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Abstract We present the Neural-network-based Upper hybrid Resonance Determination (NURD)
algorithm for automatic inference of the electron number density from plasma wave measurements made
on board NASA’s Van Allen Probes mission. A feedforward neural network is developed to determine the
upper hybrid resonance frequency, fuhr, from electric field measurements, which is then used to calculate
the electron number density. In previous missions, the plasma resonance bands were manually identified,
and there have been few attempts to do robust, routine automated detections. We describe the design and
implementation of the algorithm and perform an initial analysis of the resulting electron number density
distribution obtained by applying NURD to 2.5 years of data collected with the Electric and Magnetic Field
Instrument Suite and Integrated Science (EMFISIS) instrumentation suite of the Van Allen Probes mission.
Densities obtained by NURD are compared to those obtained by another recently developed automated
technique and also to an existing empirical plasmasphere and trough density model.

1. Introduction

The electron plasma density, ne, is a fundamental parameter of plasma. The distribution of electron den-
sity in the inner magnetosphere is a critical parameter for wave-particle interactions and is necessary for
quantifying the role of plasma waves in the formation and decay of the Earth’s radiation belts
[e.g., Thorne et al., 2013]. The electron density is required for the prediction of the evolution of the space envi-
ronment [e.g., Artemyev et al., 2013; Summers and Thorne, 2003] and is also important for the analysis of satellite
anomalies [e.g., Reeves et al., 2013].

Numerous empirical models of plasma electron density have been developed, and Carpenter and Anderson
[1992] and Sheeley et al. [2001] are the most widely used in recent years. Carpenter and Anderson [1992] was
based on electron density measurements deduced from sweep frequency receiver (SFR) radio measurements
on the International Sun-Earth Explorer (ISEE-1) spacecraft as well as ground-based whistler measurements.
The model covers the range of 2.25 < L < 8 and the local time interval of 0 to 15 MLT. The plasmasphere model
in Carpenter and Anderson [1992] is a saturated density model and, as such, represents the density distribution
after several days of refilling. On the other hand, the Sheeley et al. [2001] plasmasphere and plasma trough
models are statistical averages based on the densities derived from the Combined Release and Radiation
Effects Satellite (CRRES) swept frequency receiver by identifying the upper hybrid resonance frequency
and cover the range of 3 ≤ L ≤ 7 for all local times. Sheeley et al. [2001] also provide the standard deviation of
measurements for the plasmasphere and trough models to represent depleted or saturated density levels.

Although these models are commonly used in space physics simulations, in some events such as geomag-
netic storms, empirical density models cannot provide reliable density estimates since they are parameterized
only by L (and by MLT for trough density models), and density levels, particularly in the outer plasmasphere,
are known to be variable during storm times [e.g., Park and Carpenter, 1970; Park, 1974; Carpenter et al., 1993;
Moldwin et al., 1995]. The empirical models are also based on relatively limited data sets. Therefore, it is
of continuing interest to collect reliable databases of electron density measurements over a wide range of
geomagnetic conditions.

One method to determine the electron density is to derive it from intense upper hybrid band radio emissions
[Mosier et al., 1973]. This method is considered to be the most reliable passive technique when the electron
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Figure 1. An example spectrogram from the EMFISIS HFR showing the
electric power spectral density as a function of frequency (log scale) and
time for the outbound portion of orbit 113 from 11 October 2012. The
upper hybrid resonance band is identified along with the gyrofrequency
and its half harmonics corresponding to n = 2, 3, and 4.

plasma frequency, fpe, is greater than
the electron cyclotron frequency, fce

[e.g., Beghin et al., 1989; Benson et al.,
2004]. The upper hybrid resonance
(UHR) frequency, fuhr, is a combina-
tion of the electron cyclotron fre-
quency, fce, and the electron plasma
frequency, fpe:

fuhr =
√(

f 2
ce + f 2

pe

)
. (1)

The electron cyclotron frequency
is a function of the magnetic field
strength, B, and the electron plasma
frequency is a function of the electron
number density, ne. In the Interna-
tional System (SI) these frequencies
are given as

fce =
|qe|B
2𝜋me

, fpe = 1
2𝜋

√
q2

ene

me𝜀0
, (2)

where qe is the charge of electron, me

is the mass of an electron, and 𝜀0 is the
permittivity of free space. The UHR noise band typically extends from fuhr down to fpe with a generally less
intense emission extending down to the z mode cutoff frequency. The upper limit of the upper hybrid noise
band is often the most pronounced cutoff in spacecraft plasma wave data. fuhr is generally considered to be
the upper frequency edge of the upper hybrid band enhancement rather than the emission peak intensity
[e.g., Beghin et al., 1989; Benson et al., 2004].

In August 2012, the Van Allen Probes were launched with the primary goal of studying the dynamics of the
Earth’s radiation belts [Mauk et al., 2012]. The Electric and Magnetic Field Instrument Suite and Integrated Sci-
ence (EMFISIS) [Kletzing et al., 2013] on Van Allen Probes makes routine electric field measurements in the
frequency range of 10 to 487 kHz in order to identify the upper hybrid resonance band, thus providing an accu-
rate estimation of the electron density. An example of data from the EMFISIS High Frequency Receiver (HFR)
on board RBSP-a (Radiation Belt Storm Probes) is shown in Figure 1 for the outbound portion of orbit 113. HFR
provides the electric field power spectral density as a function of frequency and time. The upper hybrid reso-
nance band is indicated. The background magnetic field strength is directly measured by the magnetometer
on board the spacecraft, and thus, fce can be directly determined and is indicated on the spectrogram.

From 8:45 to 9:15 UT, there are fluctuations in the UHR band. These occur in the outer plasmasphere and
indicate the presence of density irregularities. It is important to capture density irregularities in any density
extraction algorithm. In the example in Figure 1, the UHR band is fairly clear. At other times, the spectrum
might be contaminated with a variety of plasma emissions [e.g., see Kurth et al., 2015, Figures 10 and 7]. The
main challenge of developing a robust automated algorithm is to separate the upper hybrid line from differ-
ent types of contaminating emissions. Often, the UHR band in the plasmasphere is fairly clear, but there is
more noise in the plasma trough. Specifically in the trough, it can be difficult to separate the UHR band from
“(n + 1∕2) fce” emissions often observed between the harmonics of fce (but not necessarily midway between
them as shown in LaBelle et al. [1999]). These emissions are also referred to as banded emissions [e.g., LaBelle
et al., 1999; Benson et al., 2001]. Benson et al. [2001] argue that these emissions occur both above and below fuhr

and that emissions at fuhr are not always observed with the banded emissions. In particular, in Figure 1 it is hard
to make a reliable conclusion regarding fuhr starting from 9:20 UT without a proper spectral interpretation.

In previous missions, the UHR band has been manually identified [e.g., LeDocq et al., 1994], and a number of
semi-automated routines have been developed. Works on semi-automated routines development date back
to the ISEE-1 era [e.g., Trotignon et al., 1986], and the research in this field is ongoing. More recent works include
Trotignon et al. [2010], Denton et al. [2012], and Goldstein et al. [2014]. In Trotignon et al. [2010] determination
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of the electron density was performed on the wave spectra from the Waves of High frequency and Sounder
for Probing of Electron density by Relaxation (WHISPER) instrument on the four-satellite Cluster mission. The
work of Denton et al. [2012] was based on the measurements of the electron density ne found with the auto-
mated detection routine from passive radio wave observations by the Radio Plasma Imager (RPI) instrument
on the IMAGE (Imager for Magnetopause-to-Aurora Global Exploration) satellite. In Goldstein et al. [2014], a
comparison study between manual method of determining plasma density and semi-automated extraction
algorithm described in Kurth et al. [2015] was presented.

Recently, Kurth et al. [2015] developed the Automated Upper hybrid Resonance detection Algorithm (AURA)
for EMFISIS HFR data. At each time step in the HFR data, AURA starts with an initial estimate of fuhr from space-
craft potential measurements from the Electric Fields and Waves (EFW) instrument [Wygant et al., 2013] and
then applies a restricted search on the HFR spectrum to detect a nearby spectral peak. It also relies on the
assumption that each successive spectrum contains a spectral peak associated with fuhr near the previously
identified peak. Once AURA is run on the HFR data for an orbit, an operator inspects the resulting fuhr pro-
file and corrects intervals where the algorithm has deviated from the visually observed upper hybrid band.
AURA helps speed up processing of the HFR data but still requires significant manual intervention (see further
discussion in section 3.3).

We propose an alternative algorithm for automatic inference of fuhr using neural networks. Neural networks
are one of the most widely used statistical learning models and are well suited for a very broad class of non-
linear approximations and mappings. For this application, we use a feedforward neural network, which is a
type of neural network that is very effective in solving nonlinear regression problems with a large number of
inputs. The properties of a neural network are initially determined using a set of training data, that is, a data
set for which both the inputs (in this case, HFR spectra and geophysical parameters) and the outputs (fuhr) are
known. Once the neural network has been trained, validated, and tested, it can be applied to a large data set
for which the fuhr is not known. In this case, we use a training set developed from the AURA algorithm (pro-
vided courtesy of W. Kurth and the EMFISIS team). This data set obeys the condition fpe > fce in 99.86%, which
allows us to confidently use the upper hybrid resonance band to determine plasma density [e.g., Beghin et al.,
1989; Benson et al., 2004]. The training data set consists of 1091 orbits, i.e., represents a significant set of exam-
ple data. After training, we apply the neural network to a database of 2425 orbits and use the output to obtain
a database of electron number density. The neural network model and the resulting density distribution are
analyzed and compared to the results obtained in Kurth et al. [2015] and to the empirical model by Sheeley
et al. [2001].

2. Background on Neural Networks

In this section, we provide a brief introduction to neural networks and give a high-level description of the
three main stages of the neural network design process: training, validation, and testing. Our goal is to
introduce basic notions related to the field that may be useful in understanding our specific application to
plasma wave data presented in section 3, and we refer the reader to works cited herein for further details on
neural networks.

2.1. Brief Introduction to Neural Networks
Artificial neural networks are an attempt to model the information-processing abilities of biological neural
networks in the brain [e.g., McCulloch and Pitts, 1943; Hebb, 1949; Marr and Poggio, 1976]. Artificial neu-
ral networks are a family of mathematical models that are quite effective at solving problems such as the
approximation of functions, classification, pattern recognition, and clustering. Neural networks can be used
to reconstruct a mapping between an input set of data X and corresponding outputs Y (assuming that this
mapping exists) using a subset of data for which the outputs are known, and this subset is usually referred to
as a training set.

An artificial neuron is a very simple computational unit and is the basic component of any artificial neural
network. Similar to a real neural cell, an artificial neuron has input channels, a cell body (in which some sim-
ple computations happen), and an output channel. Simply put, a neuron receives some input data and then
computes an output. Figure 2 shows the structure of an artificial neuron with N inputs. Each input channel
has an associated weight, which can be considered as its “importance” (the larger the weight the more the
influence of the corresponding input on the output). A neuron also has a bias. Formally, it can be considered
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Figure 2. An artificial neuron is the building block of a neural network.
The neuron takes N input variables, xn , multiplies them each with a
weight, wn , and sums them along with a bias, b. The output of the
summation, S, is applied to an activation function, f (S), which becomes
the output of the neuron.

as an internal parameter of a neuron,
which affects the neuron’s output. For
simplicity, bias is usually represented as
an additional input to the neuron x0 that
is always equal to 1 with the weight
equal to the value of the bias w0 = b.
A neuron integrates incoming informa-
tion by adding the sum of input signals
multiplied by their weights. A neuron
has a fixed activation function, which
acts on the calculated sum. The result-
ing value of the function is the output
of the neuron. The activation function
can be arbitrary and defines the type
of a neuron. The most commonly used
activation functions are sigmoid, binary
(step function), and linear [e.g., Sibi
et al., 2013].

Using one neuron, a limited range of simple problems can be solved, such as classification of linearly separable
pattern sets [Auer et al., 2008]. More complex problems (e.g., classification of linearly nonseparable pattern
sets) cannot be solved with just one neuron [Minsky and Papert, 1969]. Fortunately, they can be solved using
neural networks, which consist of a number of neurons. An output of one neuron can serve as an input to the
other neuron. This is a main idea behind artificial neural networks.

There are many different topologies of neural networks (ways to connect neurons into network). In this work,
we use feedforward neural networks (FNNs). A FNN is the most basic and widely used artificial neural net-
work and is well suited for a very broad class of nonlinear approximations and mappings. FNNs have achieved
success in a number of domains [e.g., Salakhutdinov and Hinton, 2009; Glorot et al., 2011; Krizhevsky and
Hinton, 2011; Mohamed et al., 2012]. Its topology is shown in Figure 3. It consists of a number of artificial neu-
rons that are arranged into a layered configuration. There are three types of layers: input, output, and hidden
layers. The input layer consists of the inputs to the network. No computations happen in this layer. Then follow
any number of hidden layers consisting of any number of neurons placed in parallel. Outputs of one hidden

Figure 3. A feed forward neural network is one of the most commonly used neural network architectures. It consists of a
number of artificial neurons arranged into layers. There are three types of layers: input, output, and hidden. Each layer
has a common activation function. Outputs from one layer serve as inputs to the subsequent one as shown in the
diagram. All connections from neurons of one layer to neurons of the other layer have their own weights. Layer i can be
parameterized with the matrix of weights W(i). The weights are usually adjusted using training data for which both the
input and output are known in order to minimize a given cost function.
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layer serve as inputs to the subsequent layer. There might be several hidden layers in the network. The out-
put layer (network output) is formed by another weighted summation of the outputs of the neurons in the
last hidden layer [Lippman, 1987]. Neurons of one layer have a common activation function. Different layers
may have different activation functions. Mathematically, feedforward neural networks can be defined as a
composition/superposition of L activation functions f1,… , fL for a network with L hidden layers.

The description of FNNs given above is based on the assumption that the weights and biases are known. In
practice, however, the weights and biases are unknown, and we need to determine them using a set of train-
ing data, that is, a data set for which both the input and output are known. Determining the weights and
biases reduces to an optimization problem to minimize a given cost function. The cost function is generally
defined based on the type of problem we are solving. The optimization problem can be solved with a vari-
ety of backpropagation techniques [Rumelhart et al., 1986]. In this work, we use a scaled conjugate gradient
backpropagation algorithm (SCG) [Moller, 1993].

SCG performs well over a wide variety of problems, particularly for neural networks with a large number of
weights. The SCG algorithm is faster for large networks than any of the other algorithms presented in the
Matlab Neural Network Toolbox, and it has relatively modest memory requirements [Mathworks.com, 2015].
SCG is based upon a class of optimization techniques called conjugate gradient methods (CG). CG is the most
popular iterative method for solving large systems of linear equations of the form Ax = b, where x is an
unknown vector, b is a known vector, and A is a known, square, symmetric, positive-definite matrix. In the basic
backpropagation algorithm, the weights (of a neural network) are adjusted in the steepest descent direction
(negative of the gradient). This is the direction in which the error function is decreasing most rapidly. It turns
out that, although the function decreases most rapidly along the negative of the gradient, this does not nec-
essarily produce the fastest convergence. In the conjugate gradient algorithms, a search is performed along
conjugate directions, which produces generally faster convergence than steepest descent directions. Another
advantage of SCG is that it avoids the line search (performed in other CG algorithms to determine the opti-
mal distance to move along the current search direction) by using a step size scaling mechanism. A detailed
explanation of the algorithm can be found in Moller [1993].

2.2. Overview of the Neural Network Design Process
Next, we provide a high-level description of the main stages of the neural network design process: train-
ing, validation, and testing, as shown in Figure 4. Details on our specific implementation can be found in
section 3.2. It is important to mention that our reference to training, validation, and testing as stages in neural
network design workflow is solely for the purpose of organizing ideas and may not be considered as a part of
a common vocabulary in this field.

As previously mentioned, a set of training data for which the output is known is required to design the neural
network. First, the training set must be verified and preprocessed. For example, we need to make sure first
that all the data points are consistent and there are no missing values in the training set. After that we split
the data into three parts in a user-predefined ratio as the (1) training data set, (2) validation data set, and (3)
testing data set.

Normalization is a standard preprocessing procedure that is done before training the neural network. All the

variables are normalized to a range from 0 to 1, that is, xnew =
(

xold−min1

max1 −min1

) (
max2 −min2

)
+ min2, where xold

is the original value, xnew is the new value, min1 and max1 are the minimum and maximum of the original data
range, and min2 and max2 are the minimum and maximum of the new data range (here 0 and 1). One reason
to normalize input variables is to eliminate possible skewness in data that could happen due to different
input units that could make the range of some variables much larger than others. A large value input can
dominate the input effect and influence the model accuracy of the neural network system [Li et al., 2000].
The normalization is applied to the training data set independently of validation and test data sets, and the
normalization parameters from the training set are saved and applied to the validation and test sets (rather
than recalculated on these sets).

In the training stage, we first select the parameters of the neural network such as number of hidden layers, the
number of neurons in each layer, and the activation function to be used. Parameter selection is an empirical
process. An optimization algorithm is run to determine the weights for the neural network by minimizing the
error between the output of the neural network and the known output of the training data set. Typically, we
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Figure 4. Neural network design workflow (adapted from Klavdianos et al. [2013]). Three main stages of the workflow
are training, validation, and testing. First, the data set is verified and preprocessed. Then, the parameters of neural
network are selected and the optimization algorithm is run to determine the weights for the particular neural network
by minimizing the error between the output of the neural network and the known output of the training data set.
Usually, we train several neural networks with different parameters, and in the validation stage, we select the one that
yields the smallest error on the validation set. Finally, we calculate the accuracy of the model selected in the validation
stage by comparing the model output to the known output of the test set.

train multiple neural networks with different parameters, and in the validation stage, we select the one that
yields the smallest error on the validation set.

The goal of the validation stage is to ensure that a neural network is capable of reconstructing the relationship
between the input and output variables on data it has not seen yet, that is, data that was not used to train
the model. This is referred to as the generalization ability of the neural network. Using the validation data set,
we apply it to each neural network constructed in the training stage and select the model with the highest
accuracy by comparing the output of the model to the known output of the validation set.

Finally, in the testing stage, we calculate the accuracy of the model selected in the validation stage by com-
paring the model output to the known output of the test set. The calculated error is then claimed to be the
accuracy of the whole system. Now, the neural network is ready to be applied to input data for which the
output is not known.

3. NURD

The Neural-network-based Upper hybrid Resonance Determination (NURD) algorithm developed here con-
sists of the steps shown in Figure 5. These steps are described in detail in the following subsections.

3.1. Input Data
We use data from the EMFISIS instrumentation suite [Kletzing et al., 2013] on the Van Allen Probes to train
a neural network for plasma density inference. In order to train a neural network (hereinafter referred to as
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Figure 5. Diagram of the proposed algorithm.

the model), a user must have a set of example data, which consists of the input variables and known target
variables (outputs of the model). Data used as inputs to the model are described below and summarized in
Table 1. Our neural network model has one output, which is also described here. Construction of the training
set in a form suitable for training is discussed in the next subsection.

The first input to the model is the EMFISIS HFR survey mode electric field power spectral density covering
the frequency range of 10 to 487 kHz. The data are binned into 82 logarithmically spaced bins and has a 6s
temporal resolution. The frequency spacing provides about 5% spectral resolution (Δf∕f ) and determines the
resulting density resolution (Δn∕n). As previously discussed, ne is proportional to f 2

pe, which results in 10%
density resolution. Also, the upper frequency range (487 kHz) limits the maximum density that can be derived
to about 2900 cm−3, and the lower frequency range (10 kHz) limits the minimum density to about 1cm−3. The
logarithm of the electric field power spectral density for the 82 frequency bins is used as an input to the model.

We also use a measurement of background magnetic field, |B|, from the EMFISIS fluxgate magnetometer to
determine electron cyclotron frequency, fce (fce = 28|B|, where fce is measured in hertz and |B| is in nanotesla).
The logarithm of the cyclotron frequency is used as an input to the model.

Plasma density is known to vary spatially, so we use two input parameters related to the location of the
measurement. The first is the dipole L value, which identifies the equatorial crossing of the magnetic field
line where the measurement was made in units of Earth radii. We also use magnetic local time (MLT) in
decimal hours.

The Kp index is an indicator of global geomagnetic disturbances and is used as an input to the model since
the plasma density is known to vary as a function of geomagnetic conditions.

Finally, after visual inspection of the spectrograms, it was noticed that a frequency bin with the highest power
spectral density from the HFR spectrum could be used as a rough initial approximation of fuhr; thus, it was
also incorporated into the training set. This assumption might introduce errors to the neural network, since as
mentioned in section 1, the upper hybrid frequency fuhr is generally the upper frequency edge of the upper
hybrid band rather than its maximum emission peak [Benson et al., 2004]. However, the conclusion in Benson
et al. [2004] was based on active and passive observations from the Radio Plasma Imager (RPI) on the IMAGE
satellite. This instrument has a higher frequency resolution compared to EMFISIS HFR on board the Van Allen
Probes, which allowed to make extremely accurate determinations. In the case of EMFISIS HFR, the coarse
frequency resolution of the instrument does not allow us to capture that edge accurately. We will discuss the
error of density determination in section 3.3.

As mentioned before, inherently, to use a neural network we need to have known responses to the inputs
of the model in order to train it. In our case, the output or target variable for the neural network model is
the upper hybrid frequency value for each set of input variables. Identifying these values manually for a sub-
stantial set of data is a challenging and an extremely time-consuming task, which also might be potentially
erroneous. For this reason, for the training data set (including validation and testing), values of the upper

Table 1. List of Input Variables to the Neural Network Model

Name Description Units

1 − 82 log10 spectrum Decimal logarithm of the spectrum log10 V2∕m2∕Hz

83 log10 fce Decimal logarithm of electron cyclotron frequency log10 Hz

84 L Magnetic field line Earth radii

85 Kp index Geomagnetic index Unitless (0–9)

86 MLT Magnetic local time Hours (0–24)

87 f binmax Frequency bin with the highest power spectral density from the HFR spectrum Unitless (1, 2, … , 82)
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Figure 6. Architecture of the feedforward neural network selected in the validation stage. It has 87 inputs, 80 neurons in
the hidden layer, and one output. The weights of the neural network can be represented as 80 × 87W(1) and 1 × 80 W(2)

matrices, and the biases can be represented as 80 × 1 vector b1 for the hidden layer and scalar b2 for the output layer.

hybrid frequency for 1091 orbits was obtained from the AURA algorithm [Kurth et al., 2015] and made available
to us through the courtesy of W. Kurth and the EMFISIS team. This data set had been manually inspected, and
the data points, for which the AURA algorithm failed to identify the upper hybrid frequency correctly, had been
corrected by the operator [Kurth et al., 2015]. The ultimate accuracy of the resulting electron density obtained
with AURA is ≈10%, which bounds the accuracy of the resulting neural network model. With the 9h orbital
period and the 6s cadence of the HFR measurements, this data set yields about 5,900,000 measurements.

Not all of these measurements can be used to train the neural network, since the UHR frequency may be above
the upper limit of the HFR frequency range particularly near perigee. We exclude the out of frequency range
measurements when the network is trained and use a special procedure when the resulting neural network is
being applied to the data. The procedure is as follows. Each orbit is considered separately. First, we determine
the left and right boundaries of the upper hybrid resonance line by finding the bins with maximum values of
the spectral density in the highest frequency spectral bin at 480 kHz nearest perigee. The neural network is
then applied only to the measurements inside these boundaries.

After excluding the out of frequency range portion of the data, the data set for training, validation, and testing
comprises 4,027,610 measurements. This results in a 1 × 4,027,610 vector of target values (measurements of
fuhr) and an 87 × 4,027,610 matrix of input values from Table 1 (in machine learning, the matrix of input values
is usually referred to as feature matrix).

3.2. Neural Network Implementation
The Matlab Neural Network Toolbox is used for all operations on neural networks. We use a feedforward neural
network for UHR frequencies inference, which is a type of artificial neural network that is traditionally used for
solving multiple nonlinear regression problems and is more effective on large input parameters space than
regular regression models.

The architecture of the feedforward neural network used is shown in Figure 6. It consists of an input layer, one
hidden layer, and an output layer. Each layer consists of neurons. An artificial neuron consists of inputs, which
are multiplied by weights, summed, and then computed by a mathematical function, which determines the
output of the neuron (more background on neural networks was given in section 2). The number of neurons
in the input layer should be equal to the number of dimensions in the input vector (87 as was discussed in
subsection 3.1). In this application, the validation stage has shown that 80 neurons in the hidden layer are well
suited for reasonable performance of the neural network (details about the validation stage are given below).
The output layer consists of just one neuron, as we are to infer only one variable, fuhr.

Each neuron in one layer is connected to the neurons of the subsequent layer. Each connection has its own
weight, and each neuron has its own bias. For convenience, these weights can be represented as 80× 87 W(1)

and 1×80 W(2) matrices, and the biases can be represented as 80×1 vector b1 for the hidden layer and scalar
b2 for the output layer.
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Figure 7. This figure shows the mean absolute percentage error
(MAPE, on the x axis) of the neural networks with different
number of neurons in the hidden layer (on the y axis) being
applied on the training data (red solid curve) and on the
validation data, i.e., data not used to train the network (blue
dashed curve). While MAPE usually decreases on the training
set, when the complexity of the network (number of neurons)
increases, it stops decreasing after a certain point on the
validation data, which indicates that the network has been
overfit. That way, we can select the optimal number of neurons
in the hidden layer.

The transfer function for the hidden layer is
the hyperbolic tangent sigmoid function (trans-
forms any input to the range of −1 to +1) and
linear transfer function for the output layer. The
output of the hidden layer is a vector

a1 = tanh
(

b1 + W (1)x
)
, (3)

where x is the 87× 1 input vector characterizing
fuhr. The output of the network is then

a2 = 𝑏2 +𝑊 (2)a1. (4)

The training set consists of 4,027,610 input vec-
tors, and this set is randomly split into three
parts: training, validation, and test sets in the
following proportion, respectively, 34% : 33% :
33%. A large fraction of the test data, 66%, was
reserved for validation and testing since there is
a large amount of training data available. Such
split ratio allows for better generalization ability
of the network.

Using the training set, we trained five different
neural networks varying the number of neu-
rons in the hidden layer from 40 to 120. As
discussed in section 2.1, we train the network
using a conjugate gradient (SCG) backpropaga-

tion algorithm. Next, we use the validation data set to identify the most suitable neural network architecture.
The error measure used to evaluate the performance of neural networks is the mean absolute percentage
error (MAPE) [Armstrong, 1985] given by

MAPE = 1
M

M∑
i=1

|||f AURA
i − f NURD

i
|||

f AURA
i

× 100%, (5)

where M is the size of the validation set, f NURD
i are fuhr values predicted using our neural networks, and f AURA

i are
fuhr values provided by the EMFISIS team (they are referred to as ground truth values). Figure 7 shows the plot
of the MAPE as a function of the number of neurons in the hidden layer. The red solid curve shows the MAPE
when the neural networks are applied on the same data used to train the network. As the number of neurons
in the hidden layer increases, the MAPE decreases; that is, when more free parameters are available, the model
is better able to fit the data. On the other hand, when the neural networks are applied on a validation data

Figure 8. An example of the output of the model on the spectrogram of Waves HFR data before (red curve) and after
postprocessing step (white curve). (left) The spectrogram for orbit 1040 and (right) the zoom-in version of it from 3:30
until 6:30 UT. Postprocessing removes the possible noise in the densities inferred with the neural network.
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Figure 9. Average percentage divergence of the electron
density ne inferred with the proposed algorithm from densities
obtained with AURA versus types.

set (that is, data that were not used to train the
network), then we find that as the number of
neurons in the hidden layer increases the error
on the validation set decreases until a certain
point. After this point the error on the valida-
tion set starts to increase, which means that the
neural network has been overfit. When a model
is overfit, it does not generalize well; that is,
there is low error on the training data but high
error when new data are applied to the model.
Therefore, we select the neural network for
which the MAPE is the smallest on the valida-
tion set. As can be seen in Figure 7, the selected
model has 80 neurons in the hidden layer.

Next, we use the test data set and apply it to the
model selected in the validation set. Eventually,
we find that the MAPE on the test set is∼8%, and
this is considered the overall error of our model.

3.3. Applying the Neural Network
The neural network constructed in the previous section with 80 neurons in the hidden layer was applied to
a database of 2425 orbits from October 2012 to March 2015. After the neural network is applied to the input
data, a postprocessing step is applied (step 4 in the diagram in Figure 5) in order to reduce the noise in the
prediction of fuhr (the output of the neural network is of the form y = f (W, x) + 𝜀, where 𝜀 is random noise).
The predicted fuhr value is rounded to the closest EMFISIS HFR frequency bin. Then we consider this bin and
two adjacent bins (above and below) in the HFR spectrum. The resulting fuhr is determined as the frequency
corresponding to the bin with the highest power spectral density of these three bins. An example of the “raw”
output of neural network and the postprocessed one is presented in Figure 8. It can be seen from this figure
that the neural network diagnosis (shown in red) might slightly fluctuate from the actual upper hybrid line.
Postprocessing step reduces possible fluctuations. However, the resulting upper hybrid line can still switch
between several adjacent spectral bins in the spectrum (e.g., see Figure 10), which might introduce a certain
level of uncertainty in the density determination. Also, we need to take into account errors introduced by
using the frequency of the maximum emission intensity as the resulting fuhr instead of the upper cutoff of
the upper hybrid resonance band [Beghin et al., 1989; Benson et al., 2004]. As was already mentioned, the
coarser frequency resolution of the EMFISIS HFR compared to the IMAGE RPI might not allow us to capture
that edge accurately. Thus, we can evaluate the error introduced due to that by estimating the error in density
determination when the derived value of fuhr is off by one frequency bin from its true value. After some simple
calculations, we obtain the following formula for this error:

Δn
n

≈ 2
Δf
f

√( fpe

fce

)−2

+ 1, (6)

where, Δf
f

is the frequency resolution (in case of 1 bin), which is ≈5% as discussed before, and ratio
(

fpe

fce

)
is

always greater than 1, which makes the expression under the square root always less than 2 but more than 1,
thus making the whole expression always more than≈10% and less than≈14%. Hence, the error which might
be introduced due to toggling between bins (two bins in this case) can vary from about 10 to 14%. It is worth
noting that this kind of error should be accounted mostly in the trough region since for the plasmasphere
determination of the upper hybrid line is quite straightforward most of the time.

Finally, the electron densities are derived from the resulting fuhr using formulae (1) and (2).

In order to evaluate the performance of our NURD algorithm in comparison with densities provided by the
EMFISIS team, we must first introduce a classification of orbits into types. In Kurth et al. [2015], the orbits are
divided into three types: A, B, and C:

1. Type A consists of orbits where less than 25% of the fuhr points required manual correction and constitutes
70% of the orbits processed by AURA.
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Figure 10. (a–c) Examples of typical orbits of each type and (d–f ) resulting upper hybrid frequency fuhr profiles
determined with the NURD algorithm (white) and AURA (red).

2. Type B are orbits where 25 to 50% of the data points require manual correction, constituting 20% of the
orbits.

3. Type C are orbits where there are “interpretational difficulties in finding the upper hybrid band” [Kurth et al.,
2015], and this type constitutes 10% of the orbits.

To compare results from AURA and our NURD algorithm, we compute the mean absolute percentage error for
each orbit type. This evaluation simply shows to what extent the densities inferred with the NURD method
differ from the densities identified with AURA for each type. It does not actually demonstrate the real error
rate of either method since the ground truth densities are ambiguous, particularly for type C. Thus, it is more
appropriate to call this evaluation measure as average divergence. It is also worth keeping in mind that while
the data set of electron densities obtained with AURA and used in training is the most reliable resource of
the electron plasma density for the Van Allen Probes currently, there are still cases of a great uncertainty in
density determination which cannot be resolved even by the manual inspection and can lead to larger errors,
especially in the plasma trough where the densities are low due to recent geomagnetic activity (please refer
to section 2.2 of Kurth et al. [2015] for discussion about potential errors introduced due to the interpretational
issues). Thus, it is quite likely that there are errors in the training set, which might affect the neural network
performance.

Figure 9 shows the average divergence for different types of orbits. One can see from this plot that AURA and
NURD yield nearly identical results for orbits of type A since this type corresponds to orbits with fuhr profiles
that are the easiest to identify. The difference for type B is also not very significant (about 5%), but the dif-
ference for type C is about 14%. This is due to the uncertainty of the upper hybrid frequency determination
particularly during the geomagnetically active times when the plasma density in the trough is very low and
there are strong electron cyclotron harmonic emissions present. Figure 10 demonstrates typical examples of
orbits of each type and shows the fuhr profiles obtained with the aid of AURA (used in the training, marked
with red) and the resulting fuhr profiles obtained with the NURD algorithm (indicated in white). As we can
see from this plot, the upper hybrid lines derived for type A orbit with both algorithms almost overlap. For
more complicated types of orbits B and C, the resulting upper hybrid line inferred with the NURD algorithm
almost overlaps with the AURA results in the plasmasphere regions (small L shells) but differs in the trough
(high L shells). Indeed, in the plasmasphere the density determination is quite straightforward. Differences
in the trough region make the largest contribution to the average divergence for these complicated types
of orbits. For these cases, it can be hard to quantify which of the algorithms performed better. In this par-
ticular example of orbit of type B, we can see that NURD’s fuhr tends to toggle more between adjacent bins
than AURA’s. But NURD’s fuhr tends to follow one resonance band, which seems to be selected among the
intense banded emissions as the one that is a continuation of the intense emission extending beyond the
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Figure 11. The log of the electron density (ne) versus L, where the color scale indicates the occurrence normalized by the number of measurements in different L
bins. The black dashed line shows the separation between trough-like and plasmaspheric-like data as nb = 10(6.6∕L)−4 (as in Sheeley et al. [2001]). The upper
black dotted line is the plasmasphere model, and the lower black dotted line is the trough model of Sheeley et al. [2001] for MLT = 0. The upper and lower white
dotted lines show the mean of the log of the electron density (ne) obtained with the NURD algorithm for plasmasphere and trough correspondingly.

intense banded emissions, while AURA’s fuhr might switch from band to band. Again, it is extremely hard to
judge visually which of these diagnoses is correct, and in some cases it might happen that both algorithms
could be wrong. Most of these cases usually refer to the regions of type C orbits, when the plasma density
in the trough is very low and there are strong electron cyclotron harmonic emissions present. For example,
in the vicinity of 07:30 in Figures 10c and 10f, there is a possibility that both the NURD and AURA algo-
rithms could be wrong and that the fuhr band could belong to the moderately strong emission near 40 kHz.
However, it is difficult to make such conclusion without a proper spectral interpretation of the emissions.
Benson et al. [2001] show in an analysis of AMPTE/IRM (Active Magnetospheric ParticleTracer Explorers/Ion
Release Module) banded magnetospheric emissions that emissions at fuhr are not always observed with the
banded emissions. Benson et al. [2001] also show that under low-density conditions different passive and
active techniques of density determination could yield significantly different results (up to a factor of 3.5).
Besides that, Benson et al. [2001] discuss cases when different magnetospheric emissions in passive spectra
have been misinterpreted leading to errors in density determination. These findings illustrate the difficulties
affecting the reliability of the density determination. At the current stage, both NURD and AURA may expe-
rience difficulties in the low-density regions. Thus, while use of the densities marked “questionable” in the
resulting electron density data set obtained with NURD is safe in statistical studies, one should be careful
when using the exact diagnoses.

Using the new statistical data set, we are planning to develop a neural network that will predict global plasma
density based only on solar wind conditions and geomagnetic indexes. Comparisons of model results with
observations will show how well the plasma density can be predicted by such a model and how much addi-
tional information that can help current NURD predictions is contained in geomagnetic indices or solar wind
parameters.

4. Results and Discussion

After applying the NURD algorithm, we produced a database of 10,252,612 measurements of electron density
from October 2012 to March 2015. Here we perform initial analysis of this database and compare our distri-
butions to the empirical plasmasphere and trough density models of Sheeley et al. [2001]. In our analysis, we
separate density values into plasmaspheric-like data and trough-like data using the same criteria as in Sheeley
et al. [2001]. A threshold density is defined as

nb = 10(6.6∕L)−4. (7)

Density readings at or above nb (given also in cm−3) for the given L shell are considered plasmaspheric-like.
Readings below nb are considered trough-like.

In Figure 11, we show two-dimensional plots of normalized occurrence as a function of electron density and
L. We divided the data set into 26 bins in the logarithm of density and 16 bins in L. Each bin contains the
number of measurements in that range of L and ne divided by the total number of measurements in that range
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Figure 12. The log of the electron density (ne) versus MLT, where the color scale indicates the occurrence normalized by the number of measurements in
different MLT bins for the data in the range of 3 < L < 5. The black dashed line is the density threshold for the median of L for both plasmaspheric-like and
trough-like data, which is L ≈ 4.2. The upper black dotted line is the plasmasphere model at the median of L for plasmasphere-like data (L ≈ 4.1), and the lower
black dotted line is the trough model of Sheeley et al. [2001] at the median of L for trough-like data (L ≈ 4.6).

of L. Thus, the color scale indicates the normalized occurrence in different L bins. The minimum number of
measurements required to calculate the occurrence is 10, and the median number of measurements in each
bin in Figure 11 is 19,063. A contour function is applied to plot the binned occurrence.

Figure 11a shows the normalized occurrence for all measurements. The black dashed line is the threshold
density, nb. The upper black dotted line is the plasmasphere model of Sheeley et al. [2001], and the lower
black dotted line is the trough model of Sheeley et al. [2001] for MLT = 0. The upper and lower white dotted
lines are the mean of the log of the electron density derived with the NURD algorithm for plasmasphere and
trough correspondingly. The intense red color in the range of L = 2 to 3.5 indicates that at these L values, the
measurements tend to be clustered around a fairly narrow range of densities. However, at higher L, we begin
to see a bimodal structure with clear separation between plasmasphere and trough measurements.

In Figure 11b, we examine just the plasmasphere-like measurements. We find generally good agreement
with the Sheeley plasmasphere model, but we also find that occurrence distributions measured by Van Allen
Probes tend to peak at slightly higher density than the average value obtained with CRRES data. The shift in
the mean density value is ≈280 cm−3 (≈0.14 on a logarithmic scale) in average. In contrast, in the trough illus-
trated in Figure 11c, the occurrence distributions peak at densities slightly lower than the empirical model.
The peak of the occurrence is shifted ≈5.32 cm−3 down in average (≈0.05 on a log scale).

Next, in Figure 12 we examine the normalized occurrence in different MLT bins. Here we limit the data to the
range of 3<L<5 and divide the data into 26 bins in the logarithm of density and 14 bins in MLT. As previously,
each bin contains the number of measurements in that bin divided by the total number of measurements at
that MLT, such that the color scale indicates the normalized occurrence in different MLT bins. Figure 12 shows
(a) all data, (b) plasmasphere-like data, and (c) trough-like data. The black dashed line is the density threshold
for the median of L for both plasmasphere-like and trough-like data, which is L ≈ 4.2. The upper dotted line
is the plasmasphere model of Sheeley et al. [2001] at the median of L for plasmasphere-like data (L ≈ 4.1),
and the lower black dotted line is the trough model of Sheeley et al. [2001] at the median of L for trough-like
data (L ≈ 4.6).

The relatively good agreement between the density measurements obtained with the NURD algorithm and
the empirical model of Sheeley et al. [2001] can be seen from both of these figures. Since the neural net-
work in the NURD algorithm has been trained on the data set obtained with AURA, we need to mention that
this relative agreement should also be accounted for the proficient quality of the AURA density set. For sure,
special measures should be employed to obtain the optimal neural network, which would perform the best
on this given data set (e.g., choosing the appropriate number of neurons discussed above). Thus, we might
conclude that the agreement with the empirical model of Sheeley et al. [2001] was reached due to both AURA,
which provided a proficient data set, and NURD, which was optimally trained to infer the density with a
sufficient accuracy.
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5. Summary

An algorithm for automated determination of plasma densities from electric field measurements made on
Van Allen Probes spacecraft has been developed. The algorithm employs a feedforward neural network to
infer upper hybrid frequency profiles from the HFR spectrograms and electric field measurements obtained
from the EMFISIS instrumentation suite. Plasma densities are derived then from the inferred upper hybrid
frequencies.

The algorithm is described in full detail, and analysis of the obtained densities is presented. The proposed
NURD algorithm is applicable for L shells 2 ≤ L ≤ 6 and covers all local times.

The algorithm was applied to the database available covering 2425 orbits. The analysis of the resulting densi-
ties has shown an agreement with the Sheeley model for trough and plasmaspheric-like densities and, on the
other hand, there is a large variability in data. Using the proposed NURD algorithm, we are able to determine
the density in a much finer resolution than using existing empirical models.

Comparison with AURA [Kurth et al., 2015] showed that densities obtained with the proposed method are in a
good agreement with the densities obtained with AURA. To illustrate this, we used the classification of orbits
spectrograms into three levels of difficulty introduced in Kurth et al. [2015]: type A (upper hybrid frequency
is easy to identify, 70% of all orbits), type B (some interpretation is needed to be done by an expert, 20% of
all orbits), and type C (concealed signal, 10% of all orbits). The mean average percentage difference between
densities by these two methods was∼1% for type A,∼5% for type B, and∼14% for type C. Comparison with the
statistical model of Sheeley et al. [2001] also showed relatively good agreement with the densities set obtained
with NURD. The ultimate error rate of the derived density is ∼14%. However, the error still might be larger in a
number of cases when there is high uncertainty in the density determination, especially in the plasma trough
where the densities might be low due to recent geomagnetic activity. Indeed, the NURD algorithm does not
save us from the uncertainty in density determination. But first, it can still produce reasonable estimates for
the regions of uncertainty, which can be safely used in statistical studies, and second, it is automated, which
means that it can remove if not all then definitely a significant part of the manual aspects of the density
determination.

Using the created framework, the neural network model can be retrained on other data sets for which input
parameters can be modified if needed. At the moment NURD is tuned specifically for the Van Allen Probes data,
but with it we were able to show that neural networks, and thus possibly other machine learning algorithms,
might be applied and produce good results on such data.

In the future, we are planning to work on the development of a global predictive neural network that will
be based on solar wind parameters and geomagnetic indices. If, using this new predictive system, we can
determine density just from the solar wind and geomagnetic indices, that will be a good indication that
certain dependencies between the plasma density and the solar wind and geomagnetic indices exist. Thus,
using the developed system and passive observations, we could determine the plasma density values bet-
ter than inferring them from the passive observations alone. The future extension of such a network will be
a data assimilative predictive network that will use all available measurements and will blend them with the
predictive model.
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