products downloaded from the Tel-
lus website, which are based on GRACE Stokes coefficients trun-
cated at degree and order 60, destriped and smoothed by using
a 300 km Gaussian filter following Swenson & Wahr (2006) and
then re-scaled by scaling factors derived from NCAR’s CLM4.0

land surface model (Landerer & Swenson 2012). The RMS of the
differences between the TWS variations filtered with two differ-
ent methods generally lie within the bounds of the GRACE error
estimates (cf. Fig. 5d), which indicates consistency between the
different filtering and smoothing methods applied (Fig. 8a).

By comparing the two re-scaled TWS time-series, we find several
basins with much larger differences in particular in South America
and Southeast Asia and there are ten out of fifty basins where the
RMS of the differences are larger than the GRACE error estimates
(Fig. 8b; Table 2). The relative differences as the percentage of the
RMS of the basin-averaged TWS from Tellus are shown as well
(Figs 8c and d). The large relative differences mainly occur at small
basins. By taking Irrawaddy as an example, we present time-series
of the TWS variations re-scaled by the scaling factors from all five
hydrological models and the median value and compare them with
the re-scaled TWS from Tellus (Fig. 9). In this catchment, the TWS
variations re-scaled by different scaling factors from the models
show a comparably large spread, but they are consistent in a way
that all the scaling factors are larger than one indicating signal
loss caused by filtering. Besides, the TWS time-series re-scaled by
median scaling factors generally lie in the middle. The results from
Tellus show, however, a damping effect from the scaling factors. The
TWS differences caused by applying two different scaling factors
reach 10 cm, much larger than the total error (Table 2). This could
be related to both the shape of the basin and also the hydrological
signal within and around the basin. The Irrawaddy catchment is
rather elongated and shares a long border with its neighbouring
basins which also have high water storage variability. Both factors
make it highly susceptible to spatial leakage effects and thereby
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Figure 8. RMS of the differences between our estimated basin-averaged TWS filtered with DDK2 and the ones from Tellus for GFZ RL05a for the 50 largest
discharge basins (a); and RMS of the differences between our filtered TWS re-scaled by the median scaling factors and the results from gridded TWS re-scaled
by the scaling factors provided separately also on the Tellus website (b). (c) and (d) are the relative differences for (a) and (b) where the RMS of the differences
are divided by the RMS of the basin-averaged TWS from Tellus.

vulnerable to uncertainties in simulated water storage in and outside
the basin. If only a single model is used for the re-scaling, inherent
uncertainties of this processing step remain inaccessible and might
lead to additional errors in the GRACE-based TWS series that are
not accounted for in the associated error estimates.

6 S U M M A RY A N D C O N C LU S I O N S

Globally gridded estimates of TWS anomalies have been processed
from the GRACE release 05a monthly-mean gravity fields from
GFZ Potsdam (Dahle et al. 2012) by applying state-of-the-art post-
processing methodologies. The de-correlation filter of DDK2 has
been chosen with the goal of minimizing signal loss while maxi-
mizing noise reduction. Re-scaling factors required to account for
signal loss during filtering were obtained from the median values
of a small ensemble of five global models in order to make the
re-scaling more robust against particular weaknesses of a single
model. We therefore intend to include those globally gridded TWS
data-sets as an additional Level-3 product into the ICGEM web-

site accessible at ‘icgem.gfz-potsdam.de/ICGEM’, so that it will
be routinely updated as soon as new Level-2 gravity fields become
available, and thereby contributes to a better accessibility of near
real-time GRACE information to users that are not willing or not
able to process Stokes coefficients themselves.

In addition to the monthly TWS estimates, we prepared realistic
globally gridded error estimates by assessing individually the contri-
butions of measurement errors, leakage errors, and re-scaling errors.
The error estimates account for spatial correlations and yield largely
consistent results for most basins when compared to estimates that
are directly derived from the spherical harmonics representation.
Thus, errors might guide users in selecting proper averaging re-
gions and remind them that GRACE is in particular sensitive to
the largest spatial scales as demonstrated by the fact that the SNR
values generally decrease when going from large basins to small
basins.

The RMS of the differences between the filtered TWS from our
calculation and those from Tellus generally lie below the TWS error
level estimated, which underlines the consistency of the two post-
processing strategies. Larger differences found at certain basins
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Figure 9. The comparison of the basin-averaged TWS time-series from our calculation and from Tellus for the Irrawaddy catchment. DDK/unscaled indicates
the TWS variations that are filtered by DDK2; LSDM indicates the DDK2 filtered TWS re-scaled by scaling factors from LSDM, and the same for WGHM,
GLDAS, JSBACH and MPI-HM; median is the TWS variations re-scaled by the median scaling factors from the five models; Tellus/unscaled is the basin
average of the gridded TWS from Tellus website and Tellus/scaled is the re-scaled TWS from Tellus.

between the rescaled TWS time-series, however, emphasize the
importance of model-based information required to account for
spatial leakage. Since global land models perform differently in
simulating the TWS variability in different areas of the world, an
ensemble of multiple models is helpful to make scaling factors less
affected by deficiencies in certain models. In view of the important
role of such models for the GRACE processing, a detailed evaluation
of the quality of such models and their systematic weaknesses is
recommended.

Currently, the GRACE mission has been in orbit for more than
13 years and continues to provide monthly-mean snap-shots of the
global gravity field. The GRACE Follow-On mission is already
in its implementation phase and scheduled for launch in 2017
(Flechtner et al. 2014), thereby improving the prospects of es-
tablishing a long-term monitoring of global TWS variability with
gravimetric methods. The GRACE mission has already contributed
unique observations to five out of six current Grand Challenges
of the World Climate Research Programme: (1) Melting Ice and
Global Consequences (Sasgen et al. 2010), (2) Climate Extremes
(Reager et al. 2014), (3) Regional Sea-Level Change (Chambers
et al. 2010), (4) Water Availability (Famiglietti & Rodell 2013),
and also (5) Decadal Climate Prediction (Zhang et al. 2015). The
observing concept is therefore in a good position to be considered
as a contribution to the ’Essential Climate Variables’ (Hollmann
et al. 2013) as defined by the World Meteorological Organization.
To foster more applications of satellite gravimetry in scientific fields
like hydrometeorology and climatology, conveniently pre-processed
data-sets as described in this study are an essential prerequisite.
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