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Abstract

Understanding and quantification of phosphorus (P) fluxes are key requirements for predictions
of future forest ecosystems changes as well as for transferring lessons learned from natural eco-
systems to croplands and plantations. This review summarizes and evaluates the recent knowl-
edge on mechanisms, magnitude, and relevance by which dissolved and colloidal inorganic and
organic P forms can be translocated within or exported from forest ecosystems. Attention is paid
to hydrological pathways of P losses at the soil profile and landscape scales, and the subse-
quent influence of P on aquatic ecosystems. New (unpublished) data from the German Priority
Program 1685 ‘‘Ecosystem Nutrition: Forest Strategies for limited Phosphorus Resources’’ were
added to provide up-to-date flux-based information.
Nitrogen (N) additions increase the release of water-transportable P forms. Most P found in per-
colates and pore waters belongs to the so-called dissolved organic P (DOP) fractions, rich in or-
thophosphate-monoesters and also containing some orthophosphate-diesters. Total solution P
concentrations range from ca. 1 to 400 mg P L–1, with large variations among forest stands. Re-
cent sophisticated analyses revealed that large portions of the DOP in forest stream water can
comprise natural nanoparticles and fine colloids which under extreme conditions may account
for 40–100% of the P losses. Their translocation within preferential flow passes may be rapid,
mediated by storm events. The potential total P loss through leaching into subsoils and with
streams was found to be less than 50 mg P m–2 a–1, suggesting effects on ecosystems at centennial
to millennium scale. All current data are based on selected snapshots only. Quantitative measure-
ments of P fluxes in temperate forest systems are nearly absent in the literature, probably due to
main research focus on the C and N cycles. Therefore, we lack complete ecosystem-based assess-
ments of dissolved and colloidal P fluxes within and from temperate forest systems.
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1 Forest phosphorus cycle during ecosystem
development

Forests are complex biogeochemical systems in which nu-
trient cycles readily change and become re-adjusted upon in-
teractions with biotic and abiotic controls over diurnal, annual,
decadal, centennial, and longer timescales (Hedin et al.,
2003). Phosphorus (P) is an essential element for all living or-
ganisms. Modern agriculture avoids P limitation of primary
production by continuous application of fertilizers, while forest
ecosystems have developed efficient strategies for adapting
to low P supply (Elser et al., 2007; Ilg et al., 2009; Rennen-
berg and Schmidt, 2010; Hinsinger et al., 2011). Increasing
production of forests biomass in response to high atmospher-
ic nitrogen (N) input and climate change likely will increase
imbalances in P nutrition of forest ecosystems. Thus, P avail-
ability in forest ecosystems gained increasing scientific inter-
est (Medlyn et al., 2011; Peñuelas et al., 2012). Yet, pro-
cesses and factors ruling P (re)cycling and P nutrition strat-
egies of forests have only received limited research attention
(Lambers et al., 2008; Bünemann et al., 2010; Rennenberg
and Herschbach, 2013), probably due to the focus on the car-
bon (C) and N cycles during the last decades (Aber et al.,
1989; Luo et al., 2004).

Forests growing on juvenile substrates rely on the acquisition
of mineral P from rock sources (Walker and Syers, 1976; Vi-
tousek et al., 2010). With progressing development, ecosys-
tems and soils become increasingly depleted in primary min-
erals as direct sources of P for plants. Atmospheric deposition
of dust is an important source of P during initial and probably
also during later stages of ecosystem development, when an
ecosystem can become P-limited (Redfield, 2002; Wardle et
al., 2004). Little is yet known on the rates of P depletion in
ecosystems, because hardly anything is known on the down-
ward P fluxes that result in P losses from a forest ecosystem.

With mineral nutrients becoming incorporated into biomass
and with organic matter accumulating during soil formation,
an increasing portion of nutrients, including P, is organically
bound (Walker and Syers, 1976; Anderson, 1988; Egli et al.,
2012), partially accumulating in organic layers lying atop the
mineral soil (Brandtberg et al., 2010). Water percolating
through this layer becomes P-enriched in soluble and colloi-
dal forms which then enter the mineral soil, provided there is
no surface runoff. Such interflow has been observed in tropi-
cal mountain forests (Boy et al., 2008); but they have hardly
been monitored in temperate forests.

Chemical weathering of rocks, partly biologically driven (Wal-
lander, 2000), does not only result in the release of simple hy-
drated ions available as nutrients, but also in the formation of
reactive secondary minerals (Anderson, 1988; Egli et al.,
2007). These minerals interact with organic compounds and
thus contribute to the stabilization and accumulation of organ-
ic matter (Mikutta et al., 2009; Dümig et al., 2011) and also
strongly bind or incorporate inorganic forms of P (Walker and
Syers, 1976). With most weatherable primary rock sources
becoming scarcer during ecosystem development and pro-
gressing soil formation, acquisition of mineral P becomes in-
creasingly difficult (Turner et al., 2007). Consequently, mature

ecosystems depend largely on the mobilization of P from the
organic stocks. Plants can acquire P from organic com-
pounds through a variety of mechanisms (Neumann and
Römheld, 1999), which in some cases can be almost as effi-
cient as the conventional uptake in the form of mineral-de-
rived inorganic P (Adams and Pate, 1992; Turner, 2008).
However, they have to invest extra energy and C to access
these organic P sources. These investments include the
synthesis and release of extracellular phosphatase enzymes
(Spohn and Kuzyakov, 2013a, 2013b), the secretion of organ-
ic anions, and symbiotic associations with mycorrhizal fungi
(Antibus et al., 1992; Richardson et al., 2005). As plants and
microorganisms can allocate excess N to phosphatase pro-
duction, P limitation can be delayed by anthropogenic N dep-
ositions (Marklein and Houlton, 2012). Although there is no ir-
refutable evidence yet, there are suggestions that plants may
take up dissolved organic P forms either by plant roots or as-
sociated mycorrhizae fungi (Smith and Read, 2008; Rennen-
berg and Herschbach, 2013), which could contribute to mini-
mize the leaching losses. The latter, however, has not been
quantified yet.

In summary, native forest ecosystems and likewise other
natural ecosystems might slowly turn from P acquiring sys-
tems (wherein primary minerals serve as principal P sources)
into P recycling systems (which use predominantly organic,
thus, secondary P sources; for details see Lang et al., 2016).
We define P recycling efficiency in this context as ‘‘the frac-
tion of litter-derived P inputs that is re-taken up by microbes
and plants’’. Overall, the total recycled P (fraction or amount)
should equal the mobilization of P stocks from litter minus
ecosystem P losses minus P fixed in forms that are not ac-
cessible for plants and soil microorganisms. This is different
from the definition used in some geochemical studies, in
which the recycling efficiency is perceived to be the total P up-
take by the trees relative to the release rate of P from primary
minerals (which at steady state is equal to the loss rate into
streams; Bouchez et al., 2013). In the geochemical approach,
the recycling rate can be more readily quantified by measura-
ble geochemical properties. In the context of our definition,
however, the efficiency of P recycling will depend largely on
the degree of P losses.

The long-term level of P recycling in forest ecosystems is
generally limited by the amounts and dissolution rates of P-
carrying primary and secondary minerals, and the losses of
inorganic P (Pi) and organic P (Po). Losses itself are con-
trolled by runoff and interflow, with the preferential flow and
hillslope peak flows being driven by soil types, catchment to-
pography, and climate conditions. Little, however, is known
on the magnitude and relevance of some of these constituent
fluxes in temperate forest ecosystems, although they are the
basis for the long-term modeling and prediction of the P cycle
(Davies et al., 2016). The main objective of this review is,
thus, to compile available literature on dissolved and colloidal
P transport within and from forest ecosystems and add to this
our own most recent or as yet unpublished data obtained by
the DFG Priority Program SPP1685. The specific focus is on
data obtained from temperate forest ecosystems on acidic
soils.
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2 Phosphorus forms and transport fluxes in
soils

Forest soils contain a wide variety of inorganic and organic P
forms, and their availability, sources and dominant controls
differ not only between but also within soils (Fig. 1). Inorganic
P is bound in various mineral forms (McDowell et al., 2001).
Soil solutions in forests have very low concentrations of inor-
ganic P as the mineral-bound P forms are hardly soluble and
plants therefore rely more strongly on P released from organic
matter. Concentrations of P in soil solution are frequently be-
low the detection limit of many laboratories of 0.05 mg P L–1,
which may partly explain the little quantitative information on
P fluxes in literature. Assumed sources of soil solution P,
commonly referred to the labile soil P pool, includes adsorbed
P, sparingly soluble P compounds, inorganic P in plant resi-
dues, and some organic P forms (McDowell et al., 2001). The
inorganic P in soil solution generally decreases with soil
depth, probably due to the higher P addition through the sur-
face-litter inputs and relative increase in adsorption to mineral
Al and Fe oxides (in acidic soils) or carbonates, and precipita-
tion with Ca (in more alkaline soils) (Cross and Schlesinger,
1995).

In geochemical and geomorphological studies, P availability
predominantly depends on three factors: (1) rock type (Porder
and Ramachandran, 2013), (2) soil development or weather-
ing intensity (Hedin et al., 2003), and (3) erosion, which reju-
venates substrate by bringing unleached material closer to
the surface (Porder and Hilley, 2011). The classical soil view
on P availability highlights the fact that P concentration in soil
solution is mainly controlled by the solubility of Ca and Al/Fe
phosphates. This implies that ecosystem P losses should be

highest for soils with pH values between 5.5 and 6.0 (irre-
spective of the stage of vegetation succession). Such soils
are free of carbonates but are above the pH at which Al be-
comes a prevailing ion in solution. The presence and forma-
tion of secondary minerals, particularly iron- (Fe-) and alumi-
num- (Al-) (hydr)oxides, in combination with acidification dur-
ing soil development from Regosols via Cambisols to Pod-
zols, counteracts the vertical losses of ortho-phosphate P and
organic P from the ‘‘P recycling zone’’ in topsoils and organic
layers. This continued formation of these secondary minerals
leads to a more effective subsoil P retention by sorption (Kai-
ser et al., 2001). However, a part of the organically bound P
and also colloidal P may still pass this mineral soil barrier and
escape to greater soil depths. Therefore, an increasing effi-
ciency of plants and microorganisms to acquire organically-
bound P or ortho-phosphate P, released into soil water from
either organic or colloidal compounds, may prevent the verti-
cal P loss and, thus, enhance the P recycling efficiency. It has
been estimated that up to 35% of the total P supply to pine
was from litter recycling (Switzer and Neson, 1972). However,
there is still little further evidence to fully corroborate this.

Previous results have suggested that maximum P mobiliza-
tion and plant uptake in forest occurs from early spring to
early summer (Jonasson and Chapin, 1991; Huang and
Schoenau, 1998), whereas microorganisms show their high-
est P uptake and incorporation activity during the summer
months (Zilla, pers. comm.). A similar annual change of N up-
take by plants and microorganisms is known to be an efficient
strategy to avoid N losses and increase recycling at ecosys-
tem level (Kuzyakov and Xu, 2013). Thus, increasing P stor-
age during the summer months within the microbial biomass
may be an efficient mechanism of forest ecosystems to re-

duce P losses in this period. This is
important as in ecosystems with low to-
tal P the microbial P can be an impor-
tant pool with respect to P availability
and flux. Analyses of 33P phospholipid
fatty acids did demonstrate that shifts in
microbial community structure over the
course of the year may support the tem-
poral storage of P within microbial bio-
mass. The seasonal shift towards mi-
croorganisms is best adapted to the re-
spective C input, i.e., Gram Negatives
in spring versus Gram Positives in au-
tumn (Dippold, pers. comm.).

Anthropogenic impacts (e.g., N emis-
sions, modifications of soil acidity and
alkalinity, plantations) influence the P
mobility, P-pool sizes and composition
and, thus, the overall forest P cycle
(Gundersen, 1998; Marklein and Houl-
ton, 2012; Liu et al., 2014). Acidification
may decrease plant P status (normally
observed in the foliage samples) be-
cause of elevated Al concentrations,
which either reduce plant P uptake due
to toxic effects on root growth or limit
the P availability due to the formation of
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insoluble Al-P forms. In turn, acidification may increase soil in-
organic P sorption, reduce organic P mineralization, overall P
solubility as well as fine roots and mycorrhizal associations
(Van Breemen et al., 1983; Paré and Bernier, 1989; Talkner,
2009). Overall it remains unclear to what extent the P leach-
ing may change upon acidification. Salih and Andersson
(1999) noted that Picea abies stands of SW Sweden were
growth-limited by N and P, and applications of N induced P
deficiency. Liming (increasing soil pH) may enhance organic
matter decomposition and increase the root biomass (Pers-
son et al., 1990; Bakker, 1999; Huber et al., 2006), leading to
a mobilization of orthophosphate-P and increased root exu-
dates for improving P acquisition and P-uptake intensity. In
the SPP1685 research program, results of a mesocosm study
with beech forest soils sampled along a soil P gradient and
planted with beech seedlings did show that total P leaching at
20 cm depth was rapidly increased by 28–99% by the en-
hanced addition of N (10 g N m–2 a–1; applied as NH4NO3),
while liming (0.03 g dolomite m–2 a–1) and ambient rain (con-
trol treatment) had no significant effects. The N addition effect
on P leaching at Bad Brückenau, Vessertal and Luess sites
was inversely related to total soil P stocks. The relative contri-
bution of molybdate-reactive P to total P (molybdate-reactive
P after digestion with persulfate) in the leachates was 12%
higher in mesocosms receiving N (generally 50–75 mg P L–1

depending on the forest location), i.e., 47% against only 35%
in the other two treatments (forest liming and ambient rain;
Holzmann et al., 2016).

Organically bound P forms include orthophosphate monoest-
ers (inositols, mononucleotides, sugar phosphates), ortho-
phosphate diesters (phospholipids, teichoic acids, nucleic
acids, and their degradation products), and phosphonates
(Newman and Tate, 1980). Dissolved organic phosphorus
(DOP) is the mobile form of organic P. DOP is operationally
defined to be smaller than 0.45 mm. However, this fraction en-
compasses not only truly dissolved compounds but also col-
loidal and nanosized particulates. As a part of dissolved or-
ganic matter (DOM), DOP principally derives from leaching of
plant litter and microbial metabolites, exudation by roots, and
solubilization of soil organic matter during degradation, but
the relative contribution of each of these sources is still un-
clear and differs among ecosystems, soil types and depths
(Kaiser et al., 2003; Hagedorn et al., 2004; Uselman et al.,
2009). There are only a few field studies quantifying the fluxes
of different P forms in forest soils, but they all indicated DOP
to dominate in soil waters, with the contribution of DOP in total
dissolved P (TDP) increasing with soil depth (Table 1; Qualls
et al., 1991, 2000; Kaiser et al., 2000, 2003).

The large contribution of organic forms to nutrient leaching
from forest soils has also been recognized before for N (He-
din et al., 1995; Perakis and Hedin, 2001, 2002). The impor-
tance of organic forms to drive leaching may be even greater
for P than for N (Qualls et al., 1991, 2000). Inorganic P forms
may over time bind to or become incorporated into secondary
minerals. Thus, despite ongoing mineral weathering and min-
eralization of organic matter, the concentrations in soil solu-
tion of inorganic P forms are therefore usually small (Qualls et
al., 1991; Kaiser et al., 2000). Soluble organic compounds
containing P are formed during microbial degradation of or-

ganic matter (Uselman et al., 2009). Organic P may also enter
the forest soils by stemflow, canopy leaching, or dry deposi-
tion. Most organic P forms are retained within soils by mecha-
nisms similar to those for inorganic P forms (Anderson et al.,
1974; Celi et al., 2001). Overall, the DOP binding is less
strong than that of inorganic P forms (Anderson et al., 1974;
Anderson and Magdoff, 2005; Celi et al., 2001; Lilienfein et
al., 2004), and the most P-rich fractions of DOM are more mo-
bile than the rest (Qualls and Haines, 1991; Kaiser et al.,
2000; Kaiser, 2001). As a result, much of the P in soil solution
is organically bound (Qualls et al., 1991, 2000; Kaiser et al.,
2000, 2003; Hedin et al., 2003). Therefore, leaching of DOM
is likely an important pathway of long-term P losses from soil
(Hedin et al., 2003; Alvarez-Cobelas et al., 2009). Losses of
DOP from sandy soils developed to quartz-rich substrates
can exceed those being richer in clay and reactive mineral
phases (Kaiser et al., 2000; Qualls et al., 2000). However,
quantitative data on forest DOP losses remain limited and es-
pecially DOP losses from subsoil vary by at least a magni-
tude, e.g., from 1.7 to 38 mg P m–2 a–1 (Table 1) (Kaiser et al.,
2000, 2003; Qualls et al., 2000).

In mineral soils, the remaining mobile fraction of DOM in sub-
soils is relatively enriched in N and P, thus, it has lower C : N
and C : P ratios than total DOM leached from forest floors
(Qualls and Haines, 1991; Kaiser et al., 2000, 2003; Hedin et
al., 2003). Under identical conditions, the sorption of the so-
called hydrophilic fraction (typically rich in P; Qualls and
Haines, 1991; Kaiser et al., 2003) of DOM seems weaker
than that of other organic fractions (Kaiser, 2001) and of inor-
ganic P forms (Lilienfein et al., 2004). Therefore, the mobility
of P-rich organic compounds is linked to structural features.
Inositol-derivates (or phytate-like P) binds strongly to mineral
soil constituents, while P linked to nucleotides (diester P)
seems mobile (Anderson and Magdoff, 2005), thus, poten-
tially becomes more and more prominent in soil solution with
increasing depth. In fact, DOP in subsoils is dominated by or-
thophosphate monoesters and diesters, indicating that they
are potentially mobile (Kaiser et al., 2003). The composition
of DOP in freshwaters and seawater (Nanny and Minear,
1997; Clark et al., 1999; Kolowith et al., 2001; Young and In-
gall, 2010) resembles that of DOP in subsoils, probably link-
ing them either to input from terrestrial settings or suggesting
similar microbial processing. The composition of forest-de-
rived DOP, thus, differs from that of water extracts of grass-
lands, for example, where the largest fractions are orthophos-
phate diesters and hydrolyzable inositol, with only a small
fraction of orthophosphate monoesters (Turner et al., 2002).
The extraction of P along preferential flow paths in a sandy
podzol suggested that P might have been leached as phos-
phate and labile monoesters and diesters from upper hori-
zons, and as phosphate in the deeper horizon (Backnäs et
al., 2012). Also, Huang and Schoenau (1998) determined
that inorganic P comprised 75% of total water-extractable P in
a sandy loam soil under forest. Consequently, the extraction
procedures of dissolved P give completely different results on
the involved P species from those by the analysis of soil solu-
tions sampled in situ. The likely reason is that the sources
and composition of organic matter greatly differ between
water-extracts from soils and soil solutions (Hagedorn et al.,
2004; Ros et al., 2009). We assume that the finding of a domi-
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nance of DOP in in situ leachates (Qualls and Haines, 1991;
Kaiser et al., 2003; Table 1) is more relevant for ecosystem
fluxes, while extractable P might rather represent a fraction
that is available for plant and soil microorganisms.

Few studies addressed dissolved organic P in soil solution by
in situ sampling and using fairly comparable analytical ap-
proaches (Qualls and Haines, 1991; Qualls et al., 1991,

2000; Kaiser et al., 2000, 2003). However, these studies ac-
tually cover just five forest stands, thus, cannot be considered
truly representative. Concentrations of DOP in the percolates
from forest floors ranged from 25 to 110 mg P L–1, while the re-
spective concentration ranges for pore waters from subsoils
were 1–130 mg P L–1. The DOC : DOP ratios ranged from 200
to 4200 in forest floor percolation waters. The ratios in pore
waters from mineral topsoil were similar and ranged between
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Table 1: Magnitude of P concentrations and fluxes in temperate forest ecosystems.a

Source Concentrations
/ mg P L–1

Fluxes
/ mg P m–2 a–1

Source Comments

Atmospheric input

30
5–8 (total P)

7–12
33
30
10 (total P)

Newman (1995)
Tipping et al. (2014)
Qualls et al. (1991)
Möller et al. (unpublished)

Precipitation (18 sites)
Precipitation
Throughfall (broadleaf forest)
Broadleaf & coniferous
forests Thailand

Litter fall 440
400

Cole and Rapp (1981)
Cole and Rapp (1981)

Temperate coniferous
(13 sites)
Temperate deciduous
(14 sites)

Weathering 5–10 Newman (1995) global data set

Total P organic
layer

18–22 n.a. Möller et al. (unpublished) Broadleaf & coniferous
forests Thailand

Inorganic P
organic layer

30–1000
(mean = 380)
15–18

10–20

15
4
11

Sohrt (unpublished)
Qualls et al. (1991, 2000)
Kaiser et al. (2000)
Kaiser et al. (2000, 2003)

Deciduous forest (oak)
Coniferous forest (pine)
Deciduous forest (beech)

Inorganic P
subsoil

0–700
(mean = 70)

1.5
1

3
0.5–1
0.6

Sohrt (unpublished,
preliminary data)
Kaiser et al. (2000)
Kaiser et al. (2000, 2003)
Qualls et al. (2000)

Coniferous forest (pine)
Deciduous forest (beech)
Deciduous forest (oak)

DOP
organic layer

50–60
110
25

15
45–62
30

Kaiser et al. (2000)
Kaiser et al. (2000, 2003)
Qualls et al. (1991, 2002)

Coniferous forest (pine)
Deciduous forest (beech)
Deciduous forest (oak)

Total P subsoil 10–18 n.a. Möller et al. (unpublished) Broadleaf & coniferous
forests Thailand

DOP
subsoil

1–4
50
70–130

1.7
9
38

Qualls et al. (2000)
Kaiser et al. (2000)
Kaiser et al. (2000, 2003)

Deciduous forest (oak)
Coniferous forest (pine)
Deciduous forest (beech)

Colloidal P Stream: 0.7 –16.4 (mean:
5.5)
Soil leachates
(20 cm depth) 8–53

8–51

Gottselig et al. (unpublished)
Missong et al. (unpublished)

New method developments
(field flow fractionation)
Mesocosm experiment

Leachates Leachates (20 cm soil depth)
26–113

22–109 Holtzmann et al.
(2016; this issue)

Mesocosm experiment

Spring discharge 0–30 (mean = 14)
20–30 (total P)

Sohrt (unpublished)
Verheyen et al. (2015)

Groundwater 0–20 (mean = 11) (total P) Sohrt (unpublished)

Stream water
Forest catchments 0.5–10 (dissolved P)

1–100 (fine particulate P)
0–300 (coarse particulate P)

3–10, mean 4 (dissolved P)
20–310, mean 83

0.7–1.9 (DOP)

2.4 (inorganic P)

9–16 (total P)

1–60
1300 (total P)
(242, 807, 252)

3–32

5 (PO4), 25 (total P)
10 (PO4), 40 (total P)
1.1 (DOP)

1.3 (inorganic P)
4.5–28

10 (total P)

Cole and Rapp (1981)
Meyer and Likens (1979)
Meyer and Likens (1979)

Benning et al. (2012)
Mengistu et al. (2014)
Verheyen et al. (2015)
Palviainen et al. (2014)
Benning et al. (2012)
Qualls and Haines (1991),
Qualls et al. (2002)
Qualls et al. (2002)
Kunimatsu et al. (2001)

Möller et al. (unpublished)

3 forested catchments
Bear Brook
Exported as dissolved, fine
and coarse particulate P

Forested catchment

Deciduous forest (oak)

Deciduous forest (oak)
Broadleaf & coniferous forest
Japan
Broadleaf & coniferous forest
Thailand
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185 and 3820, but those in pore waters from deeper subsoils
were between 100 and 860. The decrease of the DOC : DOP
ratios with depth might be due to the mineralization of organic
compounds, release of CO2, and uptake and utilization of P
from the subsoil. The wide ranges of DOC : DOP ratios sug-
gest differences among soils and vegetation types as well as
seasons and climate effects. It is also worth to note that the
high DOC : DOP ratios came from the sites with less devel-
oped soils, whereas low DOC : DOP ratios came from the
sites with more developed soils.

It cannot be taken for granted that all P in the < 0.45 mm frac-
tion is truly dissolved. Significant parts of this P may be colloi-
dal in nature (Gottselig et al., 2014; Jiang et al., 2015a). The
composition of larger colloids found in soil water, interflow, or
surface runoff commonly reflects the mineralogical composi-
tion of the soil clay fraction (Kretzschmar, 2005). Not clays,
but especially Fe and Al oxyhydroxides are strong sorbents
for P and occur in the colloidal size fraction (1–500 nm), which
qualifies them as potential colloidal carriers of P. The nano-
particle fraction, defined as the size fraction ranging from 1 to
100 nm, could serve as a mobile and efficient carrier for P in
soil solutions. Natural nanoparticles and colloids are impor-
tant vectors for P transport in soils (Haygarth et al., 1997; Ilg
et al., 2005; Regelink et al., 2013) and can contain high pro-
portions of the P in soil solutions (Hens and Merckx, 2001).
However, the factors controlling the distribution, enrichment,
and mobilization of colloidal P in soil are rarely investigated.
In a field-scale study about 75% of P was transported by
small colloids and nanoparticles (< 240 nm; de Jonge et al.,
2004). The composition of such leachates, however, may not
necessarily reflect the fraction of the particle-bound P finally
lost by streams. The percentage of P in the streams bound to
the soil nanoparticles and fine colloids is likely smaller. In a
study of the Rur catchment, Germany, it ranged from 40 to
100% (Gottselig et al., 2014). Overall, distinguishing between
streams receiving large ground water input (dilution) and
those receiving much overland flow input (likely containing
more colloidal and nano-particulate materials) is required to
truly relate the P composition of streams to that of leachates
(and surface runoff or interflow).

In experiments by Ilg et al. (2005), concentrations of colloidal
P extracted with deionized water or 0.01 M KCl solution from
agricultural soils were strongly correlated to colloidal Fe and
Al concentrations. The strong hysteresis of the sorption of or-
thophosphate P or inositol P to these oxides is an important
prerequisite for colloid-facilitated transport. However, the
point of zero charge of Fe and Al (hydr)oxides of 8.5–9.0
means that these minerals are positively charged under the
pH conditions of temperate forests on acid soil, which effec-
tively promotes their deposition on negatively charged clay
minerals or moieties of soil organic matter. Yet, the positive
surface charge of Fe and Al (hydr)oxides can be turned into
negative surface charge as a consequence of the sorption of
natural organic matter to these colloids, which strongly in-
creases their mobility in porous media (Kretzschmar et al.,
1995; Kretzschmar and Sticher, 1997; Séquaris et al., 2013).

In addition to the effect on the surface charge of Fe and Al
(hydr)oxides, natural organic matter molecules sorbed to

these minerals can also impose a steric hindrance to mineral
coagulation (Kretzschmar, 2005). This means that mobile or-
ganic-loaded Fe and Al (hydr)oxide colloids most likely origi-
nate from topsoil horizons rich in organic matter. In experi-
ments of Kaplan et al. (1997), leaching of organic coatings of
colloids to greater soil depths in Ultisols suggested that they
were mobilized in the A horizon. Chemical characterizations
of colloids collected from soil solutions suggest that colloidal
P occurs mainly in mixed Fe/Al hydroxide–organic matter–-
phosphate associations (Hens and Merckx, 2001), underlin-
ing the relevance of organic matter for the mobilization of col-
loidal P.

Recently, P release facilitated by nanoparticles and small col-
loids (10–200 nm) in mildly acidic agricultural soils has been
reported (Rick and Arai, 2011). Desorption experiments
revealed that the maximum total colloidal P, which could be
desorbed, was 10–20% of the total P. Contrary to previous
studies, the release of labile P was not facilitated by soil
nanoparticles. Transmission electron microscopy combined
with energy dispersive spectroscopy (TEM-EDS) showed that
released particles in grassland soils extracts were 200–250
nm nanoaggregates, composed of » 50 nm aluminosilicate
flakes and Fe clusters (< 10 nm). The latter fine colloidal-
sized Fe compounds held onto most the P present in the soil
(Henderson et al., 2012). Recent papers (Gottselig et al.,
2014; Jiang et al., 2015a, 2015b) did use field flow fractiona-
tion (FFF) coupled to different detection methods [e.g., induc-
tively coupled plasma mass spectrometry (ICP-MS), organic
carbon detector (OCD), dynamic light scattering (DLS), fluo-
rescence, UVvis] to allow size-resolved characterization and
element quantification of the nanoparticles and colloids in soil
leachates, water-dispersible materials, and stream waters. In-
itial results from acidic forest soils showed that P fractions
were present both as (1) organic-dominated nanoparticles
and (2) mineral-dominated colloids such as Fe/Al/Mn (hy-
dr)oxides and phyllosilicates (Missong, pers. comm.). All frac-
tions had significant amounts of P, with concentrations vary-
ing with site characteristics. Initial results of the soil leachate
characterization revealed the presence of nanoparticles and
colloids, thus, confirming their relevance to transport and
leaching of P (Holzmann et al., 2016). The 31P-NMR spectra
indicated that soil nanoparticles and colloids were more en-
riched in organic than in inorganic P forms than the electrolyte
phase, as also shown in other recent studies (Liu et al., 2013;
Liu et al., 2014). Overall, P was more enriched in the colloidal
fraction than in the bulk soil. The P-diester : P-monoester ra-
tios in the colloidal fraction were 2–3 times higher than those
in the bulk soil, indicating diesters to be more prominent in the
colloidal fraction. In contrast, relatively large percentages of
inorganic P were found in the true solutions (Missong et al.,
2016).

In unsaturated porous media, colloids are effectively retained
at water–air interfaces (Wan and Wilson, 1994; Gargiulo et
al., 2008), water/air–solid interfaces (Crist et al., 2004), and
within thin water films (Wan and Tokunaga, 1997). This
means that rapid infiltration of water into dry soil removing
those interfaces is an efficient driver of colloid mobilization
and partly responsible for the ‘‘first-flush’’ of colloids observed
at the onset of irrigation experiments. Rapid infiltration during
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rainstorms also triggers water flow
through macropores, which promotes
the colloid transport in soils (Poulsen et
al., 2006; Vendelboe et al., 2011). A
large fraction of transported colloids is
released from the walls of the macro-
pores (Majdalani et al., 2007; Schelde
et al., 2006), also pointing at the role of
mechanical shear stress for the mobili-
zation of colloids. An additional factor
promoting the mobilization of colloids
during rapid infiltration of water in mac-
ropores during heavy rainstorms is the
rapid decrease of ionic strength
(Kretzschmar, 2005). Altogether, this
suggests that colloids will most likely be
mobilized in organic (O) and A horizons
during rainstorms and transported to a large degree through
macropores or at the interface between mineral soil and or-
ganic layers during high-flow events. Nevertheless, acidic pH
values and large concentrations of Al3+ counteract the mobili-
zation of colloids (Kretzschmar, 2005). The initial recovery of
forest soils from acidification, a consequence of decreasing
past atmospheric inputs of strong acids, can therefore poten-
tially promote release and loss of colloids and colloidal P from
the organic forest floor and mineral topsoils.

The general accumulation of (predominantly organically
bound) P in topsoils and surface layers with progressing pe-
dogenesis promotes P recycling, but it may also increase the
risk of P losses with interflow or runoff (Fig. 1) The experience
from agricultural systems shows that P losses from soils not
‘‘P-saturated’’ are often dominated by losses of colloids with
surface runoff and interflow (Heathwaite and Dils, 2000;
Heathwaite et al., 2005; Turner et al., 2003). Colloids can also
be transported vertically in the soil, primarily through macro-
pores during high flow events (Schelde et al., 2006). Since
colloidal transport occurs predominantly during short events,
re-acquisition of potential bio-available colloid-bound P by
plants or microbes is hampered. Loss of more bioavailable or-
ganic colloids will limit the recycling of P to a greater extent
than loss of P tightly bound to colloidal Fe or Al (hydr)oxides.

Leaching of P, either in dissolved or colloidal form, may not
only cause P losses from forest ecosystems. Leaching most
likely also drives lateral as well as vertical redistribution of P
within forest stands. The lateral transport of P might cause
preferential accumulation of P in depressions or riparian
zones, while elevated positions become depleted in P. We
think that lateral redistribution of P can potentially affect the
spatial structuring of forests in denser zones with more vigo-
rous regeneration and more open patches with poorer re-
growth. The leaching of P from forest floors or mineral topsoils
into subsoils transfers P from a zone of high biological activity
and root density into a zone with less roots and higher abun-
dance of freshly formed pedogenic (hydr)oxides that are char-
acterized by strong P sorption, which likely decreases the effi-
ciency of P recycling in forests.

3 Hydrological pathways linking P source and
P loss

Hydrological pathways form a critical link between the source
of mobile P and P export from soils to adjacent headwater
streams (Heathwaite and Dils, 2000). It is the combination of
source, mobilization, and transport factors that determines
the overall P loss to surface waters (Granger et al., 2010;
Drewry et al., 2006). It is likely that the (inorganic) P export
from hillslopes in acquiring systems (Fig. 2, left) is larger than
those in recycling systems (Fig. 2, right) because of perceived
larger weathering fluxes in P-acquiring systems. However, in
view of the enhanced colloid mobilization which is linked to
the leachate organic loading, colloidal P transport and losses
could be more important in the recycling systems; yet, deci-
sive studies that confirm or reject either of these assumptions
are lacking. In general, studies that differentiate water-bound
P fluxes in temperate forest ecosystems in a quantitative
manner at a given site are lacking. Furthermore, Heathwaite
and Dils (2000) pointed out that it is important to establish
thresholds at which the balance shifts from subsurface to
near-surface flow pathways, to find out under which condi-
tions matrix vs. macropore flow is initiated and which soil hy-
drological factors lead to infiltration-excess surface runoff
rather than saturation-excess flow. They believed that these
factors were the trigger to P transport. Interestingly, transport
processes and P fluxes in terrestrial ecosystems have mostly
been examined in agricultural systems with focus on P losses
from soils and related effects on aquatic ecosystems (Hay-
garth et al., 1998; Heathwaite and Dils, 2000; McDowell et
al., 2001; Jarvis, 2007). For forest soils detailed studies inves-
tigating P flow pathways and losses are still extremely rare
(Zhang et al., 2008). Heterogeneous water flow paths and
solute transport already start in throughfall and hence with the
inputs into soils. Levia and Frost (2003) emphasized the influ-
ence of stem flow (enriched in nutrients and organic acids) on
soil solution chemistry. It was shown that stem flow can con-
centrate and channel water including P over localized circular
areas at the tree base depending on bark surface and precipi-
tation characteristics (Schwärzel et al., 2012; Zhang and
Mitchell, 1995). For European beech it was suggested that
stem flow and root-induced preferential flow (double funneling
effect), which triggered a fast(er) hydrological response to
rainstorms (Schwärzel et al., 2012), might promote P losses.
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Figure 2: Lateral transport and redistribution of P in a forested hillslope underlain below per-
meable bedrock by overland-flow, subsurface-flow, and deep-flow pathways in a P-acquiring
(left) and P-recycling (right) system. The relative thickness of the arrows of the lateral P trans-
port is still unknown and therefore not to scale.
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At the soil profile scale, phosphate mobilization processes
are relatively well understood (Haygarth et al., 2005). How-
ever, knowledge of P delivery through landscapes and catch-
ments is limited mainly due to the complexities of the trans-
port scales involved and the different P detachment mecha-
nisms that act in runoff and erosion events. These high-mag-
nitude but usually short-timescale events mobilize larger-
sized particles and lead to more detachment of soil colloids
(Haygarth et al., 2005). Leaching rates of P in forest soils are
assumed to be negligible due to strong P-bonding to soil con-
stituents (Achat et al., 2009). Studies on grassland soils
showed that, except for losses with surface runoff, P was
transported predominantly in preferential-flow pathways (Hay-
garth et al., 1998; Heathwaite and Dils, 2000; Toor et al.,
2005; Jarvis, 2007). Thus, water and P may bypass large
parts of the soil matrix, resulting in high P losses during heavy
rainfall events when preferential-flow pathways are con-
nected (Beven and Germann, 1982; Djodjic et al., 2004). Ac-
cording to Heathwaite and Dils (2000), the magnitude and
composition of the P load transported in individual flow path-
ways will in reality depend on: (1) land management practices
which influence the total amount, spatial heterogeneity and
the form of soil P, (2) rainfall characteristics and hillslope hy-
drology which define the mechanisms and pathways of water
flow, and (3) soil type and antecedent moisture status which
determine the contact time between ‘‘new’’ water and the soil,
and the frequency at which a pathway operates. Transport of
P also highly depends on its physical bonding form, i.e.,
whether P is sorbed to soil particles or to mobile colloids, or it
is existent in dissolved form. Sorbed P is mobilized by erosion
and is transported with the water flow through larger soil
pores; it can be deposited again if flow velocities decrease.

Dissolved P is transported through the soil both by macropore
flow and by matrix flow, and is present in the immobile water
fraction and is also taken up by roots. Heathwaite and Dils
(2000) found that dissolved P in a grassland catchment
amounted to over 80% of total P in matrix flow and to 50–60%
in surface runoff. The predominance of preferential flow path-
ways in the transport of nutrients in forest soils was shown by
Bundt et al. (2001) and Bogner et al. (2012). However, there
is only one known study investigating P transport and P forms
involved in preferential-flow pathways in forest soils. From
their study on a podzol in Finland, Backnäs et al. (2012) as-
sumed that leaching of P through preferential-flow pathways
occurred predominantly on stone surfaces, where P sorption
might be limited due to the comparatively small sorptive sur-
face area and the rapid water flow. By contrast, macropores
related to coarse grains and roots are smaller and have a
larger sorptive surface area, i.e., sorption should be higher
and water flow smaller, leading to P accumulation in these
pores. Jensen (1998) also suggested higher P saturation in
long-term stable preferential-flow pathways, leading to a high-
er potential for high-P concentration transport and accumula-
tion on aggregate surfaces.

Hillslopes can contribute much to the P export from catch-
ments, because P transport is often connected with fast flow
(McGechan et al., 2005) and hillslopes are landscape units
where lateral fast flow typically occurs (Bachmair and Weiler,
2012). The first estimates from a monitoring study (April 2014

to September 2015) in the forested catchment of the Vesser-
tal (Thuringian Forest, Germany) measured a mean total P of
roughly equivalent to 0.032 g m–2 a–1 (Julich, pers. comm.).
The main fraction of total P (on average ca. 90%) is likely to
be dissolved inorganic P (orthophosphate). In an earlier study
in a forested catchment in the Eastern Ore Mountains (Sax-
ony, Germany) by Benning et al. (2012), the annual P export
fluxes were found to be much lower (0.004 g m–2 a–1), with an
orthophosphate share of only 25%. Highly resolved measure-
ments of exports during heavy rainfall events revealed signifi-
cantly higher losses of orthophosphate P up to 0.2 mg m–2

and total P up to 1.6 mg m–2 per rainfall event. The results in-
dicate that a single storm event could account for up to 20%
of the total annual orthophosphate P load (40% for total P; Ju-
lich, pers. comm.). Therefore, a clear underestimation of P
exports occurs when event-based losses are not taken into
account.

In summary, it is evident that further studies are required to
estimate the magnitude and drivers of the P export fluxes and
to identify how they are linked to the site-specific availability
of mineral P forms and different nutrition strategies of ecosys-
tems.

4 Stream water P and its influence on the
stream biocenosis

The dominant factors controlling P concentrations in head-
water streams are the forms and content of P in their bed
sediments (van der Perk et al., 2005) and additionally the in-
puts of colloidal P, especially from soils under agricultural
land use (Withers et al., 2001). Both can lead to elevated lev-
els of dissolved P with profound implications for water quality
and stream food web structure (Smith, 2003). Transport and
delivery of P from soils to headwater streams and headwater
sediments in agricultural catchments are, in addition to the ex-
tent of erosion intensity, mainly controlled by the contents of
P, Al, Fe, organic matter as well as the mineral composition of
the soil types present in the catchment (Palmer-Felgate et al.,
2009; Rawlins, 2011). However, studies on the relation be-
tween soil P status and P concentration of headwater streams
in forested catchments with little anthropogenic influence and
its consequences for the stream food web structure are
scarce (Meyer and Likens, 1979).

It has been shown that P concentrations in streams of forest-
ed headwaters follow a pronounced annual cycle with a maxi-
mum in summer (Roberts et al., 2007; Bernal et al., 2015;
Verheyen et al., 2015; Zelazny and Siwek, 2012). In contrast,
no pronounced annual cycle of P concentrations has been
observed in soil water and groundwater of such catchments.
This implies there must be an additional P source in streams,
e.g., in-stream mineralization of organic matter (Verheyen et
al., 2015) or a process reducing P concentrations in the
stream water during winter and spring such as intensive
growth of benthic algae (Hill et al., 2001; Winkelmann et al.,
2014). The hyporheic zone and riparian groundwater as well
as in-stream release contribute significantly to headwater P
concentrations (Mulholland et al., 1997; Bernal et al., 2015),
which is consistent with findings that P concentration in head-
water streams increases with distance from the spring. How-
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ever, it seems questionable whether biological activity alone
can account for the increase of P concentrations (Bernal et
al., 2015). While P concentrations in streams influenced by
agriculture tend to peak during stormflow events, the opposite
pattern seems to occur in forested headwaters (Verheyen et
al., 2015).

First results from a study of four temperate forest catchments,
that represent a sequence of decreasing mineral-bound P
contents in the mineral topsoil horizons, did surprisingly not
show any correlation between soil P concentration and total P
discharge into the surface waters as well as P concentration
in headwater streams (Wilpert and Kirstens, pers. comm.).
The results obtained between May and December 2014
pointed at significant lower mean phosphate concentrations
in the headwater stream (8.0 mg PO4-P L–1, n = 29; Mewes,
pers. comm.) in the Bavarian Forest region than in the other
German forest experimental sites, i.e., Bad Brückenau, Ves-
sertal, and Conventwald (ranging between 22.7, 12.9, and
12.1 mg PO4-P L–1; n = 28, 24, and 7, respectively; Wilpert
and Kirstens, pers. comm.), this despite the former had the
second largest soil P stocks of all four sites.

The dominant substrate classes of the studied headwater
streams at the sites Vessertal (Thuringian Forest), Mitterfels
(Bavarian Forest), and Conventwald (Black Forest) were
coarse materials, e.g., small to large gravel and boulders.
Based on the findings of Lottig and Stanley (2007) it can be
expected for these streams that stream water Soluble Reac-
tive Phosphorus (SRP) is greatly influenced by biotic reten-
tion rather than abiotic sorption and that sediment buffer ca-
pacity is low. Because the sediment of these streams was
composed of comparable size classes, the abiotic sorption
capacities were assumed to be similar. Therefore, it was ex-
pected that changes in P availability primarily affect stream
benthic biota. As aquatic primary producers (periphyton) are
P-limited below 15 mg PO4-P L–1 (Bothwell, 1985; Winkel-
mann et al., 2014), even the observed small differences in the
P availability in headwater streams can influence the stream
food web structure (Biggs, 2000; Dodds, 2007). Increasing P
availability in streams can increase periphyton biomass,
benthic invertebrate species richness, and grazer biomass
(Godwin et al., 2009). Consequently, transport and delivery of
P from soils to the water and sediments of headwater streams
can be expected to influence the structure of aquatic food
webs. These changes in the structure of the aquatic food web
on their part can influence P retention in streams. However,
the first results of the study, comparing three temperate forest
catchments with stream PO4-P concentrations between 8.0
and 12.9 mg PO4-P L–1, indicated no effect of P concentration
on periphyton biomass or on the biomass of higher trophic
levels (Mewes, pers. comm.). Thus, a larger biotic retention
of stream P in terms of larger standing stocks of periphyton or
benthic invertebrate biomass at sites with higher P availability
were not found. These first results suggest that the effects of
and the overall control on P status and concentrations in
linked terrestrial and aquatic components of catchments are
largely unresolved.

5 Magnitude and relevance of P fluxes

The data compilation on P fluxes in and from soils is primarily
based on few case studies published between 1991 and
2003, supplemented with new, as yet preliminary and unpub-
lished results from the contributing research groups within the
German Priority Program SPP1685 (Table 1).

The explanation for our current limited knowledge on P fluxes
is probably the focus of biogeochemical research on N rather
than on P during the last decades because of N saturation
due to high N deposition in various ecosystems (Aber et al.,
1989) and the sensitive response of N cycling to climate
change (Luo et al., 2004). Another explanation for the little re-
search on P could be that mature natural boreal and temper-
ate ecosystems are considered to be primarily limited by N
but not by P (Vitousek and Howarth, 1991) since P is continu-
ously released during weathering. Also, organic P might be
more accessible for microorganisms than organic N since
usually ester-bonded, while N is directly C-bonded and,
hence, more difficult to mineralize. Another more practical
reason for the poor knowledge on P fluxes is the low P con-
centration of precipitation and surface waters, which are
mostly below the detection limits of conventional analytical
techniques such as ICP-OES, ion chromatography (IC), and
photometry. The low P concentrations of soil solutes require
preparative and analytical efforts for accurate flux estimates.
Nevertheless, the available flux data clearly indicate that P
fluxes in soils are mostly by about one magnitude smaller
than P inputs via litter fall, thereby indicating a generally effec-
tive recycling of P in temperate forest ecosystems with mini-
mal P losses as compared to plant uptake (Cole and Rapp,
1981). Moreover, annual P leaching losses (usually < » 50
mg P m–2 a–1; Table 1) are also several magnitudes smaller
than soil P stocks (> 50 g m–2; Walthert et al., 2004). This im-
plies that P loss rates from soils will affect the P status of for-
est ecosystems only at centennial to millennial time scales.
However, this timescale estimation may be considerably
shortened considering the expected increase of rainstorm in-
tensities and frequency in the future by climate change.

The scarcity of data on all types of P transport fluxes (Table 1)
currently preclude any conclusive answers on the relationship
between P fluxes, P cycling, and the nutrition status of forest
ecosystem (i.e., acquiring versus recycling; see Lang et al.,
2016). Moreover, the distinct lack of P flux data also hinders
any quantitative assessment of the extent of anthropogenic
and climate impacts (e.g., N deposition, warming) on temper-
ate forest P fluxes and cycles. Table 1 suggests that from a
perspective of temperate forest P flux data, the previous 20
years can be considered to have mostly been ‘‘lost years’’ in
this research area.

Phosphorus leaching rates in subsoil are higher in weakly de-
veloped forest soils (Table 1; Kaiser et al., 2000, 2003) than in
more developed soils (Qualls et al., 2000). This might reflect
a stronger phosphate and colloidal or truly dissolved organic
P retention in weathered subsoils with reactive mineral surfa-
ces (Kaiser et al., 2001). Also, the published data on P fluxes
do not show any consistent difference between P inputs via
precipitation and P losses via leaching and stream water,
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which prevents any inference on net P accumulation in tem-
perate ecosystem. Earlier studies at the catchment and basin
scale, however, revealed a tight balance between P inputs
from precipitation, P released by weathering, and the export
as dissolved and particulate P (Bear Brook: Meyer and Lik-
ens, 1979; Brazil: Gardner, 1990). The importance of the tree
scavenging effect on P deposition (Meyer and Likens, 1979),
which may lead to higher P deposition rate, has also not been
verified for temperate forests.

High P loads in stream water (Table 1), particularly at high
flow (Meyer and Likens, 1979), suggest that rapid flow pro-
cesses, either in the soil by macropore flow or during flood
events in streams and rivers, may lead to significant P losses.
In the long run, these event-based losses may reduce eco-
system P stocks and limit the ability of forest ecosystems to
recycle P. However, so far, there are too few studies encom-
passing all components of the P cycle to establish a quantita-
tive link of P fluxes with the overall P cycle in forest ecosys-
tems. Nevertheless, P transport or export might serve as sen-
sitive indicators for the P status of forests.

6 Conclusions

The literature review shows a surprisingly limited quantitative
understanding of P fluxes in temperate forests. Overall, actual
P flux measurements seem to have been more or less ne-
glected in the last decades. The scarcity of data on P fluxes
in forest ecosystems certainly limits all considerations on as-
pects of forest P nutrition. Certainly, we need to obtain more
transport flux-focused P studies for various forest ecosys-
tems. These studies need to provide data on: (1) inorganic P,
DOP, and colloidal P forms and their susceptibility to leaching,
(2) P losses at hillslope and catchment scale in forest ecosys-
tems, (3) the share of potentially recyclable P that is exported,
and finally, to complete this picture, data on: (4) rates of P re-
lease by weathering, (5) atmospheric P inputs into temperate
forest systems, (6) spatial heterogeneity of P soil fluxes, as
well as (7) the dynamic interactions between plant uptake,
mineralization, and leaching. Most of the work presented here
refers to acidic forest ecosystems; yet, large forest areas also
occur on calcareous soils which are studied to a much lesser
extent. Within the whole context, we also need to further im-
prove the sensitivity and selectivity of our analytical methods,
because they remain one major obstacle to quantifying the
low dissolved (organic) as well as the poorly constrained col-
loidal P losses. Also, a more complete knowledge and quanti-
fication of P fluxes is a key requirement for improving the pre-
diction of future changes in forest ecosystems, and for trans-
ferring lessons learned from natural ecosystems to anthropo-
genic plant-based production systems.
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