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Abstract Changes in the river flood regime may be due to atmospheric processes (e.g., increasing pre-
cipitation), catchment processes (e.g., soil compaction associated with land use change), and river system
processes (e.g., loss of retention volume in the floodplains). This paper proposes a new framework for attrib-
uting flood changes to these drivers based on a regional analysis. We exploit the scaling characteristics (i.e.,
fingerprints) with catchment area of the effects of the drivers on flood changes. The estimation of their rela-
tive contributions is framed in Bayesian terms. Analysis of a synthetic, controlled case suggests that the
accuracy of the regional attribution increases with increasing number of sites and record lengths, decreases
with increasing regional heterogeneity, increases with increasing difference of the scaling fingerprints, and
decreases with an increase of their prior uncertainty. The applicability of the framework is illustrated for a
case study set in Austria, where positive flood trends have been observed at many sites in the past decades.
The individual scaling fingerprints related to the atmospheric, catchment, and river system processes are
estimated from rainfall data and simple hydrological modeling. Although the distributions of the contribu-
tions are rather wide, the attribution identifies precipitation change as the main driver of flood change in
the study region. Overall, it is suggested that the extension from local attribution to a regional framework,
including multiple drivers and explicit estimation of uncertainty, could constitute a similar shift in flood
change attribution as the extension from local to regional flood frequency analysis.

1. Introduction

Numerous major floods around the world have raised the concern that river flooding is becoming more fre-
quent and severe [e.g., Kundzewicz et al., 2013; Hall et al., 2014; Bl€oschl et al., 2015; Stevens et al., 2016]. While
there is consensus that in many parts of the world, the flood damage has increased due to an increase in
the assets in the floodplains [e.g., Jonkman, 2005; Di Baldassarre et al., 2010; Mechler and Bouwer, 2014; Ceola
et al., 2015], the actual changes in the flood hazard (associated with changed flood discharges) are less
clear. A number of studies have examined whether significant river flood changes are detectable from long
flood records [Kundzewicz, 2012; Hall et al., 2014; Mediero et al., 2015]. Regional patterns of changes do
appear, but it is difficult to identify the reasons of such changes. Merz et al. [2012b] therefore called for a
concerted effort for attributing trends in flood time series. Knowledge of the drivers of past flood changes
will greatly enhance the capability of anticipating future flood changes [Hall et al., 2014].

River floods are affected by numerous processes and any changes in such processes may result in changes
in the flood discharges. Merz et al. [2012a, 2012b] defined three groups of potential drivers related to the
atmosphere, catchments, and the river system [see Merz et al., 2012b, Table 1].

Atmosphere. Any change in convective rainfall, synoptic rainfall, and snowmelt will induce changes in flood
magnitudes. Additionally, antecedent soil moisture as controlled by antecedent precipitation and evapora-
tion will play a role.

Catchments. Land use has changed considerably in many areas around the world, for example, due to defor-
estation and urbanization. Agricultural practices have dramatically affected water flow paths, e.g., through
reducing infiltration by soil compaction.

River systems. Rivers have been manipulated for centuries by river training, removal of inundation areas, and
construction of weirs which will all affect flood wave propagation and retention, and therefore the peak
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discharges. Hall et al. [2014] suggested how these drivers may affect river flood changes for different catch-
ment scales and event magnitudes.

Which of these drivers are important for explaining observed river flood changes depends on the local situ-
ation. Merz et al. [2012b] discussed the state of the art in attributing observed flood changes to their drivers.
They concluded that most studies focused on the detection problem, by performing statistical analyses of
flood time series, and based their attribution statement on qualitative reasoning or even speculation.
Hence, the observed flood change was explained by qualitatively linking it to changes in potential dri-
vers, such as atmospheric circulation patterns [Petrow et al., 2009; Bormann et al., 2011], precipitation
[Robson et al., 1998; Mudelsee et al., 2003], river training [Villarini et al., 2011], construction of reservoirs
[Bormann et al., 2011], or changes in land use and agricultural management [van der Ploeg and Schweigert,
2001; Pinter et al., 2006; Bormann et al., 2011].

There are a number of studies that link changes in floods to their potential drivers via statistical approaches.
Often, mean flood characteristics are correlated to meteorological variables [e.g., Cunderlik and Burn, 2004;
Pinter et al., 2006; Novotny and Stefan, 2007] or to land use changes in paired catchments [see, e.g., Alila
et al., 2009, and references therein]. Alternatively, nonstationary extreme value statistics are used for the
extreme characteristics of floods [e.g., North, 1980; Khaliq et al., 2006; Serinaldi and Kilsby, 2015; �Sraj et al.,
2016]. The underlying idea is to allow the parameters of the flood frequency distribution to change in time
as a function of a covariate and test whether this allows a better fit to the data. Even though the main
objective is flood frequency estimation, the selection of the best covariate can be considered as attribution.
For example, Delgado et al. [2012, 2014] attributed the trends in flood peaks for gauges along the Mekong
River by using a GEV distribution whose scale parameter is a function of the variance of an atmospheric cir-
culation index representing the strength of the monsoon system. Similarly, Micevski et al. [2006] used this
approach to attribute flood changes in Australia to the Interdecadal Pacific Oscillation (IPO).

Besides these data-based, statistical approaches, simulation models have been used to attribute observed
changes to their potential drivers. The basic idea is to compare two scenarios, with and without the effect
of the driver, and assess their consistency with the observed flood changes. Renard et al. [2008] attributed
in this way flood trends in four catchments in France to changes in rainfall, while Hamlet and Lettenmaier
[2007] found that flood changes in the western U.S. could be attributed to temperature changes in the
twentieth century. Hundecha and Merz [2012] extended this approach by introducing the effect of year to
year natural climate variability in the attribution, which allowed them to compare probability distributions
of simulated flood changes, due to changes in meteorological variables, to the observed flood changes. The
simulation-based attribution approach has also been used for evaluating the effects of nonclimatic drivers,
such as effects of afforestation and deforestation [Andr�eassian et al., 2003] or effects of river training
[Vorogushyn and Merz, 2013].

While the attribution studies mentioned above have focused on a single driver, a number of multidriver
studies have been published recently. Statistical approaches have been developed based on assessing the
significance of more than one covariate in explaining the temporal variability of flood frequency model
parameters through linear and nonlinear regression models. For example, Villarini and Strong [2014] and
Prosdocimi et al. [2015] considered both precipitation and a land use indicator as covariates, in a US and UK
context, respectively. While Villarini and Strong [2014] attributes flood changes to rainfall variability changes,
in Prosdocimi et al. [2015] the urbanization effect has a dominant role. Silva et al. [2015] considered both
ENSO and the construction of dams over the Itaja�ı-açu River in Brazil. They provide evidence that upstream
dams play a significant, if small, role in reducing flood hazard, while the increase in ENSO amplitude in the
last decades has brought about a much stronger increase of flood magnitudes. Simulation-based
approaches coupled with trend detection tests have instead been used, for example, by Harrigan et al.
[2014] and Jia et al. [2012], who explored a set of potential drivers of change in annual mean and high flows
in one catchment in Ireland and China, respectively. In both studies, local human activity (land use change,
field drainage, and artificial water use) was identified as principal responsible for the changes in runoff.

Most of the studies mentioned above have analyzed catchments individually, but there are a number of
studies that have attempted to use regional information for attributing flood changes. Typically, these stud-
ies use a large set of streamflow time series and investigate whether regional patterns in the flood changes
can be found. One approach first clusters the streamflow gauges and then derives flood changes for the
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clusters [e.g., Mediero et al., 2015]. Another approach investigates whether there are spatial patterns in the
flood trends of many stations that can be interpreted in terms of attribution statements (e.g., seasonal
coherence and consistency with large-scale climatic driver in Petrow and Merz [2009]).

Also regional nonstationary flood frequency analyses have been developed that analyze many sites simulta-
neously and, typically, climate indices [Kiem et al., 2003; Sun et al., 2014, 2015] or directly atmospheric or
oceanic fields [Renard and Lall, 2014] as covariates. These analyses include an evaluation of the uncertainty
of the flood frequency model parameters and quantiles, usually by Bayesian statistics. They typically com-
pare estimated stationary and nonstationary flood frequency curves with uncertainty through model selec-
tion criteria [e.g., Renard et al., 2006a, 2006b; Ouarda and El Adlouni, 2011]. For the selected models, they
then assess the credibility of the relationships between covariates and model parameters [e.g., Sun et al.,
2014; Silva et al., 2015]. However, these analyses are more an exception than a rule among attribution
approaches in the flood change literature. In fact, in most cases any quantitative confidence statement on
the contribution of drivers is provided [Merz et al., 2012b].

The aim of this paper is to propose a new method of flood change attribution that accounts for multiple
drivers, takes a regional perspective, and provides a confidence statement about the strength of the attribu-
tion. Specifically, the proposed framework exploits the differences of flood changes between catchments of
different sizes. Section 2 describes the framework and the specific models adopted here. Section 3 explores
the potential of the framework for a synthetic study. Section 4 illustrates the applicability of the framework
for a real-world case study, and section 5 discusses the main outcomes.

2. Attribution Framework

2.1. The Concept of Regional Flood Attribution Based on Scaling Fingerprints
There are numerous research questions in the geosciences where one is interested in identifying the pro-
cesses or sources that contribute to an observed signal. Fingerprinting is a method that is specifically
geared toward attributing these sources. For example, ‘‘. . .sediment source fingerprinting applied to fluvial
systems aims to provide information on the source of the sediment transported by a river. It involves col-
lecting a sample of the sediment transported by a river and comparing its physical or geochemical proper-
ties with those of potential sources within its catchment area. By matching the fingerprint of the sediment
to those of the potential sources, it is possible to obtain information on the likely source or provenance of
the sediment or, perhaps more likely, the relative importance of several different sources’’ [Walling, 2013,
p. 1658]. In a similar vein, chemical [Elsenbeer et al., 1995] and bacterial [Savio et al., 2015] fingerprinting has
been used to identify the sources of water, sea level fingerprinting to identify the mass sources of sea level
rise [Riva et al., 2010], sediment fingerprinting for attributing nonpoint source pollution [Davis and Fox,
2009], and climate fingerprinting to identify anthropogenic climate change [Hegerl et al., 1996, 1997; Levine
and Berliner, 1999; Hidalgo et al., 2009]. In hydrology, fingerprinting has been used to attribute changes of
water resources to potential drivers [Jia et al., 2012] and to study watershed erosion processes [Fox and
Papanicolaou, 2008].

In fingerprinting, the problem is framed as an inverse problem with two main assumptions: (a) the resulting
signal is a mixture of component signals and (b) the patterns of the component signals (i.e., the fingerprints)
are known to some degree. The accuracy of the estimated source contributions will depend on whether the
inverse system is well or ill posed (i.e., how sensitive the resulting signal is to the component signals), the
uncertainties involved, applicability of the mixing assumptions, and how realistic the fingerprints are.

Attributing changes in the river flood regime to their drivers is a typical fingerprinting problem. The
observed signal is the change in the time series of the river flood discharges. The component processes are
the changes in the drivers.

In our framework the fingerprints are conceptualized as the scaling characteristics with area of the driver
components of flood change. While scaling of flood peak flows statistics with catchment area is known
since long time in hydrology [e.g., Benson, 1963; Alexander, 1972; Bl€oschl and Sivapalan, 1995; Robinson and
Sivapalan, 1997a, 1997b; Gupta et al., 2007] and studies exist that address aspects of spatial scaling, nonsta-
tionarity, and uncertainty analysis [e.g., Lima and Lall, 2010], scaling fingerprints are used here for the first
time. They represent our knowledge/assumption on how different drivers affect flood changes in
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catchments of different sizes. The scaling fingerprints are therefore associated with many catchments in a
region. They can be used for regional flood change attribution, rather than for attribution in individual
catchments. One would expect different scaling characteristics for the different drivers as suggested by
Bl€oschl et al. [2007]. Some examples follow:

Atmosphere (A). Increases in local, convective precipitation are more relevant in small catchments which
may lead to a decrease of flood changes with catchment area (smaller flood changes in larger catchments).
Increases in regional precipitation due to changed atmospheric circulation patterns are more relevant in
large catchments which will lead to an increase of flood changes with catchment area. Overall, these two
effects may balance leading to small differences of flood change for catchments of different sizes.

Catchment (C). Decreasing infiltration capacity of the soil due to agricultural soil compaction and urbaniza-
tion may increase floods in small catchments. Due to agricultural soil compaction and urbanization in the
last decades, one would therefore expect an increase in flood discharges in these catchments. As the catch-
ment size increases, the variety of land uses becomes larger (including nonagricultural and nonurban), so
the effect will be less pronounced.

River system (R). Decreasing flood retention due to river training and loss of flood retention volumes in the
floodplains may be a particularly relevant for low land rivers where settlement pressure is largest. There are
usually large catchment areas associated with these rivers. Because of this, the effect of river works may be
typically assumed to increase with catchment area.

In this paper we adopt specific models for the scaling characteristics (section 2.2) to illustrate the frame-
work. Alternative scaling models could be used in a similar way. Similarly to regional flood frequency analy-
sis [see, e.g., Dalrymple, 1960; Burn, 1988, 1990; Hall and Minns, 1999], the assumption of homogeneity
within the region is very important. However, here the homogeneity does not only extend to the flood
peak distributions and their response to controls [e.g., Salinas et al., 2014a,b], but also in their response to
temporal changes in the controls. In a homogeneous region, the drivers of flood change (e.g., atmospheric,
catchment, and river system drivers) are assumed to change in the same way and to result in flood changes
which are related to catchment size (see section 2.2 for a quantitative definition).

Attribution methods such as the one presented here involve a number of sources of uncertainty. These may
be due to the limited flood record lengths (i.e., sample sizes), spatial heterogeneity within the region, uncer-
tainties of the fingerprints, and uncertainties of the mixing model. The proposed approach is therefore
framed in probabilistic, Bayesian terms (see, e.g., Hasselmann [1998], Berliner et al. [2000], Lee et al. [2005],
and Annan [2010] for alternative Bayesian attribution approaches). The parameters of the fingerprint models
are assumed to be random variables for which prior distributions are given. A Monte Carlo Markov Chain
(MCMC) method is then used to update the distributions. The results are distributions of the contributions
of the drivers to flood changes in the region. The narrower these distributions are, the more reliable is the
attribution.

2.2. Model Assumptions
In this paper we aim at attributing the ‘‘regional expectation’’ of the temporal change of floods to the atmo-
spheric, catchment, and river system drivers. More specifically, we consider changes in hln Qi (where hi indi-
cates the expected value), where the random variable Q represents the (e.g., maximum annual) flood peak
discharge, which varies in time and space (across different catchments). Notice that changes in the mean of
the logarithm are close to percentage changes in the mean of the original variable (i.e., the correspondence
would be exact for zero variance of the variable). In line with the fingerprinting concept, we assume that
the flood change is a mixture of three components. In this paper, we adopt the linear mixing model

dhln Qi
dt

5
dhln Ai

dt
1

dhln Ci
dt

1
dhln Ri

dt
; (1)

where dhln Ai=dt; dhln Ci=dt and dhln Ri=dt represent the three components, i.e., the temporal change in
the expectation of the log flood peaks if only one driver is present. Therefore, the random variables A, C,
and R represent the flood peak discharges if only the atmospheric, catchment, or river processes were
changing. We make here the additional assumption that the terms in equation (1) are constant in time and
therefore correspond to linear trends of (the mean of) ln Q; ln A; ln C, and ln R (this assumption is not strictly
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necessary, since other types of change, including nonlinear trends or step-changes, can be modeled analo-
gously as long as these changes can be described by one coefficient, e.g., in this case the slope of the linear
trend). Note that alternative mixing models could be used. In this paper, for clarity we focus on positive
trends, i.e., regions where floods have increased in time, and our aim is to attribute this increase to the
underlying causes. Of course, the fingerprint model can be extended for cases where negative or both posi-
tive and negative trends are of interest.

Given equation (1), the relative contribution of the atmosphere, catchment, and river components to flood
peak changes is quantified by the coefficients

a5
dhln Ai=dt
dhln Qi=dt

; v5
dhln Ci=dt
dhln Qi=dt

; q5
dhln Ri=dt
dhln Qi=dt

; (2)

whose estimation is the final aim of the multidriver attribution.

In this paper, the flood change components are related to catchment areas S through scaling relationships.
Here we assume that

dhln Ai
dt

5aASbA ;
dhln Ci

dt
5aC SbC and

dhln Ri
dt

5aRSbR ; (3)

where the location coefficients aA, aC, and aR represent the flood peak changes (i.e., trends in time) due to
one driver for a catchment of unit area, and the scaling exponents bA, bC, and bR represent how the flood
trends due to one driver change with catchment area. The exponents bA, bC, and bR are the scaling finger-
prints whose knowledge allows the attribution of flood trends to the three drivers.

Since we focus on driver contributions to positive flood peak changes, aA, aC, and aR are assumed to be
greater than zero (drivers acting in opposite directions could be included in the model, but the problem
would become less well posed). For the same reason, also a, v, and q are positive, and a1v1q51. As an
illustration, Figure 1a shows hypothetical components and their combination into the scaling behavior of
flood changes. Throughout the paper the units of S are 1000 km2. The values of the parameters in Figure 1
are aA 5 0.005 km22bA yr21, aC 5 0.003 km22bC yr21, aR 5 0.001 km22bR yr21, bA 5 0, bC 5 20.3, and bR 5 0.4.
In this hypothetical region, the climate component of flood changes (blue line in Figure 1a) does not vary
with catchment area, the catchment component (green line) is strong for small catchments and gets weaker
with increasing catchment size, and the river component (red line) is small for small catchments and gets
stronger with increasing catchment size. The shape of the three lines is related to the scaling fingerprints
bA, bC, and bR. The relative contribution of the three drivers, as a function of catchment area, is shown in Fig-
ure 1b. In small catchments, catchment and atmospheric processes are the most important drivers of flood
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Figure 1. Schematic of a hypothetical mixing model and scaling behavior of flood trends (equations (1) and (3)): (a) flood trends (dhln Qi=dt) and trend components
(dhln Ai=dt; dhln Ci=dt and dhln Ri=dt) as a function of catchment area S; (b) relative contributions of the atmosphere (a), catchment (v), and river (q) components of flood peak
trends as a function of catchment area S. The colorcode for this and all following figures: blue 5 atmosphere, green 5 catchment, and red 5 river.
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change. In intermediate catchments atmospheric processes are dominant, and in large catchments atmo-
spheric and river system processes.

Given a region with data on flood trends at many sites, the next step is to estimate the parameters of the
model of equations (1) and (3) that better explain the regional pattern of the data (see section 2.3). In this
paper we make assumptions on the scaling fingerprints bA, bC, and bR. We have chosen not to make
assumptions on the location coefficients aA, aC, and aR in order to demonstrate the value of the information
on the scaling exponents alone (i.e., the fingerprints), which we hypothesize to be more universal than the
location coefficients, in a similar fashion as the shape parameter of the flood frequency curve in regional
flood frequency analysis is more universal than the other parameters [see, e.g., Fiorentino et al., 1987;
Martins and Stedinger, 2000].

Similarly to regional flood frequency analysis, we make here the assumption of regional homogeneity,
which implies that the scaling relationships in equation (3) apply to every catchment in the region. There-
fore, the scatter that we may see in the data is considered just sampling variability due to the limited record
length. This is analogous to the usual assumption of the index-flood method [Dalrymple, 1960; Hosking and
Wallis, 1997], i.e., that all moments but the mean (or median) of the flood frequency distributions in the
region are the same.

2.3. Estimation Method
In Figures 2a and 2c, two hypothetical regions are presented, whose number of sites N and record length n
differ. Flood data Q are generated from lognormal distributions with parameters consistent with the scaling

Figure 2. Bayesian flood trend attribution (estimation of aA, aC, and aR, and therefore a, v, and q) using the MCMC model when the scaling fingerprints bA, bC, and bR are known. Estima-
tion for two hypothetical (synthetic) regions: (a, b) homogeneous region with N 5 30 sites with n 5 40 years of flood data each; (c, d) homogeneous region with N 5 80 sites with n 5 60
years of flood data each. Mean (dark line) and 90% credible bounds (light transparent areas) for regional expected flood trends and trend components (a, c) and their relative contribu-
tions to flood trends (b, d) as a function of catchment area S. The full circles in Figures 2a and 2c represent the local observed trends and the vertical bars show their 90% confidence
intervals. As in Figure 1, the colorcode: blue 5 atmosphere, green 5 catchment, and red 5 river.
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behavior of flood changes of Figure 1 (i.e., log-means increasing with time and log-standard deviation con-
stant and equal to 0.5), and the local linear trends dhln Qi=dt are estimated by fitting a simple linear regres-
sion with the least squares method [Kottegoda and Rosso, 1997, pp. 341–357]. We indicate hereafter withddhln Qii=dt the estimated flood trend and with brdhln Qii=dt its estimated standard deviation at site i, with
i51; . . . ;N. The full circles in Figures 2a and 2c represent the locally estimated trends and the vertical bars
show their 90% confidence intervals.

Given a region with observed positive flood peak trends for N sites and the attribution mixing model used
here (combining equations (1) and (3)), the posterior distribution of the parameters follows from the Bayes’
equation

pðhjDÞ5 ‘ðDjhÞpðhÞÐ
X‘ðDjhÞpðhÞdh

/ ‘ðDjhÞpðhÞ; (4)

where h5ðaA; aC ; aR; bA; bC; bRÞ are the parameters of the mixing model and D are the observations (i.e., the
locally estimated flood trends, their estimated standard deviation and catchment areas). The likelihood
function is

‘ðDjhÞ5
YN

i51

fN
ddhln Qii
dt

; aASbA
i 1aC SbC

i 1aRSbR
i ; brdhln Qii=dt

 !
; (5)

where fN ðx; l;rÞ is the normal density function with mean l and standard deviation r. The regional expec-
tation of flood trends is, for site i, aASbA

i 1aC SbC
i 1aRSbR

i , which contains the scaling with area of the flood
change components. With pðhÞ, in equation (4) we indicate the prior distribution of the parameters. The
idea is that if the scaling fingerprints bA, bC, and bR are fully or partially known, and if their values differ sig-
nificantly, fitting the attribution model in equations (1) and (3) becomes a well-posed problem and can be
solved. An informative prior normal distribution for the scaling fingerprints bA, bC, and bR is used. In contrast,
the parameters aA, aC, and aR are assumed to be unknown, with an improper uniform prior distribution over
the entire positive real line. In this paper we assume independence between flood trends at different sites,
but spatial correlation could be accounted for by replacing br2

dhln Qii=dt by a covariance matrix. Also, we use
independent prior distributions for the parameters, including the scaling fingerprints. Note that equations
(4) and (5) do not account for uncertainty in the linear mixing model, whose structure is assumed correct,
apart from the uncertainty in its parameters.

Since the integral in the denominator of equation (4) cannot be processed in closed form, we use here the
Hamiltonian Monte Carlo sampling procedure [Duane et al., 1987; Neal, 1994, 2011; Stan Development Team,
2015a]. The code used in this work is described in Appendix A. Figure 2 shows the result of applying the
Bayesian estimation procedure to the two hypothetical regions with different data availability. The units of
S have been chosen as 1000 km2 because this is about the mean logarithmic area in the regions of interest
here and reduces the correlation between the parameters in equation (3), thus facilitating the convergence
of their estimates [Lima and Lall, 2010]. Figure 2 shows mean and 90% credible bounds of the posterior dis-
tributions of the regional expectation of flood peak changes, their components (Figures 2a and 2c), and
their relative contributions a, v, and q (Figures 2b and 2d) for the two hypothetical regions, when the scal-
ing fingerprints bA, bC, and bR are assumed to be known exactly and correspond to their ‘‘real’’ values, i.e.,
those used to generate the flood peak samples. Essentially, in Figure 2 only the values of aA, aC, and aR are
fitted to the data. It can be seen that for the region with more sites and longer record lengths (Figures 2c
and 2d) the attribution is much more precise (i.e., narrower confidence bounds) and accurate (i.e., closer to
reality as shown in Figure 1) than for the region with fewer sites and shorter record lengths (Figures 2a
and 2b). It is therefore of interest to assess the sensitivity of the attribution method to the available informa-
tion, which is done in the following section.

3. Synthetic Case: Sensitivities and Value of the New Framework

We repeat here the exercise of flood change attribution shown in Figure 2 many times to investigate the
sensitivity of the framework to the number of sites in the region, to the record lengths, and to regional het-
erogeneity (section 3.1). Also, we investigate the sensitivity of the framework to the strength of the scaling
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of the flood change components with catchment area (i.e., strength of the fingerprints) and to the degree
of uncertainty of our prior information on that scaling (section 3.2).

The procedure is as follows:

1. Generate flood peak time series for a large number of regions (here 2000) with one characteristic of inter-
est (e.g., the number of sites in the region) varying over a predefined range. The flood peak data Q are
generated from lognormal distributions with parameters consistent with the scaling behavior of the
flood changes of equations (1) and (3) and log-standard deviation equal to 0.5, as in Figure 2.

2. For each site in each region, estimate the temporal trend of the mean-log of the flood peaks ddhln Qii=dt
and its standard deviation brdhln Qii=dt using the least squares method.

3. For each region, perform the flood change attribution as described in section 2.3, i.e., estimate aA, aC, aR,
bA, bC, and bR, using a priori information on the scaling fingerprints bA, bC, and bR with the MCMC proce-
dure. Here 1000 realizations of the posterior distribution of the parameters are sampled with the MCMC
procedure, which correspond to 1000 realizations of the posterior distribution of a, v, and q (the conver-
gence of the MCMC is diagnosed visually through multiple chain trace plots).

4. For each region, and for different values of catchment area (here for S 5 0.001, 0.01, 0.1, 1, 10, 100, and
1000), calculate the mean and standard deviation of the posterior distribution of a, v, and q.

5. Group the results according to the one characteristic of interest (here to 10 groups containing approxi-
mately 200 regions each) and, for each group, calculate the spatially averaged (for varying S) bias and
standard deviation of the a, v, and q estimates.

6. Plot the average bias and standard deviation, along with the average standard deviation of the posterior
distribution of a, v, and q obtained with the MCMC procedure.

The performance of the method can then be visually assessed by checking how close is the bias to 0 and
how well the standard deviation of the posterior distribution of a, v, and q (i.e., the estimated uncertainty)
fits the mean standard deviation of estimation (i.e., the expected error variability). This latter is done to
check whether the uncertainty estimated by the Bayesian approach is comparable to the uncertainty one
would expect, in a frequentist sense, from sampling variability. For zero bias, estimated uncertainty lower
than expected error variability (respectively indicated as ‘‘est. sd’’ and ‘‘exp. sd’’ in the following figures)
would indicate an overly confident fitting procedure. In the opposite case, for zero bias, estimated uncer-
tainty greater than expected error variability would indicate an overestimation of the uncertainty by the
method.

3.1. Pooling, Record Lengths, and Regional Homogeneity
To illustrate the sensitivity of the method to the number of sites in the region, homogeneous regions have
been generated from the model in Figure 1 with a different number of sites (from 3 to 300) and record
lengths of 50 years. The regions are homogeneous in that the scaling relationships in equation (3), with the
same set of parameters, apply to every catchment in the region. Notice that for the regional attribution of
flood trends to three drivers, data of at least three sites are needed. In this section, we assume to know
exactly the scaling fingerprints bA, bC, and bR (i.e., prior distributions are Dirac-deltas, and the prior informa-
tion is unbiased). In Figures 3a and 3b the bias, the standard deviation of estimation (exp. sd), and the
mean standard deviation of the posterior distribution (est. sd) for the estimation of a, v, and q are shown in
relation to the number of sites in the region. For a small number of sites, the relative contribution of the
atmospheric driver is underestimated, especially for large catchments (not shown here) where the river
works contribution is overestimated (similarly to Figure 2b as compared to Figure 1b). The standard devia-
tion of the error is low since the estimated values of a, v, and q tend to be concentrated around their a pri-
ori values. With a record length of 50 years, homogeneous regions of at least 40 sites are required to obtain
an unbiased estimation of a, v, and q, and at least 100 sites are required for an unbiased estimation of their
variability (measured by the expected standard deviation of estimation).

Figures 3c and 3d are similar to Figures 3a and 3b but show the sensitivity of the attribution methodology
to the record length (from 10 to 100 years) for regions with 50 sites. With record lengths of at least 50 years
the method provides unbiased estimates of a, v, and q, and with 60 years the estimation variability is cor-
rectly captured.
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Figures 3e and 3f show the sensitivity of the method to the regional heterogeneity, which is defined as the
spatial variability of the scaling laws of the fingerprints within the region. The heterogeneity is generated
in the data by adding noise to the values of aA, aC, aR, bA, bC, and bR. The noise for the location coefficients
a is generated by a lognormal distribution with mean equal to aA, aC, and aR and standard deviation ra.
The noise for the scaling fingerprints b is generated by a normal distribution with mean equal to bA, bC,
and bR and standard deviation rb510ra. Figure 3e shows that the bias is not strongly affected by the
heterogeneity. This is because the average regional values of the scaling fingerprints are correctly guessed
(a priori). However, the expected standard deviations of a, v, and q are increasingly underestimated (Figure
3f), once the heterogeneity ra exceeds 0.001. Notice that this value corresponds to 20% of aA, 30% of aC,
and 100% of aR. This suggests that the estimation is not very sensitive to the simulated regional
heterogeneity.

3.2. Scaling Fingerprints
Figures 4a and 4b show the effect of the degree of uncertainty in our knowledge of the scaling finger-
prints bA, bC, and bR. In contrast to Figures 3e and 3f, the regions are homogeneous and correspond to
the model shown in Figure 1, but the a priori information on bA, bC, and bR is modeled as a normal dis-
tribution with mean equal to the correct values of bA, bC, and bR and standard deviation rb. The results
are comparable to those in Figures 3e and 3f with the difference that here the estimated standard devi-
ation tends to become larger than the expected standard deviation of estimation when rb grows
larger.

Figures 4c and 4d address the issue of how well posed the attribution problem is by examining the effect of
the difference between the scaling fingerprints bC and bR. Here bA 5 0, bC 5 20.3 �j, and bR 5 0.4 �j, where
j represents the strength of the scaling of the catchment and river flood change components with area rel-
ative to each other. When j 5 1, the samples are generated from the model shown in Figure 1. Larger j’s
represent regions where the difference between the scaling of catchment and river effect is steeper, smaller
j’s where it is smaller. As j approaches 0 the problem becomes more and more ill-posed and the contribu-
tions can no longer be identified. In fact, the attribution procedure proposed here hinges on the assump-
tion that the scaling effects on floods differ significantly between the drivers (i.e., that the scaling

Figure 3. Bias (top row) and standard deviation (bottom row) of the estimated relative contributions a, v, and q of atmospheric, catchment, and river drivers to flood trends for (a, b)
varying number N of sites in the region; (c, d) varying record length n; and (e, f) varying regional heterogeneity. The performance of the method can be visually assessed by checking
how close is the bias to 0 and how well the estimated standard deviation (est. sd) fits the expected standard deviation (exp. sd). ra and rb, in Figures 3e and 3f, are the standard
deviations for the lognormal and normal distributions used to generate noise in the local values of the a and b parameters.
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fingerprints bA, bC, and bR are distinct). If the strength of the fingerprints is only half of that assumed in the
standard case (e.g., j 5 0.5), biases increase considerably but also the estimated standard deviations, thus
indicating that the attribution is not feasible. A stronger contrast of the fingerprints (e.g., j 5 1.5) increases
instead the identifiability with close to perfect estimation of a, v, and q.

Figures 4e and 4f show the effect of assuming different scaling fingerprints bC 5 20.3 �j and bR 5 0.4 �j,
while, in reality, they are those in Figure 1 (i.e., j 5 1). j measures here the bias in the prior information on
the scaling fingerprints. The stronger this bias, the stronger the bias of estimation of a, v, and q. This is to be
expected since the method makes use of the prior information on the scaling fingerprints. Interestingly, for
large values of j, the correspondence between the estimated standard deviation of the expected standard
deviations of estimation becomes closer. This has probably to do with a, v, and q being related, i.e., their
sum is equal to 1, and bounded between 0 and 1.

4. Real Case Study

4.1. Study Area and Data
To illustrate the feasibility of the method, a real-world case study is presented here. The study area is Upper
Austria, where mostly positive flood trends have been detected in the last decades [Bl€oschl et al., 2011,
2012]. At this stage, the drivers of these trends are not clear but potential candidates are increases in rain-
fall, possibly associated with changes in atmospheric patterns [B�ardossy and Caspary, 1990; Petrow et al.,
2009], land use changes as a result of intensification of agriculture with heavier machinery [Nawaz et al.,
2013], and construction of levees along the rivers to protect the floodplains [Bl€oschl et al., 2013]. The new
framework is used to identify the relative contribution of these drivers to the overall flood change in the
region, based on the data at hand.

Flood peak data for 97 river gauges, with areas ranging from 10 to 79,500 km2 and records of at least 40
years after 1950, are used. A simple linear trend analysis, based on fitting a regression line by the least
squares method, shows that most of the stations have significant positive trends in the log of the flood
peaks (black points and confidence bounds in Figures 6a and 6c).

Figure 4. Bias (top row) and standard deviation (bottom row) of the estimated relative contributions a, v, and q of atmospheric, catchment, and river drivers to flood trends for (a, b)
varying uncertainty of the prior information on the fingerprints bA, bC, and bR; (c, d) varying difference between the ‘‘real’’ bA, bC, and bR; and (e, f) varying bias in the prior information on
the fingerprints bA, bC, and bR. In Figures 4a and 4b rb is the standard deviation of the prior normal distribution of the b parameters. In Figures 4c and 4d the regions are generated from
equations (1) and (3), with parameters bA 5 0, bC 5 20.3 �j, and bR 5 0.4 �j, and the prior information on the scaling fingerprints is correct: bA 5 0, bC 5 20.3 �j, and bR 5 0.4 �j. In Figures
4e and 4f the regions are generated with parameters bA 5 0, bC 5 20.3, and bR 5 0.4, and the prior information on the scaling fingerprints is biased: bA 5 0, bC 5 20.3 �j, and bR 5 0.4 �j.
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4.2. Estimation of Scaling Fingerprints
This section deals with the problem of getting ‘‘prior’’ information about the scaling fingerprints bA, bC, and
bR associated with the atmospheric, catchment, and river effects on flood changes. This is done through
simplified rainfall-runoff modeling using observed rainfall data but without using the flood peak data, as
the latter are used for attribution. To obtain prior information for each component, we introduce change
separately in the three components. For the atmospheric fingerprint we drive a constant catchment model
with observed precipitation (including potentially changing precipitation), whereas for the catchment and
river components we use detrended precipitation to drive models that include changes in land use or in
retention volume of floodplains, respectively.
4.2.1. A, Atmosphere
We calculate hourly catchment precipitation for all catchments in the study region from hourly and daily
precipitation data of more than 900 rainfall stations in Austria and Bavaria, using the interpolation method
of Merz et al. [2006, pp. 592–593]. We then run a number of moving windows of time length s on the precip-
itation time series and calculate the precipitation sum for each window. This results in a filtered precipita-
tion time series for each catchment and each s value. We then assume that the duration of rainstorms
triggering annual floods depends on the catchment size [Viglione and Bl€oschl, 2009] according to s5asSbs

with as 5 20 and bs 5 0.3 [Robinson and Sivapalan, 1997a, equation (30)], where s is in hours and S in
1000 km2. For a catchment of size S, we then select the maximum annual precipitation from the precipita-
tion time series associated with the s of this area (e.g., the maximum annual 24 h precipitation for a catch-
ment of about 2000 km2). In a second step, we calculate (hypothetical) flood peaks A assuming a similar
hydrograph shape for all events and the following runoff generation model:

AðtÞ5bf 1max ðiðtÞ2icÞ; ðhðtÞ2hcÞ=s; 0½ �; (6)

where ic and hc are (constant) parameters of the model and bf is a (constant) base flow. The first term in the
square brackets represents the effect of infiltration excess, and the second term the effect of saturation
excess. i(t) and h(t) are the maximum annual precipitation intensities and depths, respectively. For a given
year iðtÞ5hðtÞ=s, so that the quantities in the square brackets differ only due to the constant parameters ic

and hc. By increasing the catchment size, s increases and we expect increasing saturation excess and
decreasing infiltration excess. We use here ic 5 1.9 mm/h, hc 5 10 mm, and bf 5 0.05 mm/h. These parame-
ters have been guided by the event analysis of Merz et al. [2006] and imply that the transition from infiltra-
tion excess (in small catchments) to saturation excess dominance (in larger catchments) occurs at a
catchment scale of 14 km2. As a third step we estimate, for each catchment separately, the time trend of
ln A, i.e., ddhln Ai=dt , and the uncertainty brdhln Ai=dt of the trend, by fitting a linear regression model with the
least squares method. As a fourth step we pool all the catchments in the region and estimate aA and bA

(with uncertainty) using the MCMC proce-
dure analogous to equations (4) and (5) but
with the atmospheric component only. An
improper uniform prior distribution over the
entire positive real line is used for aA, and a
flat normal prior distribution with mean 0
and standard deviation 100 is used for bA.
The result of the fitting of bA (the atmospher-
ic scaling fingerprint) to the data is shown in
Figure 5, where the estimated mean is repre-
sented by the blue vertical spike and the dis-
tribution is represented by the blue line. The
decreasing atmospheric effect on flood
changes with catchment area, which appears
here small but significant, could be related
to the hypothesis that climate change has
bigger effects in small catchments due to
increasing convective precipitation, which is
more relevant in these catchments. Note
that we do not estimate the atmospheric

−1.0 −0.5 0.0 0.5 1.0
0

5

10

15

20

Scaling fingerprints (bA, bC and bR)

D
en

si
ty

π(bA)

π(bC)

π(bR)

Figure 5. Scaling fingerprints bA, bC, and bR obtained through simplified
rainfall-runoff modeling (section 4.2) and to be used as prior information
in the Bayesian regional attribution (section 4.3). For exact prior informa-
tion on the scaling fingerprints (Figures 6a and 6b), the mean values rep-
resented by the spikes are used. For uncertain prior information on the
scaling fingerprints (Figures 6c and 6d), normal distributions with mean
and variance equal to those of the density functions shown here are used.
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fingerprint from the flood data, as they would include also the effects of catchment and river changes. The
estimated mean and distributions in Figure 5 will then be used as prior information on the scaling finger-
prints in the attribution exercise of section 4.3.
4.2.2. C, Catchment
We assume here that the main effect of land use change on floods comes from a modified infiltration
capacity of the soil as a result of urbanization and agricultural soil compaction. For floods in small catch-
ments, short storms with high intensities tend to be relevant, so the controlling runoff generation mecha-
nism is infiltration excess. In larger catchments the flood-relevant storms have lower intensities, so
saturation excess becomes more relevant.

We detrend the maximum annual catchment precipitation time series associated with s (which is a function
of area) from the atmosphere (A) analysis above. We call the detrended precipitation intensities and depths
i� and h� , respectively. In a second step, we calculate (hypothetical) flood peaks C (assuming a similar hydro-
graph shape for all events) using the runoff generation model

CðtÞ5bf 1max ði�ðtÞ2icðtÞÞ; ðh�ðtÞ2hcÞ=s; 0½ �; (7)

for each catchment and each year. In the case of catchment effects, icðtÞ is no longer constant with time
due to soil compaction and surface sealing. We use the same values for hc and bf, as in section 4.2.1, and
assume that ic decreases by 10% per decade [Strudley et al., 2008] over the period of interest, from an initial
value of 1.9 mm/h. As a third step we estimate, for each catchment separately, the time trends of ln C and
their uncertainties. As a fourth step we pool all the catchments in the region and estimate aC and bC (with
uncertainty) as before. The result of the fitting of bC to the data is shown in Figure 5 by the green spike and
line. The catchment effect on flood changes decreases significantly with catchment area (i.e., the scaling fin-
gerprint bC is negative), but the degree with which it does so is highly uncertain.
4.2.3. R, River
We assume that the main effect of rivers on flood changes is due to the loss of retention volumes in the
floodplain. This effect is stronger in larger catchments because of the construction of levees in the populat-
ed flatlands. The effect is also stronger for large floods as inundation tends to occur beyond a threshold
(bankfull discharge).

We start from the flood time series as in equation (7) but without a trend (i.e., ic constant in time), here
called C�. It is assumed that the higher the protection level IrðtÞ, the higher the amplification of the flood
peaks due to loss of retention volume and altered flood conveyance [Di Baldassarre et al., 2009; Remo et al.,
2012; Heine and Pinter, 2012]. This effect increases with catchment area, i.e.,

RðtÞ5C�ðtÞ1as � Irðt21Þ � Sbs : (8)

The parameter as can be estimated from hydrodynamic simulations of floodplain retention and is assumed
as as 5 0.16 here, meaning that, for a 1000 km2 catchment the exacerbation of flood peaks is of 16% of Ir.
The parameter bs can be estimated from comparisons of catchments of different sizes and is assumed as
bs 5 0.3 here, which implies a doubling exacerbation effect on floods with the increase of 1 order of magni-
tude of the catchment size. The initial value of Ir, at time 0, is chosen as 0. From this we estimate the tempo-
ral evolution of the protection level at the river based on the reasoning that levees are usually built in direct
response to a major flood [Di Baldassarre et al., 2013; Viglione et al., 2014; Di Baldassarre et al., 2015]. The pro-
tection level IrðtÞ is assumed to increase directly after a flood occurs that is larger than the existing protec-
tion level

IrðtÞ5
RðtÞ if RðtÞ > Irðt21Þ

Irðt21Þ otherwise
:

(
(9)

Notice that equations (8) and (9) are coupled, as in the socio-hydrological model of Di Baldassarre et al.
[2013], and the evolution of R and Ir is governed by a positive feedback [Sivapalan et al., 2012; Di Baldassarre
et al., 2015; Sivapalan and Bl€oschl, 2015]. Similar to the other drivers, we estimate for each catchment the
time trends of ln R and their uncertainties. We then pool all the catchments in the region and estimate aR

and bR (with uncertainty) as before. The result of the fitting of bR to the data is shown in Figure 5 as the red
spike and line. Clearly, the river works effect on flood changes increases significantly with catchment area
(i.e., the scaling fingerprint bR is positive).
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4.3. Results of the Case Study
Using the prior information on the three scaling fingerprints, we now apply the estimation method, as
explained in section 2.3, to the observed flood trends in Upper Austria. We assume that the region is homo-
geneous, i.e., that a unique scaling with catchment area of the effects of the drivers on flood changes exists,
which is captured by the model in equations (1) and (3) with parameters aA, aC, aR, bA, bC, and bR. Figure 6
shows the results of the regional attribution of flood changes (here 100,000 realizations of the posterior dis-
tribution of the model parameters are sampled with the MCMC procedure). In Figures 6a and 6b, the scaling
fingerprints bA, bC, and bR are assumed to be known with certainty, with values set to the mean values of
the distributions shown in Figure 5. In this case, the attribution method clearly separates the drivers indicat-
ing that overall, the main driver of change is climate, which is dominant at almost all scales, while catch-
ment changes are as important as climate at small scales and river changes at large scales. Second (Figures
6c and 6d), the prior information on the scaling fingerprints bA, bC, and bR is used as obtained in section 4.2
and represented in Figure 5 by the density functions (i.e., with uncertainty). Due to the large uncertainty of
the scaling fingerprints, the resulting attribution is associated with large uncertainty too. Similar conclusions
can be made as for Figures 6a and 6b. The main driver of change is climate, which is dominant at almost all
scales. This dominance is significant at intermediate catchment scales (i.e., 90% credible bands of a are
above the others in Figure 6d). This is due to significant rainfall trends in the region with a scale depen-
dence similar to that of flood trends.

Figure 6. Bayesian flood trend attribution (estimation of aA, aC, and aR, and therefore a, v, and q) of observed flood trends in Upper Austria. Estimation based on two assumptions: (a, b)
exact prior information on the scaling fingerprints bA, bC, and bR (i.e., mean values in Figure 5); (c, d) uncertain prior information on the scaling fingerprints bA, bC, and bR (i.e., density
functions in Figure 5). Mean (dark line) and 90% credible bounds (light transparent areas) for regional expected flood trends and trend components (a, c) and their relative contributions
to flood trends (b, d) as a function of catchment area S. The full circles in Figures 6a and 6c represent the local observed trends and the vertical bars show their 90% confidence intervals.
The colorcode: blue 5 atmosphere, green 5 catchment, and red 5 river.
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5. Discussion and Conclusions

This paper goes beyond flood change attribution in several aspects. It proposes a rigorous framework for
(1) multidriver attribution, i.e., for quantifying the contribution of different drivers of flood change, (2)
regional attribution, i.e., transferring information from similar catchments to increase the signal-to-noise
ratio, and for (3) providing a confidence statement about the strength of the attribution.

Although it is widely acknowledged that flood change may be caused by several drivers that act at the
same time, multidriver attribution studies are rare [Merz et al., 2012b]. In this paper we have differentiated
between three drivers representing the three compartments potentially responsible for river flood change:
atmosphere, catchment, and river system. Each driver is understood as the aggregated effect of possibly
several drivers of change within each compartment. It is important to note that our framework is not limited
to this choice. The number of components and the components themselves can be varied. For instance, it
could be used to separate the effects of urbanization from those of implementing retention storage in the
catchment. Of course, the strength of the resulting attribution statements hinges on the disparity of the sin-
gle components. Attribution will not be possible or will be very uncertain in case the single components
leave a similar fingerprint on the flood change.

Most of the past studies on regional flood change attribution [see, e.g., Mediero et al., 2015; Petrow and Merz,
2009] have evaluated drivers in a qualitative way without providing quantitative estimates of the different contri-
butions. In this paper we propose a framework that uses regional information of the change in a rigorous, quan-
titative way. The framework is based on the concept of scaling of flood change fingerprints with catchment
area, i.e., it assumes that the drivers of flood changes produce effects that scale differently with catchment area.

Most current attribution approaches in the flood change literature do not provide confidence statements and
simply explain observed changes without a quantitative measure of the uncertainty of the role of drivers [Merz
et al., 2012b]. Our framework uses a Bayesian approach where scaling fingerprints of the different components
are given as random variables. This results in a posteriori distribution for the percentage contribution of each
component, representing the uncertainty of the attribution, under the assumptions of the methodology.

In this paper, we assume that the flood change behavior of the annual mean peak discharges is homoge-
neous within the region considered. We have mapped the space of feasible attribution conditions under
which the method is able to identify the drivers of flood change to given accuracy and precision. Data pool-
ing (increasing the number of sites and/or record length) increases the accuracy and precision of attribution
to multiple drivers, i.e., reduces the bias and the width of the credibility bounds. The amount of data neces-
sary to succeed in the attribution is comparable to what is available in densely gauged regions such as
Europe. Attribution of flood changes requires, on one hand, a significantly strong signal-to-noise ratio in the
regional flood trend data, so a larger number of catchments is advantageous. On the other hand, the attri-
bution framework assumes that the spatial heterogeneity of the different drivers of flood change is small.
This means, more specifically, that the percentage contribution of the drivers and their scaling with catch-
ment area needs to be homogeneous among the pooled catchments. The simulations show that even if the
region is mildly nonhomogeneous, the attribution is still close to unbiased and rather precise. This is impor-
tant as regions cannot always be expected to be homogeneous with respect to their hydrological behavior.
Homogeneity can be more easily expected for the atmosphere component where one can often assume
that climate-related flood changes are coherent across regions. This is less obvious for the catchment and
river network components. For example, the catchment fingerprint in the case study is based on the simpli-
fied assumption that catchment effects can be represented by a steady decrease in soil infiltration capacity
over the years which is the same in all catchments, yet this will not strictly be the case in real-world regions.

The analyses in this paper demonstrate that information on the fingerprint scaling with catchment area
alone may suffice for attributing the flood trends, even if no prior information on the magnitude of the
trend components is available. By using information on the scaling fingerprints (and no information on the
magnitude of the trend components), the real-world case study gives plausible results. In this particular
case study, precipitation change is the main driver of increasing flood trends in Upper Austria in the last
decades which is consistent with the qualitative reasoning of ZAMG and TU Wien [2011]. For small catch-
ments, land use change plays an important role (albeit smaller than climate) while for large catchments river
works are important (again, smaller than climate effects). This change of process is plausible too, given the
general understanding of landscape processes, but this is also related to the choice of the prior distribution
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of the scaling fingerprints. In line with Bayesian statistics, subjectivity plays a big role here. Different priors
can be assumed to see their effect, and the priors can be eventually changed as additional information
becomes available.

Very simple models have been used to derive the fingerprints for the case study. The change in the
observed flood behavior is assumed to be driven by three components whereas the change in each com-
ponent is represented by a single variable. For example, atmospheric changes are represented by
observed changes in the maximum annual precipitation for a duration associated with catchment size.
This assumption neglects a variety of other changes, such as changes in evapotranspiration or in the
rainfall-snow ratio. Similarly, it could be argued that the representation of river effects by a loss of reten-
tion volumes in the floodplains ignores flood-moderating effects by dikes relocation, re-naturalization of
rivers, and implementation of polders along rivers. Against this background we stress the exemplary char-
acter of the case study. The assumptions need to be tailored to the dominant drivers of change in the spe-
cific region. For Upper Austria, we are confident that our assumptions, although very simple, represent the
dominant changes during the study period. Further, the intention is to provide a first-order analysis for the
flood change attribution. The method is not limited to the setup used in this study. More complex, and
possibly more realistic, changes could be introduced and state-of-the-art atmospheric, hydrological, and
hydraulic models could be used to derive prior information on the scaling fingerprints. There is room for
additional work where these more complex cases are evaluated, in particular discussing the trade-off
between added model complexity and identifiability. One of the advantages of our approach in this con-
text is that it allows determining how well the fingerprints need to be constrained to attribute flood
changes. The scaling fingerprints can be estimated with uncertainty by modeling. If the uncertainty is too
high, independent sources of information should be used to reduce it, such as past changes in catchment
or river characteristics. Certainly, the proposed approach needs to be applied to different regions and
extended by different conceptualizations of changes in the drivers in order to understand its potential and
limitations.

Also note that the focus of the approach is the attribution of changes observed in the data in a given time win-
dow, rather than modeling the system for predictive purposes. The approach cannot be used directly for state-
ments about the future, i.e., for prediction and design, since future changes in the drivers may be different from
past ones (see Koutsoyiannis and Montanari [2015] for a discussion on predictive modeling of hydrologic
change); however, it can inform the framing of possible future flood changes [Sivapalan and Bl€oschl, 2015].

While this paper exploits the idea that the fingerprints of different drivers scale differently with area, the
proposed framework is more general and could be modified to take advantage of other driver-effect link-
ages. Other candidate fingerprints could be seasonality, flood severity, or type of flood change. The underly-
ing idea of the framework is that different drivers have different effects on flood characteristics. Climatic
changes may modify flood seasonality, while catchment and river network changes may not. Land use may
impact only small floods, while climate may affect small and large floods. Land use may lead to gradual
flood changes, whereas river training may result in abrupt changes. This study analyses mean changes in
flood magnitude, and it would be worthwhile to address changes in other flood characteristics, such as
flood quantiles, within the proposed framework.

We believe that the framework proposed in this study is more rigorous than most of the current approaches
for flood change attribution in that it uses regional information, it estimates quantitatively the contribution
of several drivers to the observed change, and it assigns a quantitative confidence statement to the attribu-
tion. The extension from local attribution to the regional framework proposed here could constitute a simi-
lar shift in flood change attribution as the extension from local flood frequency to regional flood frequency
analysis. Further, the framework is not limited to flood change, but could be applied as well to attribute oth-
er hydrological changes, e.g., in water availability or drought characteristics.

Appendix A: MCMC Algorithm Code

The following code represents the model

dY
dt

1edY=dt5
Xm

j

ajS
bj ; (A1)
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where edY=dt � Nð0; rdY=dtÞ. The left-hand side of equation (A1) represents observed trends and their uncer-
tainty. The right-hand side of equation (A1) represents the mixing model of M components with a scaling
relationship with catchment area S.

data {
//n. of causes/drivers:
int<lower51> M;

//n. of catchments:
int<lower5M> N;

//observed trends:
real dYdt[N];

//uncertainty in the observed trends:
real<lower50> sigma_dYdt[N];

//normalised catchment areas:
real<lower50> S[N];

//information on scaling fingerprints:
real mu_b[M]; real<lower50> sd_b[M];

}
parameters {

real<lower50> a[M];
real standard_b[M];

}
transformed parameters {

real b[M];
for (j in 1:M) {

b[j] <- mu_b[j]1standard_b[j]*sd_b[j];
}

}
model {

//regional expectation of trend:
real regexp_dYdt;

//improper uniform prior for a,
//defined for positive values only.
//b has a normally distributed prior:
for (j in 1:M) {

standard_b[j] � normal(0, 1);
}
for (i in 1:N) {

regexp_dYdt <- 0;
for (j in 1:M) {

regexp_dYdt <- regexp_dYdt1a[j]*(S[i]̂b[j]);
}

dYdt[i] � normal(regexp_dYdt, sigma_dYdt[i]);

}

}

The code is run using Stan, a probabilistic programming language for specifying models in terms of proba-
bility distributions [Stan Development Team, 2015b]. For continuous parameters, Stan uses Hamiltonian
Monte Carlo (HMC) sampling [Duane et al., 1987; Neal, 1994, 2011; Stan Development Team, 2015a], a form
of Markov chain Monte Carlo (MCMC) sampling [Metropolis et al., 1953; Robert and Casella, 2004] that has

the ability to converge more quickly to the target posterior distribution than the commonly used

Metropolis-Hastings algorithm. HMC combines random motion with molecular dynamics in order to gener-

ate efficiently new successive sampled states, which are less correlated than those produced by the

Metropolis-Hastings algorithm.

The MCMC algorithm is used to estimate the posterior distribution of the parameters aj and bj (j51; . . . ;M)
given the observed dY=dt and rdY=dt . The prior distribution for aj is assumed uniform over the entire
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positive real line (i.e., it is improper). The prior distribution for bj is assumed normal with mean lbj
and stan-

dard deviation rbj to be specified. Independence is assumed in the prior information between all aj and bj

parameters.

References
Alexander, G. (1972), Effect of catchment area on flood magnitude, J. Hydrol., 16(3), 225–240, doi:10.1016/0022-1694(72)90054-6.
Alila, Y., P. K. Kura�s, M. Schnorbus, and R. Hudson (2009), Forests and floods: A new paradigm sheds light on age-old controversies, Water

Resour. Res., 45, W08416, doi:10.1029/2008WR007207.
Andr�eassian, V., E. Parent, and C. Michel (2003), A distribution-free test to detect gradual changes in watershed behavior, Water Resour.

Res., 39(9), 1252, doi:10.1029/2003WR002081.
Annan, J. D. (2010), Bayesian approaches to detection and attribution, WIREs Clim. Change, 1(4), 486–489, doi:10.1002/wcc.47.
B�ardossy, A., and H. J. Caspary (1990), Detection of climate change in Europe by analyzing European atmospheric circulation patterns from

1881 to 1989, Theor. Appl. Climatol., 42(3), 155–167, doi:10.1007/BF00866871.
Benson, M. (1963), Factors influencing the occurrence of floods in a humid region of diverse terrain, U.S. Geol. Surv. Water Supply Pap.,

1580-B, 64 pp.
Berliner, L. M., R. A. Levine, and D. J. Shea (2000), Bayesian climate change assessment, J. Clim., 13, 3805–3820.
Bl€oschl, G., and M. Sivapalan (1995), Scale issues in hydrological modeling—A review, Hydrol. Processes, 9(3–4), 251–290, doi:10.1002/

hyp.3360090305.
Bl€oschl, G., S. Ardoin-Bardin, M. Bonell, M. Dorninger, D. Goodrich, D. Gutknecht, D. Matamoros, B. Merz, P. Shand, and J. Szolgay (2007), At

what scales do climate variability and land cover change impact on flooding and low flows?, Hydrol. Processes, 21, 1241–1247, doi:
10.1002/hyp.6669.

Bl€oschl, G., A. Viglione, R. Merz, J. Parajka, J. L. Salinas, and W. Sch€oner (2011), Auswirkungen des Klimawandels auf Hochwasser und Nie-
derwasser, €Osterreichische Wasser- und Abfallwirtschaft, 63(1–2), 21–30, doi:10.1007/s00506-010-0269-z.

Bl€oschl, G., R. Merz, J. Parajka, J. L. Salinas, and A. Viglione (2012), Floods in Austria, IAHS Spec. Publ. 10, chap. 8, pp. 169–177, IAHS Press,
Wallingford, Oxfordshire, U. K.

Bl€oschl, G., T. Nester, J. Komma, J. Parajka, and R. A. P. Perdig~ao (2013), The June 2013 flood in the Upper Danube Basin, and comparisons
with the 2002, 1954 and 1899 floods, Hydrol. Earth Syst. Sci., 17, 5197–5212, doi:10.5194/hess-17-5197-2013.

Bl€oschl, G., et al. (2015), Increasing river floods: Fiction or reality?, WIREs Water, 2(4), 329–344, doi:10.1002/wat2.1079.
Bormann, H., N. Pinter, and S. Elfert (2011), Hydrological signatures flood trends in German rivers: Flood frequencies flood heights and spe-

cific stages, J. Hydrol., 404(1–2), 50–66, doi:10.1016/j.jhydrol.2011.04.019.
Burn, D. H. (1988), Delineation of groups for regional flood frequency analysis, J. Hydrol., 104, 345–361.
Burn, D. H. (1990), Evaluation of regional flood frequency analysis with a region of influence approach, Water Resour. Res., 26(10),

2257–2265.
Ceola, S., F. Laio, and A. Montanari (2015), Satellite nighttime lights reveal increasing human exposure to floods worldwide, Geophys. Res.

Lett., 41, 7184–7190, doi:10.1002/2014GL061859.
Cunderlik, J. M., and D. H. Burn (2004), Linkages between regional trends in monthly maximum flows and selected climatic variables, J.

Hydrol. Eng., 9(4), 246–256, doi:10.1061/(ASCE)1084-0699(2004)9:4(246).
Dalrymple, T. (1960), Flood frequency analyses, U.S. Geol. Surv. Water Supply Pap., 1543-A, 80 pp.
Davis, C. M., and J. F. Fox (2009), Sediment fingerprinting: Review of the method and future improvements for allocating nonpoint source

pollution, J. Environ. Eng., 135(7), 490–504, doi:10.1061/(ASCE)0733-9372(2009)135:7(490).
Delgado, J., B. Merz, and H. Apel (2012), A climate-flood link for the lower Mekong River, Hydrol. Earth Syst. Sci., 16, 1533–1541, doi:10.5194/

hess-16-1533-2012.
Delgado, J., B. Merz, and H. Apel (2014), Projecting flood hazard under climate change: An alternative approach to model chains, Nat. Haz-

ards Hearth Syst. Sci., 14, 1579–1589, doi:10.5194/nhess-14-1579-2014.
Di Baldassarre, G., A. Castellarin, and A. Brath (2009), Analysis on the effects of levee heightening on flood propagation: Some thoughts on

the River Po, Hydrol. Sci. J., 54(6), 1007–1017, doi:10.1623/hysj.54.6.1007.
Di Baldassarre, G., A. Montanari, H. Lins, D. Koutsoyiannis, L. Brandimarte, and G. Bl€oschl (2010), Flood fatalities in Africa: From diagnosis to

mitigation, Geophys. Res. Lett., 37, L22402, doi:10.1029/2010GL045467.
Di Baldassarre, G., A. Viglione, G. Carr, L. Kuil, J. L. Salinas, and G. Bl€oschl (2013), Socio-hydrology: Conceptualising human-flood interactions,

Hydrol. Earth Syst. Sci., 17, 3295–3303, doi:10.5194/hess-17-3295-2013.
Di Baldassarre, G., A. Viglione, G. Carr, L. Kuil, K. Yan, L. Brandimarte, and G. Bl€oschl (2015), Debates—Perspectives on socio-hydrology: Cap-

turing feedbacks between physical and social processes, Water Resour. Res., 51, 4770–4781, doi:10.1002/2014WR016416.
Duane, A., A. Kennedy, B. Pendleton, and D. Roweth (1987), Hybrid Monte Carlo, Phys. Lett. B, 195(2), 216–222.
Elsenbeer, H., A. Lack, and K. Cassel (1995), Chemical fingerprints of hydrological compartments and flow paths at La Cuenca, Western

Amazonia, Water Resour. Res., 31(12), 3051–3058, doi:10.1029/95WR02537.
Fiorentino, M., S. Gabriele, F. Rossi, and P. Versace (1987), Hierarchical approach for regional flood frequency analysis, in Regional Flood Fre-

quency Analysis, edited by V. P. Singh, pp. 35–49, D. Reidel, Norwell, Mass.
Fox, J., and A. Papanicolaou (2008), An un-mixing model to study watershed erosion processes, Adv. Water Resour., 31(1), 96–108, doi:

10.1016/j.advwatres.2007.06.008.
Gupta, V. K., B. M. Troutman, and D. R. Dawdy (2007), Towards a nonlinear geophysical theory of floods in river networks: An overview of

20 years of progress, in Nonlinear Dynamics in Geosciences, pp. 121–151, Springer, N. Y.
Hall, J., et al. (2014), Understanding flood regime changes in Europe: A state-of-the-art assessment, Hydrol. Earth Syst. Sci., 18, 2735–2772,

doi:10.5194/hess-18-2735-2014.
Hall, M., and W. Minns (1999), The classification of hydrologically homogeneous regions, Hydrol. Sci. J., 44(5), 693–704, doi:10.1080/

02626669909492268.
Hamlet, A. F., and D. P. Lettenmaier (2007), Effects of 20th century warming and climate variability on flood risk in the western U.S., Water

Resour. Res., 43, W06427, doi:10.1029/2006WR005099.
Harrigan, S., C. Murphy, J. Sweeney, J. Hall, and R. L. Wilby (2014), Attribution of detected changes in streamflow using multiple working

hypotheses, Hydrol. Earth Syst. Sci., 18(5), 1935–1952, doi:10.5194/hess-18-1935-2014.

Acknowledgments
The present work was developed
within the framework of the Panta
Rhei Research Initiative of the
International Association of
Hydrological Sciences (IAHS) as a
contribution of the Working Groups
‘‘Understanding Flood Changes’’ and
‘‘Changes in Flood Risk.’’ Funding was
partly provided by the European
Research Council, Flood Change
project (ERC advanced grant 291152),
by the Austrian Science Foundation
(FWF project P 23723-N21), and by the
Helmholtz International Fellowship,
SYSTEMRISK project (EU grant 676027).
We acknowledge the Austrian
Hydrographic Service and the ECA&D
project for providing the data used in
this project. The data are available
from http://ehyd.gv.at and http://www.
ecad.eu. We would like to thank three
anonymous reviewers and Alberto
Montanari for their useful comments
to the original version of the paper.

Water Resources Research 10.1002/2016WR019036

VIGLIONE ET AL. REGIONAL FLOOD CHANGE ATTRIBUTION: SCALING FINGERPRINTS 5338

http://dx.doi.org/10.1016/0022-1694(72)90054-6
http://dx.doi.org/10.1029/2008WR007207
http://dx.doi.org/10.1029/2003WR002081
http://dx.doi.org/10.1002/wcc.47
http://dx.doi.org/10.1007/BF00866871
http://dx.doi.org/10.1002/hyp.3360090305
http://dx.doi.org/10.1002/hyp.3360090305
http://dx.doi.org/10.1002/hyp.6669
http://dx.doi.org/10.1007/s00506-010-0269-z
http://dx.doi.org/10.5194/hess-17-5197-2013
http://dx.doi.org/10.1002/wat2.1079
http://dx.doi.org/10.1016/j.jhydrol.2011.04.019
http://dx.doi.org/10.1002/2014GL061859
http://dx.doi.org/10.1061/(ASCE)1084-0699(2004)9:4(246)
http://dx.doi.org/10.1061/(ASCE)0733-9372(2009)135:7(490)
http://dx.doi.org/10.5194/hess-16-1533-2012
http://dx.doi.org/10.5194/hess-16-1533-2012
http://dx.doi.org/10.5194/nhess-14-1579-2014
http://dx.doi.org/10.1623/hysj.54.6.1007
http://dx.doi.org/10.1029/2010GL045467
http://dx.doi.org/10.5194/hess-17-3295-2013
http://dx.doi.org/10.1002/2014WR016416
http://dx.doi.org/10.1029/95WR02537
http://dx.doi.org/10.1016/j.advwatres.2007.06.008
http://dx.doi.org/10.5194/hess-18-2735-2014
http://dx.doi.org/10.1080/02626669909492268
http://dx.doi.org/10.1080/02626669909492268
http://dx.doi.org/10.1029/2006WR005099
http://dx.doi.org/10.5194/hess-18-1935-2014
http://ehyd.gv.at
http://www.ecad.eu
http://www.ecad.eu


Hasselmann, K. (1998), Conventional and Bayesian approach to climate-change detection and attribution, Q. J. R. Meteorol. Soc., 124(552),
2541–2565, doi:10.1002/qj.49712455202.

Hegerl, G. C., H. von Storch, K. Hasselmann, B. D. Santer, U. Cubasch, and P. D. Jones (1996), Detecting greenhouse-gas-induced climate
change with an optimal fingerprint method, J. Clim., 9(10), 2281–2306, doi:10.1175/1520-0442(1996)009h2281:DGGICCi2.0.CO;2.

Hegerl, G. C., K. Hasselmann, U. Cubasch, J. F. B. Mitchell, E. Roeckner, R. Voss, and J. Waszkewitz (1997), Multi-fingerprint detection and
attribution analysis of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change, Clim. Dyn., 13(9), 613–634, doi:
10.1007/s003820050186.

Heine, R., and N. Pinter (2012), Levee effects upon flood levels: An empirical assessment, Hydrol. Processes, 26, 3225–3240, doi:10.1002/
hyp.8261.

Hidalgo, H. G., et al. (2009), Detection and attribution of streamflow timing changes to climate change in the western United States, J.
Clim., 22(13), 3838–3855, doi:10.1175/2009JCLI2470.1.

Hosking, J., and J. Wallis (1997), Regional Frequency Analysis: An Approach Based on L-Moments, 224 pp., Cambridge Univ. Press, Cambridge,
U. K.

Hundecha, Y., and B. Merz (2012), Exploring the relationship between changes in climate and floods using a model-based analysis, Water
Resour. Res., 48, W04512, doi:10.1029/2011WR010527.

Jia, Y., X. Ding, H. Wang, Z. Zhou, Y. Qiu, and C. Niu (2012), Attribution of water resources evolution in the highly water-stressed Hai River
Basin of China, Water Resour. Res., 48, W02513, doi:10.1029/2010WR009275.

Jonkman, S. N. (2005), Global perspectives on loss of human life caused by floods, Nat. Hazards, 34(2), 151–175, doi:10.1007/s11069-004-
8891-3.

Khaliq, M., T. Ouarda, J.-C. Ondo, P. Gachon, and B. Bob�ee (2006), Frequency analysis of a sequence of dependent and/or non-stationary
hydro-meteorological observations: A review, J. Hydrol., 329(3–4), 534–552, doi:10.1016/j.jhydrol.2006.03.004.

Kiem, A. S., S. W. Franks, and G. Kuczera (2003), Multi-decadal variability of flood risk, Geophys. Res. Lett., 30(2), 1035, doi:10.1029/
2002GL015992.

Kottegoda, N. T., and R. Rosso (1997), Statistics, Probability, and Reliability for Civil and Environmental Engineers, 735 pp., McGraw-Hill.
Koutsoyiannis, D., and A. Montanari (2015), Negligent killing of scientific concepts: The stationarity case, Hydrol. Sci. J., 60(7–8), 1174–1183,

doi:10.1080/02626667.2014.959959.
Kundzewicz, Z. W. (Ed.) (2012), Changes in Flood Risk in Europe, IAHS Spec. Publ. 10, 516 pp., IAHS Press, Wallingford, Oxfordshire, U. K.
Kundzewicz, Z. W., I. Pi�nskwar, and G. R. Brakenridge (2013), Large floods in Europe, 1985–2009, Hydrol. Sci. J., 58(1), 1–7, doi:10.1080/

02626667.2012.745082.
Lee, T. C. K., F. W. Zwiers, G. C. Hegerl, X. Zhang, and M. Tsao (2005), A Bayesian climate change detection and attribution assessment, J.

Clim., 18(13), 2429–2440.
Levine, R. A., and L. M. Berliner (1999), Statistical principles for climate change studies, J. Clim., 12, 564–574, doi:10.1175/1520-

0442(1999)012h0564:SPFCCSi2.0.CO;2.
Lima, C. H., and U. Lall (2010), Spatial scaling in a changing climate: A hierarchical Bayesian model for non-stationary multi-site annual max-

imum and monthly streamflow, J. Hydrol., 383(3–4), 307–318, doi:10.1016/j.jhydrol.2009.12.045.
Martins, E., and J. R. Stedinger (2000), Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data,

Water Resour. Res., 36(3), 737–744, doi:10.1029/1999WR900330.
Mechler, R., and L. M. Bouwer (2014), Understanding trends and projections of disaster losses and climate change: Is vulnerability the miss-

ing link?, Clim. Change, 133, 23–35, doi:10.1007/s10584-014-1141-0.
Mediero, L., et al. (2015), Identification of coherent flood regions across Europe by using the longest streamflow records, J. Hydrol., 528,

341–360, doi:10.1016/j.jhydrol.2015.06.016.
Merz, B., Z. W. Kundzewicz, J. Delgado, Y. Hundecha, and H. Kreibich (2012a), Detection and attribution of changes in flood hazard and risk,

in Changes in Flood Risk in Europe, IAHS Spec. Publ., pp. 435–458, IAHS-AISH and CRC Press/Balkema, Wallingford, Oxfordshire.
Merz, B., S. Vorogushyn, S. Uhlenbrook, J. Delgado, and Y. Hundecha (2012b), HESS opinions ‘‘more efforts and scientific rigour are needed

to attribute trends in flood time series,’’ Hydrol. Earth Syst. Sci., 16, 1379–1387, doi:10.5194/hess-16-1379-2012.
Merz, R., G. Bl€oschl, and J. Parajka (2006), Spatio-temporal variability of event runoff coefficients, J. Hydrol., 331(3–4), 591–604.
Metropolis, N., A. Rosenbluth, M. Rosenbluth, M. Teller, and E. Teller (1953), Equations of state calculations by fast computing machines,

J. Chem. Phys., 21, 1087–1092.
Micevski, T., S. W. Franks, and G. Kuczera (2006), Multidecadal variability in coastal eastern Australian flood data, J. Hydrol., 327(1–2),

219–225, doi:10.1016/j.jhydrol.2005.11.017.
Mudelsee, M., M. B€orngen, G. Tetzlaff, and U. Gr€unewald (2003), No upward trends in the occurrence of extreme floods in central Europe,

Nature, 425, 166–169, doi:10.1038/nature01928.
Nawaz, M. F., G. Bourri�e, and F. Trolard (2013), Soil compaction impact and modelling. A review, Agron. Sustainable Dev., 33, 291–309, doi:

10.1007/s13593-011-0071-8.
Neal, R. (1994), An improved acceptance procedure for the hybrid Monte Carlo algorithm, J. Comput. Phys., 111, 194–203.
Neal, R. (2011), MCMC using Hamiltonian dynamics, in Handbook of Markov Chain Monte Carlo, edited by S. Brooks, A. Gelman, G. Jones,

and X.-L. Meng, pp. 116–162, Chapman and Hall, Boca Raton, Fla.
North, M. (1980), Time-dependent stochastic model of floods, J. Hydraul. Div. Am. Soc. Civ. Eng., 106(HY5), 649–665.
Novotny, E. V., and H. G. Stefan (2007), Stream flow in Minnesota: Indicator of climate change, J. Hydrol., 334(3–4), 319–333, doi:10.1016/

j.jhydrol.2006.10.011.
Ouarda, T. B., and S. El Adlouni (2011), Bayesian nonstationary frequency analysis of hydrological variables, J. Am. Water Resour. Assoc.,

47(3), 496–505, doi:10.1111/j.1752-1688.2011.00544.x.
Petrow, T., and B. Merz (2009), Trends in flood magnitude, frequency and seasonality in Germany in the period 1951–2002, J. Hydrol.,

371(1–4), 129–141, doi:10.1016/j.jhydrol.2009.03.024.
Petrow, T., J. Zimmer, and B. Merz (2009), Changes in the flood hazard in Germany through changing frequency and persistence of circula-

tion patterns, Nat. Hazards Hearth Syst. Sci., 9, 1409–1423, doi:10.5194/nhess-9-1409-2009.
Pinter, N., R. R. van der Ploeg, P. Schweigert, and G. Hoefer (2006), Flood magnification on the River Rhine, Hydrol. Processes, 20(1), 147–

164, doi:10.1002/hyp.5908.
Prosdocimi, I., T. R. Kjeldsen, and J. D. Miller (2015), Detection and attribution of urbanization effect on flood extremes using nonstationary

flood-frequency models, Water Resour. Res., 51, 4244–4262, doi:10.1002/2015WR017065.
Remo, J., C. Megan, and N. Pinter (2012), Hydraulic and flood-loss modeling of levee, floodplain, and river management strategies, Middle

Mississippi River, USA, Nat. Hazards, 61(2), 551–575, doi:10.1007/s11069-011-9938-x.

Water Resources Research 10.1002/2016WR019036

VIGLIONE ET AL. REGIONAL FLOOD CHANGE ATTRIBUTION: SCALING FINGERPRINTS 5339

http://dx.doi.org/10.1002/qj.49712455202
http://dx.doi.org/10.1175/1520-0442(1996)009-2281:DGGICC-2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1996)009-2281:DGGICC-2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1996)009-2281:DGGICC-2.0.CO;2
http://dx.doi.org/10.1007/s003820050186
http://dx.doi.org/10.1002/hyp.8261
http://dx.doi.org/10.1002/hyp.8261
http://dx.doi.org/10.1175/2009JCLI2470.1
http://dx.doi.org/10.1029/2011WR010527
http://dx.doi.org/10.1029/2010WR009275
http://dx.doi.org/10.1007/s11069-004-8891-3
http://dx.doi.org/10.1007/s11069-004-8891-3
http://dx.doi.org/10.1016/j.jhydrol.2006.03.004
http://dx.doi.org/10.1029/2002GL015992
http://dx.doi.org/10.1029/2002GL015992
http://dx.doi.org/10.1080/02626667.2014.959959
http://dx.doi.org/10.1080/02626667.2012.745082
http://dx.doi.org/10.1080/02626667.2012.745082
http://dx.doi.org/10.1175/1520-0442(1999)012-0564:SPFCCS-2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1999)012-0564:SPFCCS-2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1999)012-0564:SPFCCS-2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1999)012-0564:SPFCCS-2.0.CO;2
http://dx.doi.org/10.1016/j.jhydrol.2009.12.045
http://dx.doi.org/10.1029/1999WR900330
http://dx.doi.org/10.1007/s10584-014-1141-0
http://dx.doi.org/10.1016/j.jhydrol.2015.06.016
http://dx.doi.org/10.5194/hess-16-1379-2012
http://dx.doi.org/10.1016/j.jhydrol.2005.11.017
http://dx.doi.org/10.1038/nature01928
http://dx.doi.org/10.1007/s13593-011-0071-8
http://dx.doi.org/10.1016/j.jhydrol.2006.10.011
http://dx.doi.org/10.1016/j.jhydrol.2006.10.011
http://dx.doi.org/10.1111/j.1752-1688.2011.00544.x
http://dx.doi.org/10.1016/j.jhydrol.2009.03.024
http://dx.doi.org/10.5194/nhess-9-1409-2009
http://dx.doi.org/10.1002/hyp.5908
http://dx.doi.org/10.1002/2015WR017065
http://dx.doi.org/10.1007/s11069-011-9938-x


Renard, B., and U. Lall (2014), Regional frequency analysis conditioned on large-scale atmospheric or oceanic fields, Water Resour. Res., 50,
9536–9554, doi:10.1002/2014WR016277.

Renard, B., V. Garreta, and M. Lang (2006a), An application of Bayesian analysis and Markov chain Monte Carlo methods to the estimation
of a regional trend in annual maxima, Water Resour. Res., 42, W12422, doi:10.1029/2005WR004591.

Renard, B., M. Lang, and P. Bois (2006b), Statistical analysis of extreme events in a non-stationary context via a Bayesian framework: Case
study with peak-over-threshold data, Stochastic Environ. Res. Risk Assess., 21(2), 97–112, doi:10.1007/s00477-006-0047-4.

Renard, B., et al. (2008), Regional methods for trend detection: Assessing field significance and regional consistency, Water Resour. Res., 44,
W08419, doi:10.1029/2007WR006268.

Riva, R. E. M., J. L. Bamber, D. A. Lavall�ee, and B. Wouters (2010), Sea-level fingerprint of continental water and ice mass change from
GRACE, Geophys. Res. Lett., 37, L19605, doi:10.1029/2010GL044770.

Robert, C. P., and G. Casella (2004), Monte Carlo Statistical Methods, Springer, N. Y.
Robinson, J., and M. Sivapalan (1997a), An investigation into the physical causes of scaling and heterogeneity of regional flood frequency,

Water Resour. Res., 33(5), 1045–1059.
Robinson, J., and M. Sivapalan (1997b), Temporal scales and hydrological regimes: Implications for flood frequency scaling, Water Resour.

Res., 33(12), 2981–2999.
Robson, A. J., T. K. Jones, D. W. Reed, and A. C. Bayliss (1998), A study of national trend and variation in UK floods, Int. J. Climatol., 18(2),

165–182, doi:10.1002/(SICI)1097-0088(199802)18:2h165::AID-JOC230i3.0.CO;2-.
Salinas, J. L., A. Castellarin, S. Kohnov�a, and T. R. Kjeldsen (2014a), Regional parent flood frequency distributions in Europe – Part 2: Climate

and scale controls, Hydrol. Earth Syst. Sci., 18, 4391–4401, doi:10.5194/hess-18-4391-2014.
Salinas, J. L., A. Castellarin, A. Viglione, S. Kohnov�a, and T. R. Kjeldsen (2014b), Regional parent flood frequency distributions in Europe –

Part 1: Is the GEV model suitable as a pan-European parent?, Hydrol. Earth Syst. Sci., 18, 4381–4389, doi:10.5194/hess-18-4381-2014.
Savio, D., et al. (2015), Bacterial diversity along a 2600 km river continuum, Environ. Microbiol., 17(12), 4994–5007, doi:10.1111/

1462-2920.12886.
Serinaldi, F., and C. G. Kilsby (2015), Stationarity is undead: Uncertainty dominates the distribution of extremes, Adv. Water Resour., 77, 17–

36, doi:10.1016/j.advwatres.2014. 12.013.
Silva, A. T., M. M. Portela, M. Naghettini, and W. Fernandes (2015), A Bayesian peaks-over-threshold analysis of floods in the Itaja�ı-açu River
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