

HELMHOLTZ CENTRE POTSDAM **GFZ GERMAN RESEARCH CENTRE** FOR GEOSCIENCES

First 3D inversion results from magnetotelluric data of the Eastern Karoo Basin, South Africa Anna Platz ^{1,2}, Jade Greve ^{1,3,4}, Ute Weckmann ^{1,2}, Moctar Doucouré ^{3,4} ¹ Helmholtz Centre Potsdam - German Research Centre for Geosciences GFZ, Potsdam, Germany ² University of Potsdam, Institute of Geosciences, Potsdam, Germany ³ Nelson Mandela Metropolitan University, Port Elizabeth, South Africa ⁴ Africa Earth Observatory Network, Port Elizabeth, South Africa

Aim of project

- General: Fundamental understanding of the geology, petrology and hydrology of the Karoo Basin
- Magnetotellurics (MT): 3Dnodel of the subsurface
- → Imaging potential shale gas pearing formations
- → Imaging shallow aquifers for a better understanding of fresh and brackish water reservoirs

- Eastern Karoo Basin: Sedimentary basin stretching across most of southern Africa with a size of nearly 600,000 km2
- Geology: The basin contains two supergroups: Cape & Karoo Supergroup
- Karoo Supergroup: Contains Whitehill Formation with carbon rich shales

Figure 2 (right): Overv

Conclusion and future work 3D inversions started with standard single-site processing results – conductive layer (Whitehill?) mapped

- At shallow depth the Whitehill Formation is weathered and therefore not conductive
- Indications for shallow conductivity anomalies → aquifers?
- → Advanced processing of data
- → 2D inversion models along all
- → 3D inversion models
- → Constraints from lithology/ hydrology

www.gfz-potsdam.de

