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INTRODUCTION
Mare2DEM is a parallel adaptive finite element code for 2D 

forward and inverse modelling for electromagnetic data (Key 

& Ovall, 2011), which is now being made freely available. 

Mare2DEM was originally designed with marine controlled-

source electromagnetic (CSEM) and marine magnetotelluric 

(MT) applications in mind, but it can also be applied to onshore 

data. Important features of Mare2DEM are:
h automatic mesh generation and refinement
h triaxial (intrinsic) anisotropy
h topography
 
To test this inversion code with onshore MT data we use the 
data set measured in 2005 in the Cape Fold Belt, South Africa. 
The stations are aligned along a ~ 100km long profile with 
significant topography and a close-by ocean. Several stations 
indicate the existence of electrical anisotropy in the 
subsurface through phases > 90°. Commonly, these phases 
out of quadrant are explained by an anisotropy strike oblique 
to the main conductivity structures.
While in earlier inversion studies only data without 
3D/anisotropy effects were inverted using WinGLink, we can 
now compare inversion results of this study, in particular how 
Mare2DEM deals the anisotropy effects in the MT data.
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Mare2DEM on land:
MT Data from the Cape Fold Belt (South Africa) revisited

Figure 7 

MT data & 
fit (lines); 
Phases  > 
90° could 
not be fit.

Figure 6 

Pseudo-
sections 
of TE and 
TM appa-

rent resistivity and phase. Phases >90° 
(circled) are observed in the middle of the 
profile at periods >1s in both modes 
[Chen, 2012].

Figure 5 
Comparison between (a) surface 
geology, (b) 2D isotropic inversion 
model (Mare2DEM) and (c)  2D 
isotropic inversion model (RLM2DI) 
[Weckmann et al., 2012]. Prominent 
conductors e.g. under the Oudtshoorn 
Basin are included in both inversions, 
but have different shapes. FE 
inversion shows more structures 
(overfitting?), but vertical anomalies 
seem to correlate with positions of 
syn- and anticlines and might image 
fluid pathways. Including topography 
in FE inversion was vital to improve 
data fit. While the FD inversion did not 
include structures outside the station 
coverage, 2 stations north of the 
profile had to be included an a-prioiri 
conductivity structure beneath fixed.

Figure 8

Data fit (lines) of the inversion 
after omitting data with phases 
>90°. The total rms improved, 
but phases approaching or higher 
than 90°  usually correlate with 
decrasing resistivities. The 
apparent resistivites can be 
fitted, but not the phases 
approaching 90°. 

Figure 1
User interface Mamba2D for 
Mare2DEM to specify the following 
settings:
tgrid dimensions
t i s o t r o p i c  /  a n i s o t r o p i c  
conductivities
t import a priori information, e.g. 

topography
tcreate and modify  nodes and 
segments
tset conductivities / lock cells
tgenerate mesh
ttarget rms
tconductivity bounds
tregularization parameters
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Figure 2 
Map of the study area in South Africa. The 
blue dots show the location of the MT-
Stations, which were projected onto the . 
dashed profile line. The MT profile consists 
of 54 stations and was measured in 2005. 
It crosses the Cape Fold Belt in South 
Africa between Prince Albert and 
Mosselbay.

MT Data & fit

2D Models

Conclusions & References

tMare2DEM works with land MT data.
tOnly triaxial anisotropy --> phase values 
over 90° cannot be reproduced.
tAnisotropic inversion absorbes 3D effects
t  topography has improved data fit

tDevelopment of rms and roughness as 
indicator for overfitting
tGeneral conductivity structure comparable 
to FD inversion, but shapes seem to be more 
detailed and complex.

Figure 3 
Isot rop ic  conduct iv i ty  mode l  
calculated with Mare2DEM [Key and 
Ovall, 2011]. White triangles show the 
location of the MT stations. The 
topography was included with 50m 
resolution together with the Ocean 
(rough bathymetry) at the southern 
end of the profile. Total rms: 2.04
 

Figure 4
Anisotropic conductivity model 
allowing for triaxial anisotropy. 
Here we present the y component 
of the conductivity which shows 
similar features compared to the 
isotropic inversion. The anisotropy 
introduced did not exeed a ratio of 
2, but phases >90° cannot be 
modelled. Total rms: 1.87

Figure 9 
Pseudosections of observed and 
modelled TE and TM mode phases 

along the profile. White 
areas at long periods show 
omitted data due to 
phases >90°. Because of 
static shift, apparent 
r e s i s t i v i t i e s  w e r e  
d o w n w a i t e d  i n  t h e  
inversion and not shown 
here.Therefore only pha-
ses are presented, which 
could be explained  well by 
the inversion model. 

Figure 10
Development of total rms and 
roughness during the inversion 
run. While the rms does not 
change a lot after the 20th 
iteration the model includes 
more complex structures. The 
final iteration and  „reasonable“ 
inversion results have to be 
c o m p a r e d ,  t o  p r e v e n t   
overfitting of the data.

Figure 11
rms for each
t station (in depen-
dance of data type)
tperiod (in dependance 
of data type)
tdata type

error floor: TM 50%, TE 200%, phases: 3%, 
starting model: 10 Wm halfspace with bathymetry & topography
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