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A Comparison between the Forecast by the United States National

Seismic Hazard Maps with Recent Ground-Motion Records

by Sum Mak and Danijel Schorlemmer

Abstract Confidence in scientific models accumulates by continuously validating
the model’s predictions by observations. We compared the seismic-hazard forecasts of
the four published versions of the U.S. Geological Survey National Seismic Hazard
Maps with observed ground motions. A large dataset is necessary for a statistically
meaningful comparison, and so our comparison was based on an aggregated approach
such that the observations and the forecast in a region (California, and the central and
eastern United States [CEUS]) were combined and compared as a whole. We used in-
strumental records in California and macroseismic intensity in the CEUS since 2000 as
the observation, which was largely prospective to the hazard maps. We verified that the
observed seismic hazard based on macroseismic intensity was consistent with that based
on instrumental records, making model evaluation in the CEUS, for which instrumental
records were almost nonexistent, viable. The observed hazard was found to be generally
consistent with the forecasted one for peak ground acceleration (PGA) in California and
for both PGA and spectral acceleration at 1 s (SA1) in the CEUS. Forecasted hazard for
SA1 for California appeared to be conservative. Recent versions of the hazard map were
in better agreement with observations in California. Small earthquakes, as expected, were
found to have insignificant impact on SA1. Induced earthquakes in the CEUS have in-
creased the observed seismic hazard but did not invalidate the hazard model as a whole.
We examined the resolving power of the test by computing its statistical power.

Introduction

The necessity to validate forecasts of a probabilistic
seismic-hazard assessment (PSHA) model using observed
ground motion has long been recognized (McGuire, 1979).
This validation exercise (validation, verification, and testing
are used in this article as synonyms, although workers in dif-
ferent fields may assign different meanings to these terms) has
been receiving increasing attention in recent years (Ordaz and
Reyes, 1999; Stirling and Petersen, 2006; Albarello and
D’Amico, 2008; Fujiwara et al., 2009; Miyazawa and Mori,
2009; Stirling and Gerstenberger, 2010; Mezcua et al., 2013;
Tasan et al., 2014; Brooks et al., 2016), although it has not yet
been a routine and standard process such as how meteorolo-
gists treat the weather forecast (e.g., the quality of weather
forecasts is regularly published by the European Centre for
Medium-Range Weather Forecasts [ECMWF], see Data and
Resources). The lack of a standard validation may have in-
duced arguments over whether a PSHA model is serving its
purpose, especially after a significant earthquake occurs not
in the most expected place and/or is not of the most expected
size (Stein et al., 2011, 2012, 2013; Hanks et al., 2012;
Stirling, 2012; Frankel, 2013a,b). Extreme views such as
“The problem in earthquake forecast is that models . . . have
not been tested against relevant data, . . . so there is little reason

to believe the probability estimates” (Stark and Freedman,
2003, p. 205) exist, often from workers with background
primarily in mathematical statistics.

For the United States, comparisons between the
forecasted hazard of the U.S. Geological Survey (USGS)
National Seismic Hazard Maps (NSHM, see Data and Re-
sources) were made using historical macroseismic intensity
(Stirling and Petersen, 2006) and instrumental records
(Stirling and Gerstenberger, 2011; see Data and Resources).
Certain issues critical to the statistical comparison, including
the treatment of data completeness, correlation between ob-
servations, dependence between observations and models,
and the formality and resolving power of statistical methods,
have not been fully explored in previous studies. In the cur-
rent study, we compared the forecasted time-independent
seismic hazard by the NSHM with the observed hazard
derived from ground-motion records since 2000. We targeted
two regions of the United States: California, where instru-
mental records were relatively abundant, and the central and
eastern United States (CEUS, defined as east of 100°E),
where instrumental records were nearly nonexistent and
we had to resort to macroseismic intensity records. The
two regions represent the two extremes of seismic hazard
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in the United States. We paid special attention to the data
completeness, the quality of macroseismic intensity records,
and their conformity with instrumental records, as well as the
sufficiency of data quantity, represented by the statistical
power of tests; the latter issue is especially important but
has not been sufficiently addressed in early studies.

The evaluation of a PSHA model includes two ap-
proaches. The component-based evaluation of PSHA (e.g.,
Schorlemmer et al., 2007, for seismicity forecast; Scherbaum
et al., 2009, for ground-motion forecast) addresses the per-
formance of an individual component of a model. By deduc-
tive reasoning, if all components of a model are in good
quality, the output of the model should be in good quality.
On the other hand, the holistic approach, such as that used in
the current study, provides direct inductive evidence as to the
correctness of the model. It serves the same purpose as the
clinical trial for medical research. Both approaches are
necessary for a complete evaluation of a PSHA model.

Method and Data

Aggregated Hazard Curve

An ideal test of a PSHA model, just like an ideal PSHA
model, should be site-specific so that the forecasted hazard of
a site is tested against the observed hazard of that site. This
approach was used in some early studies (Ordaz and Reyes,
1999; Stirling and Petersen, 2006; Stirling and Gersten-
berger, 2010; Mezcua et al., 2013), although it is now known
that their statistical powers are unlikely to be high, so that the
test is unlikely to find inconsistency between the observed
and forecasted hazards, unless the model is grossly wrong
(Mak et al., 2014). To include more data to achieve a higher
power, one can sacrifice the spatial resolution and compare
the performance of the PSHA model for a region as a whole,
using all observations in that region. Tasan et al. (2014,
pp. 1555–1556) summarized this aggregated approach.
Some of the main points are repeated below. The computa-
tional details are given in Appendix A.

The essence of testing a PSHA model is to compile the
observed hazard by counting the recorded ground motions
and to compare it with the forecasted hazard. The forecasted
hazard, a random variable, is displayed in this article as its
expected value (i.e., expected hazard) associated with an
interval bounded by its 5% and 95% quantiles (hereafter re-
ferred to as the 5%–95% forecast interval). If the observed
hazard falls outside this interval, the forecast is judged as
inconsistent with the observation. This is equivalent to the
conventional hypothesis test for model rejection with
α � 5% for a one-tail test, or 10% for a two-tail test; the null
hypothesis is that the observed and forecasted aggregated
hazards are the same.

An aggregated hazard curve represents the summation of
observed or forecasted hazards over multiple sites. The con-
ventional site-specific hazard curve uses the annual rate of
exceedance as the ordinate and the ground-motion level

(e.g., peak ground acceleration, known as PGA) as the ab-
scissa. One method for computing the aggregated hazard
curve is to use the total number of ground-motion exceedances
over multiple sites as the ordinate. The corresponding ex-
pected hazard curve is simply the sum of all site-specific haz-
ard curves, each multiplied by its own period of observation.
Because the number of ground-motion exceedances at a single
site is modeled as a Poisson random variable, the sum of them
is also a Poisson random variable. The distribution function of
the aggregated forecast can be computed accordingly.

Another method for computing the aggregate hazard
curve is to use the number of sites with exceedances (i.e.,
sites that have experienced at least one exceedance during
the observation period) as the ordinate. This is in line with
the conventional practice of seismic hazard maps to express
the seismic hazard in terms of probability of exceedance. The
corresponding forecasted aggregated hazard is the sum of
multiple Bernoulli trials, each having a different probability
of success, which is the probability of observing at least one
exceedance during the observation period, based on a Pois-
son model (Albarello and D’Amico, 2008, section 2.1). Such
a sum of heterogeneous Bernoulli trials results in a Poisson-
binomial distribution (Wang, 1993). The distribution func-
tion of the aggregated forecast can be computed accordingly.
Albarello and D’Amico (2008) computed this distribution by
normal approximation and Tasan et al. (2014) computed it by
Monte Carlo simulations. Both are not strictly necessary.

The above-mentioned computation of the distribution
function of the forecasted hazard requires the sites to be
independent. When they are not, the actual variance will be
larger than the computed one; note that the mean is not
affected by site dependence. It is difficult to accurately
estimate the dependence of the seismic hazards among sites.
Sites sufficiently apart can be assumed to be independent, but
it is unknown precisely how far is sufficient. Applying a
conservative minimum intersite distance to ensure independ-
ence will lead to discarding a lot of data, which leads to low
statistical power. We elaborate more on this issue in the
Decisions Required to Conduct Testing section.

A PSHA model provides the annual rates of exceedance,
the reciprocal of return period, at various ground-motion lev-
els. For a given PSHA model, ground-motion level and return
period are interchangeable. Therefore, the abscissa of an
aggregated hazard curve can be expressed in either the
ground-motion level or the return period; the latter requires
specifying a PSHA model as the means of conversion. The
same return period will represent different ground-motion
levels at different sites. Together with the two choices of or-
dinate, there can be four forms of aggregated hazard curve
(Fig. 1; see also Appendix A). When the abscissa is ex-
pressed in ground-motion levels (Fig. 1a,b), the observed
hazard is model independent, whereas the expected (or fore-
casted) hazard is model dependent. On the other hand, when
the abscissa is expressed in return periods (Fig. 1c,d), the
observed hazard is model dependent, whereas the expected
hazard is model independent. See Appendix A for details.
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In this study, we express aggregated hazard curves as the
number of sites with exceedances versus return period. The
reason for not using absolute ground-motion levels as the
abscissa is that the same ground-motion level could carry
very different meanings between California and the CEUS,
whereas the use of return period is not regional dependent.
The reason for not using the number of ground-motion ex-
ceedances as the ordinate is that aftershocks and small earth-
quakes, which are excluded in the NSHM, will almost
certainly generate a number of observed ground-motion ex-
ceedances at a low ground-motion level larger than the fore-
casted number (see Fig. 1a); on the other hand, aftershocks
do not affect the counting of the number of sites with exceed-
ances. The modeler’s decision to exclude small earthquakes

is based on the assumption that they do not contribute sig-
nificantly to seismic hazards, especially for spectral periods
of engineering interest. We put this assumption to test.

The four versions of the NSHM (1996, 2002, 2008, and
2014) provide the seismic hazards in a number of ground-
motion units. The PGA and the spectral acceleration at 1 s
(SA1) are common among them. Observations in these
two units are also available from instrumental records of
ShakeMap stations and intensity records of the “Did You
Feel It?” (DYFI) system via conversion (explained below).
Therefore, the comparison in this study was based on
PGA and SA1. The mean hazard curve was used as the basis
of comparison because it is the one most often published and
used in practice (McGuire et al., 2005; Musson, 2005). We

(a) (b)

(c) (d)

Figure 1. Four forms of aggregated hazard curve based on all available California instrumental peak ground acceleration (PGA) records.
See Appendix A for the computational details. (a) Form 1: number of ground-motion exceedances versus PGA. The shaded region surround-
ing the expected hazard curve based on the National Seismic Hazard Maps (NSHM) 2014 is the 5%–95% forecast interval that the probability
of the observed hazards to fall within is 90% if the forecast is correct, assuming the sites are independent (for which are not; see the Sup-
pressing Data Correlation section). (b) Form 3: number of ground-motion exceedances versus return period. (c) Form 2: number of stations
that have experienced at least one ground-motion exceedance versus PGA. (d) Form 4: number of stations that have experienced at least one
ground-motion exceedance versus return period. Boxed regions at the tails are enlarged to be insets. See Figure 2a for station locations. The
color version of this figure is available only in the electronic edition.
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discuss the evaluation of ensemble forecasts in the Beyond
the Mean Forecast section.

Instrumental Records for California

The record from an accelerometer is the best scientific
observation of strong ground motions. We used the records
provided by ShakeMap stations (see Data and Resources)
as the data source for California. ShakeMap is designed for
earthquake-hazard information dissemination. It has archived
a comprehensive dataset of strong motion compiled from
records from various seismic networks, but the data are not
optimized for scientific analysis of strong motion. In the fol-
lowing, we describe two measures we implemented to ensure
the data validity and completeness of ShakeMap records.

First, the station name for the ShakeMap database is not
unique. Stations of the same name are sometimes distinct,
usually because the same station name is used by different
agencies. In addition, the same station occasionally has dif-
ferent names at different times. We manually checked the
names and locations of each ShakeMap station to ensure that
records of the same station name came for the same station,
as well as grouped together the records for the same station
with different names.

Second, ShakeMap does not document the operational
history of the seismic networks it uses. Consequently, there is
no rigorous way to guarantee the data completeness. We es-
timated empirically the data completeness by checking if a
station has reported all ground motions that are believed to be
sufficiently strong by the ground-motion prediction equation
(GMPE) of Boore et al. (2014). We considered the observa-
tion from a ShakeMap station of the time period between the
first and the last records of that station to be potentially com-
plete. We then predicted the mean-minus-one-standard-
deviation logarithmic PGA of that station for each earthquake
in the ShakeMap catalog; we assumed that the ShakeMap
catalog was complete for California earthquakes of engineer-
ing significance. If the ShakeMap database had included all
records of that station when the corresponding predicted PGA
was larger than 0:02g, we considered the records for that sta-
tion to be complete for the above-mentioned time period.
This empirical completeness means that if the actual PGA
was likely (>68% by the lognormal distribution adopted
by GMPEs) to be at least 0:02g, the ground motion would
have been included in the ShakeMap database. A similar ap-
proach of empirical completeness estimation was used by
Tasan et al. (2014, section 3.1). The use of GMPE required
parameters such as the station VS30. We obtained the param-
eters from the Next Generation Attenuation (NGA)-West2
flatfile (see Data and Resources) by matching the locations
of the ShakeMap stations with those of the NGA-West2
stations. Because of round-off errors, the locations for the
same station in the two databases might not be identical;
we tolerated a location mismatch of 0.5 km. ShakeMap sta-
tions not included in the NGA-West2 flatfile were not used.
Only ShakeMap stations of an estimated completeness
period of at least five years were used for analysis to avoid
temporary stations, for which the data quality might be less
satisfactory.

The above data selection resulted in 690 empirically
complete stations (Fig. 2a), producing 99,885 PGA records
from 1775 earthquakes during the period 22 February 2003
to 28 March 2016. Each station had a different estimated
period of completeness (Table 1). The number of records for
SA1 was slightly less because some stations produced only
PGA but not SA1.

Because the NSHM predicts seismic hazard on rock
(VS30 � 760 km=s), it is necessary to remove the site effect
of the observed ground motions for fair comparison. We

−124˚ −120˚ −116˚

32˚

36˚

40˚

(a) −124˚ −120˚ −116˚

32˚

36˚

40˚

ZIP
Station

(b)

−100˚ −90˚ −80˚ −70˚

30˚

40˚

(c)

Figure 2. Locations for ShakeMap stations (dots) and ZIP re-
gions (hollow circles) used in the current study. (a) All California
stations. The corresponding aggregated hazard curves are given in
Figure 1. (b) Pairs of California stations and ZIP regions that are
within 5 km from each other. The corresponding aggregated hazard
curves are given in Figure 3. (c) All central and eastern United
States (CEUS) ZIP regions. Polygons denote identified zones of in-
duced seismicity (see Data and Resources). The color version of this
figure is available only in the electronic edition.

Table 1
Empirical Period of Completeness (years) for

ShakeMap Stations in California

Period (year) Number of Stations

5–8 182
8–10 161
10–12 173
12–13.1 174
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deamplified the observed ground motions using the nonlinear
site amplification component of Boore et al. (2014, their equa-
tions 3.8–3.11). Boore et al. (2014) is the only NGA-West2
GMPE that uses the same rock definition as that of the NSHM,
making it a convenient choice for the purpose of this study.

Intensity Records for the CEUS

For the CEUS, accelerometers were very local in cover-
age, and/or installed only very recently or temporarily, such
that the duration of data availability was short; instrumental
records suitable for the purpose of the current study therefore
did not exist. We used macroseismic intensity data collected
by the DYFI system (Wald et al., 2011; see Data and Resour-
ces) as ground-motion observations for the CEUS. DYFI in-
tensity records are similar to conventional macroseismic
intensity reports, except that the intensity value is computed
automatically based on the online questionnaires received
from voluntary Internet users. A postal ZIP region is as-
signed an intensity value, representing the ground-shaking
level of the region. Fundamental differences between macro-
seismic intensity and instrumental records demand additional
treatments for using intensity data, compared with using in-
strumental records.

Intensity-Based Hazard Observation. To compare ob-
served hazard in intensity with the forecasted hazard in
acceleration, the use of an intensity-to-ground-motion con-
version equation (IGMCE or GMICE) is necessary. We used
the GMICE of Atkinson and Kaka (2007), which was spe-
cifically designed for eastern North America. We imple-
mented a probabilistic conversion in which an intensity
value was converted into a normal distribution of ground mo-
tion, with the mean as the converted value and the standard
deviation as the reported standard deviation. The GMICE of
Atkinson and Kaka (2007) was designed as a one-way
GMICE, converting from ground motion to intensity; we
used it for reverse conversion from intensity to ground mo-
tion. Atkinson and Kaka (2007) did not report the standard
deviation of such a reverse conversion. Without a better way
to quantify the conversion uncertainty, we assumed it to be
the same as that reported in Worden et al. (2012), a more
recently developed two-way GMICE for California.

There is no generally recognized method for site-effect
adjustment for macroseismic intensity. We deamplified the
converted ground motions as we did for instrumental records,
assuming all sites to be National Earthquake Hazards Reduc-
tion Program (NEHRP) class C/D (i.e., VS30 � 366 m=s).

For N observed intensity values, the GMICE provides N
converted ground motions μi (with site effects removed) and
a standard deviation σ. We took the total number of ground
motions exceeding ground-motion level g as Ng,

EQ-TARGET;temp:intralink-;df1;55;115Ng �
XN
i�1

Pr�X ≥ gjμi; σ�; �1�

in which Pr denotes probability and X is normally distributed
with mean μi and standard deviation σ. This probabilistic
conversion of intensity leads to fraction numbers, while the
counting of instrumental records always results in integers.

Similarly, for M sites, each having Ni observed intensity
values, converted by a GMICE into μij, we took the total num-
ber of sites that have experienced at least one exceedance of
ground-motion level g during the observation period as ~Ng:

EQ-TARGET;temp:intralink-;df2;313;634

~Ng �
XM
i�1

�
1 −

YNi

j�1

Pr�X < gjμij; σ�
�
: �2�

This again leads to fraction counts.

Quality Control. We implemented the following measures,
in sequential order, to ensure the quality of the intensity data
points (IDPs) used to represent the observed hazard in the
CEUS.

Data Completeness. It is known that the quality of
an IDP is proportional to the number of responses from which
it is compiled (Worden et al., 2012, their fig. 3). Mak and
Schorlemmer (2016) created a statistical model to describe
the probability for each ZIP region receiving a certain number
of responses conditioned by various earthquake and socioeco-
nomic properties. In the current study, we took only the ZIP
regions that have at least 70% chance of producing at least 10
responses for a reported intensity value of 4, coming from a
hypothetical earthquake of magnitude 5 located at 30 km
from the site. Because the selected ZIP regions will very likely
produce a large number of responses to the DYFI system
under a nontrivial ground shaking, we assumed the records of
a selected ZIP region to be complete, from the first time an
intensity report had been generated for that ZIP region until
the end of our data collection period (end of March 2016).

Induced Earthquakes. A large number of earthquakes
in the CEUS were induced by fluid injection associated with
petroleum extraction activities (Ellsworth, 2013), which
were not considered in the NSHM. We excluded the ZIP
regions and records from earthquakes that were located
within identified zones of induced seismicity (Fig. 2c).

Areal Ground Shaking. Macroseismic intensity funda-
mentally represents an areal ground shaking, whereas the
NSHM predicts point seismic hazard. We assumed IDPs to
be point records at their reported geographic coordinates
(usually the centroid of the ZIP region). For a large ZIP
region, such a point approximation may be less accurate; we
therefore excluded ZIP regions larger than 30 km2.

Continual Recording. Consistent with the treatment of
instrumental records, we took only the ZIP regions that have
produced intensity reports for at least five years.

A Comparison between the Forecast by the U.S. NSHM with Recent Ground-Motion Records 1821



Suspicious Records. We excluded IDPs compiled from
fewer than five responses or from earthquakes located at more
than 200 km from the site. Large intensity values based on few
or distant respondents are suspicious, and are likely erroneous.

The above data selection resulted in 2191 ZIP regions
(Fig. 2c), producing 1858 IDPs from 98 earthquakes since
27 June 2000; the end of the data collection period was
the end of March 2016. Each ZIP region had a different
period of data availability (Table 2). Some ZIP regions con-
tained no usable IDPs due to the above data winnowing and
were treated as regions with no observed seismic hazard.

Validating Intensity-Based Hazard. Although DYFI inten-
sity records were the only data source for the CEUS, both
intensity and instrumental records existed for California. To
ensure that macroseismic intensity could accurately represent
the observed hazard, we compared the observed aggregated
hazard curves compiled from DYFI records with those from

instrumental records for California. DYFI IDPs and acceler-
ometers never exactly sample the same points; we used all
pairs of ZIP regions and accelerometers (307 in total) that are
within 5 km from each other in California (Fig. 2b). The data
selection procedure for California intensity records, as well as
the calculation of hazard, was the same as that described above
for the CEUS, except that here we used a GMICE specifically
designed for California (Worden et al., 2012). The databases
of ShakeMap and DYFI did not cover exactly the same set of
earthquakes and likely had different degrees of completeness
for weak ground motions. In spite of these mismatches, we
considered the agreement of the two observed hazard curves
sufficient to warrant the use of DYFI records (Fig. 3).

Results and Statistical Analysis

Suppressing Data Correlation

The observed and forecasted hazard curves computed
from all selected instrumental records for California are
shown in Figure 1d. Conventional hypothesis tests can be
done by using the 5%–95% forecast interval (the shaded re-
gion in Fig. 1d; see the Aggregated Hazard Curve section),
assuming the sites are independent. Because the sites are spa-
tially clustered (Fig. 2a,c), they are not independent, and so
the actual forecast interval will be at least as wide as the dis-
played one. It is necessary to account for the data correlation
to conduct a meaningful statistical comparison. Explicitly

Table 2
Period of Data Availability (years) for ZIP Regions in

the Central and Eastern United States (CEUS)

Period (year) Number of ZIPs

5–7.9 466
7.9–12.3 573
12.3–13.9 524
13.9–15.8 628

Figure 3. Observed hazard curves for California compiled from instrumental records (dashed line) and “Did You Feel It?” (DYFI) records
(solid line). Vertical bars on dashed lines represent a �20% range. Boxed regions at the tails are enlarged to be insets. See Figure 2b for the
locations of the 307 pairs of ShakeMap stations and ZIP regions. The color version of this figure is available only in the electronic edition.
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including the data correlation into the computation of fore-
cast interval is difficult. We took the alternative way by sup-
pressing the data correlation through discarding sites too
close to each other, because seismic hazards at sites suffi-
ciently apart are independent.

There are different ways to decluster the sites; each will
result in a different dataset and may lead to a different inter-
pretation of results. Without a generally recognized way of
declustering, we applied the following Monte Carlo ap-
proach to randomly select sites with a predesignated mini-
mum intersite distance to ensure site independence:

1. randomly pick one site from the 10% westmost sites,
2. discard all sites within the minimum intersite distance

from the picked site,
3. randomly pick one site from the 10% nearest sites to the

picked site,
4. repeat steps 2 and 3 until the pool of available sites is

exhausted, and
5. repeat steps 1–4 400 times to generate 400 Monte Carlo

datasets.

For ShakeMap stations in California, we took the mini-
mum intersite distance to be 25 km. For ZIP regions in the
CEUS, because the ground-motion attenuation is weaker, we
considered a larger minimum intersite distance necessary, so
we took 50 km. The numbers of sites included in each set of
randomly generated data were slightly different, ranging
from 142 to 155 ShakeMap stations (for California) and from
159 to 171 ZIP regions (for the CEUS); these small differ-
ences in the amount of sampled data were tolerated. The spa-
tial distribution of the declustered sites for one Monte Carlo
sample is shown in Figure 4 as an example.

Results

The observed and forecasted aggregated hazards for the
400 Monte Carlo samples are shown in Figures 5 and 6 for
six return periods (10, 25, 50, 100, 200, and 400 years). As-
suming the data in a sampled dataset to be mutually indepen-

dent, hypothesis testing can be performed by checking if the
observed hazard falls within the forecast interval. Different
Monte Carlo samples could produce different results, but the
general trend among all samples indicates how far the ob-
served hazard is from the forecasted hazard by the NSHM.

For PGA in California (Fig. 5a), a lot of samples fell
within the forecast intervals for all return periods, indicating
that the observed hazard agreed well with the forecasted
hazard. For SA1 in California (Fig. 5b), the observed hazards
were mostly smaller than the forecasted hazard, implying a
conservative forecast, except for the return period of 400 years.
For California and small return periods, the observed hazard
computed based on the two more recent versions (2008 and
2014) of the NSHM was closer to the forecasted hazard.

For PGA and SA1 in the CEUS (Fig. 6), the observed
hazard was mostly smaller than the forecasted hazard for
small return periods (10–50 years for PGA and 10–100 years
for SA1). For larger return periods, the observed hazard was
similar to the forecasted hazard. The different versions of the
NSHM produced similar forecasts.

Discussion

Prospective Test

A true test of a forecast must use prospective data (i.e.,
data collected after the forecast has been made). The rarity of
engineering ground motions often renders such a rigorous
test impossible. Therefore, most published studies on PSHA
model validation did not emphasize the use of prospective
data. The observations in the current study were truly pro-
spective for the two early versions of the NSHM (1996 and
2002). For the two more recent versions (2008 and 2014), we
consider our data from 2000 to March 2016 still fairly inde-
pendent of the models. First, merely a few more years of in-
strumental records seldom warrant a substantial adjustment
of a long-term seismicity model. Second, GMPEs used by the
NSHM are global models in which the recent California re-
cords have slight influence for the distance and magnitude

−124° −120° −116°
32°

36°

40°

California ShakeMap
Stations

−100° −90° −80° −70°

30°
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CEUS ZIP Regions

Figure 4. Example of declustered California ShakeMap stations (dots) and CEUS ZIP regions (hollow circles). Polygons denote iden-
tified zones of induced seismicity (see Data and Resources). The color version of this figure is available only in the electronic edition.
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range of the most engineering significance under common
situations (i.e., near-field, moderate-to-strong magnitudes).

Decisions Required to Conduct Testing

PSHA models are fundamentally not created to be tested
empirically. The model and the observation often do not nat-
urally represent the seismic hazard in exactly the same way.
It is often necessary for testers to make decisions to reformat
the forecasted and observed hazards into a comparable form.
We explicitly state these decisions, and argue that they did
not affect the validity of the result. It is, however, impossible
to completely avoid the effects of these decisions.

Small Earthquakes. Most PSHAs discard small earthquakes
and aftershocks in the modeling process for two reasons: to
render the earthquake occurrence a manageable memoryless
process and to save computational effort by not spending
time on microseismicity that is believed to pose no threat to
buildings. Model testers, however, have no reason to assume
that nature should follow the modeler’s assumptions. We did
not specifically discard small earthquakes and aftershocks.
The effect of earthquakes with magnitude smaller than 4.5
is shown in Figure 7. These earthquakes had some impact
on the observed hazard of PGA for small return periods,
and almost no effect on that of SA1. The modeler’s decision
to exclude small earthquakes was justified.

Site Effects. Most PSHAs forecast seismic hazard on
rock, while the observed hazard always includes site effects.
Although the conversion from observed ground motions to
rock ground motions for instrumental records using an
empirical amplification factor based on VS30 is a standard
practice, the same use on ground motions converted from
intensity records is tentative; we do not see a better measure
currently available. The use of a different site amplification
model may lead to a different result.

Site Independence. Site independence is a fundamental
assumption for conducting statistical comparison between
the observed and forecasted hazards (Figs. 5 and 6). We en-
sured site independence by declustering the sites. The choice
of minimum intersite distances of 25 km (for California) and
50 km (for the CEUS) was fundamentally arbitrary (for refer-
ence, Albarello and D’Amico, 2008, used 50 km, and Tasan
et al., 2014, used 10 km). In general, using a different mini-
mum intersite distance will discard a different amount of
data, and so the width of the forecast interval varies; hypoth-
esis tests could therefore have different result on different
choices of threshold distance, especially if the forecasted
and the actual seismic hazard are already different enough
to be a marginal case. A sharp hypothesis rejection based
on a fundamentally arbitrary α value (5% here for a one-tail
test, or 10% for a two-tail test) is therefore inappropriate. The

(a)

(b)

Figure 5. Observed and forecasted aggregated hazards for 400 Monte Carlo samplings (ordinate) and 6 return periods (RP, in years) in
California for (a) PGA and (b) spectral acceleration at 1 s. The abscissa is the same as the ordinate of Figure 1d. The color version of this figure
is available only in the electronic edition.
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forecast interval shown above better serves as a reference
for the difference between the observed and forecasted haz-
ards. The empirical evaluation of the NSHM should be based

on a qualitative comparison by looking at all sampling
results, as well as by considering the statistical power dis-
cussed below.

(a)

(b)

Figure 6. Observed and forecasted aggregated hazards for 400 Monte Carlo samplings (ordinate) and 6 return periods (RP, in years) in
the CEUS for (a) PGA and (b) spectral acceleration at 1 s. The abscissa is the same as the ordinate of Figure 1d. The color version of this figure
is available only in the electronic edition.

Figure 7. Observed hazard curves based on the NSHM 2014 for California, using all available ShakeMap stations, including (solid) and
excluding (dotted) small earthquakes (magnitude smaller than 4.5). The solid curve for PGA is identical to the corresponding curve given in
Figure 1d. Vertical bars on solid lines represent a�20% range. Boxed regions at the tails are enlarged to be insets. The color version of this
figure is available only in the electronic edition.
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Statistical Power

For PGA in California, SA1 in California for the return
period of 400 years, PGA in the CEUS for the return periods
of 100–400 years, and SA1 in the CEUS for the return periods
of 200–400 years, the hypothesis tests based on Figures 5
and 6 will lead to a conclusion that the observed and fore-
casted hazards are not significantly different. Two quantities
not significantly different in a statistical sense do not mean
they are not different. The statistical result could be due to
chance, and the chance will become higher if the two quan-
tities are not different enough with respect to the available
amount of data. A quantitative inspection on this issue requires
the calculation of the statistical power of the test (Mak et al.,
2014). It is common in the literature of laboratory science that
the statistical power is not explicitly reported because it is
often assumed that a well-designed experiment should result
in high power, such that any meaningful difference between
the observed and predicted quantities will be likely revealed
by the experiment. Such assumption is often harmful in ob-
servational science, in which the experiment is often not de-
signed by the experimenter but a process of nature, for which

the availability of data is limited by the frequency of occur-
rence of natural phenomena.

The statistical power is the probability for a test to reveal
that two quantities with a predefined degree of difference are
significantly different in a statistical sense (i.e., not committing
a type II error). Figure 8a and 8d shows the statistical power of
the hypothesis tests for California (i.e., Fig. 5) and the CEUS
(i.e., Fig. 6), respectively, computed as described in Mak et al.
(2014) but for a Poisson-binomial distribution (see also
Appendix B). The power shown is for one Monte Carlo
sample of dataset, but those for other samples are similar be-
cause the forecasted hazards among the samples are similar
(see the highly similar forecast intervals among the samples
in Figs. 5 and 6).

The statistical power provides particularly useful infor-
mation when a null hypothesis is not rejected, such as the case
for California PGA of 100-year return period (Fig. 5a). The
statistical power of this case (Fig. 8a) shows that if the actual
hazard (in terms of occurrence rate) is <0:4 or >2 (respec-
tively,<0:6 or>1:5) times the forecasted hazard, the test will
have a >90% (respectively, >50%) chance to reveal that the
two hazards are different (for α � 5% and one-tail test). In

(a) (b) (c)

(d) (e) (f)

Figure 8. Statistical powers for the hypothesis tests for (a–c) California and (d–f) the CEUS. The observation used in the current study
spanned approximately 15 years. The statistical power increases if longer periods of observation are available.
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other words, the likelihood for a result of nonrejection is<0:1
(respectively, <0:5) if the actual hazard is <0:4 or >2 (re-
spectively,<0:6 or>1:5) times the forecasted one. This is the
resolving power of the test given the available data; the stat-
istical power increases with the amount of available data. On
the other hand, when the amount of data is limited and stat-
istical power low, if a test still finds the observed hazard sig-
nificantly different from the forecasted one, such a difference
is likely large enough to warrant an in-depth investigation.

For empirical evaluation of PSHA models, the statistical
power depends only on the period of data availability, not the
actual data (Mak et al., 2014). It is therefore possible to fore-
see how much future data would improve the statistical
power. Figure 8b and 8e shows the statistical powers for the
California and CEUS tests, respectively, assuming that 15
more years of observation (i.e., up to approximately 30 years
of observation in total) is available. A test based on such an
enhanced dataset (for California or for the CEUS) will likely
(≥90%) detect the inconsistency between the observed and
forecasted hazards, if the actual hazard at the return period of
400 years is at least about 2.2 times the forecasted one. This
is better than the currently available resolving power of about
3 times. If we take 30 years of observations to be the upper
limit of the availability of prospective data, we can conclude
that it is quite unlikely (≤30%) that an aggregated test of the
scale of the California or the CEUS case can reveal the differ-
ence between the actual and forecasted hazards of the return
period of 400 years, if the actual hazard is within 0.75–1.5
times the forecasted hazard. This provides a rule of thumb for
the limit of empirical validation. Albarello and D’Amico
(2015, pp. 275) considered a low-power test acceptable for
testing PSHA models because they considered that the aim of
a test was to demonstrate if a PSHA model is somehow com-
patible with the reality. The current study demonstrated
quantitatively how high (or how low) the statistical power
could be under a realistic environment. Including historical
records could lead to a higher power (see Fig. 8c,f for
100 years of available observation), but the independence
of the data with respect to the model, as well as the complete-
ness of the data, will then become a concern.

The limit of the empirical validation of PSHA models
could be taken as the limit of how reliable, based on direct
empirical evidence, a model is. It does not address the theo-
retical correctness of the physics on which a model is based.
A user of a model should understand how much his decision
to adopt a model is based on direct empirical evidence (an
inductive reasoning), the verifiable part of the model, and
how much is based on the model’s physical correctness (a
deductive reasoning), the theoretical part of the model. Both
components are crucial for scientific decisions and should be
explicitly addressed.

Result Interpretation

The observed hazards in the CEUS at small return periods
were apparently much lower than the forecasted one (Fig. 6).

This is an artifact. Figure 6 shows that the observed hazards
are similar for return periods ≤50 years. This is because, for
the CEUS, earthquakes are so infrequent that even a weak
ground motion has a return period larger than about 50 years.
The NSHM does not model ground motions smaller than
0:5%g (for PGA). Therefore, there is no way to count the
exceedance of ground motions for short return periods. Fore-
casted hazards of return periods smaller than about 50 years
are not modeled in the CEUS and so cannot be tested.

Observing the limitations in the treatment (described in
the Decisions Required to Conduct Testing section) and
amount (in terms of statistical power, explained in the Statis-
tical Power section) of observations, the current study shows
that observed seismic hazards generally agreed with those
forecasted by the NSHM for PGA for both California and
the CEUS, and SA1 for the CEUS (Figs. 5a and 6). The mod-
els appeared to be conservative for SA1 in California at return
periods ≤200 years (Fig. 5b). Delavaud et al. (2012, their
table 7) found that GMPEs performing well for PGA did not
necessary perform well for SA1, and vice versa. This could
be a reason for the different results between PGA and SA1
in California.

Jaiswal et al. (2015) described the change of hazard es-
timates among different versions of the NSHM. The current
study provided additional evidence that the forecast by the
two more recent versions of the NSHM (2008 and 2014)
was closer to the observed hazard for California (Fig. 5).
For the CEUS, the corresponding trend of change was less
clear (Fig. 6). Compared with California, the seismic hazard
for the CEUS is always less understood; a larger degree of
expert judgment is believed to be necessary to estimate the
seismic hazard for the CEUS. The current study showed that
the available empirical evidence did not provide an overall
disagreement with those judgments.

Beyond the Mean Forecast

The mean hazard curve was used as the forecast in the
current study. The goal for the NSHM is to reflect the center,
the body, and the range of the estimate of seismic hazard
(Kammerer and Ake, 2012, section 3.1). In practice, this
is implemented by experts assigning weights to a spectrum
of input parameters and components, resulting in an ensem-
ble forecast that includes a number of hazard curves associ-
ated with weights. If the weight is taken as a probability, so
that the annual rate of exceedance on a hazard curve is con-
ditioned by a probability identical to the weight assigned to
that curve, then statistical comparisons with observations like
those presented in the current study can be readily conducted
for an ensemble forecast. In other words, the center, the body,
and the range can be tested as a whole. Marzocchi and Jordan
(2014, pp. 11,975–11,976) described a one-station example
of testing an ensemble forecast.

In the context of the current study, when the abscissa of
the aggregated hazard curve is expressed in ground-motion
levels (e.g., Fig. 1a,b), testing an ensemble forecast requires
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computing the forecast as the weighted sum of distribution
functions, based on the law of total probability. As pointed
out by Marzocchi and Jordan (2014), the result will be gen-
erally different from that based only on the mean hazard
curve. When the abscissa of the aggregated hazard curve is
expressed in return periods (e.g., Fig. 1c,d), one needs to
specify a PSHA model to convert a return period into ground-
motion level for exceedance counting. An ensemble forecast
will lead to a probabilistic conversion in which the converted
ground-motion level is conditioned by a probability identical
to the weight assigned to the ensemble member. The law of
total probability is again involved in conducting a hypothesis
test. Mathematically, the aggregated approach used in the
current study can be used to test an ensemble forecast.

There are, however, other complications in testing an en-
semble forecast. For example, there may not have been a gen-
eral consent on whether the weight assigned to a hazard curve
in an ensemble forecast is identical to a probability. In addi-
tion, it is easy to create an infallible model to subdue testing by
including an indefinitely large epistemic uncertainty, so that
even the most inconceivable observation falls within the fore-
cast interval. These issues need to be resolved before proceed-
ing to the use of empirically evaluating ensemble models.

Induced Earthquakes

Finally, we give a brief note on the highly concerned ef-
fect of induced seismicity to the seismic hazard of the CEUS.
Figure 9 shows the observed and forecasted PGA aggregated
hazards for the 400 Monte Carlo samples for the CEUS, with
the induced earthquakes not excluded. It is therefore the same
as Figure 6a, except that earthquakes and ZIP regions within
the identified zones (polygons in Fig. 2c) were not excluded.
The conclusion that the observed hazard agreed with the fore-
casted one is not changed by including the induced earth-
quakes, although the observed hazard has obviously been
increased (compared with that in Fig. 6a). The sampled

ZIP regions (with a minimum intersite distance of 50 km)
spanned the whole CEUS. Therefore, induced seismicity did
not render the hazard forecast in the CEUS invalid as a whole.
The effect of induced seismicity for a single site locating
within a zone of induced seismicity could be very different,
but the limited amount of data for such a refined region makes
empirical evaluation of hazard forecast difficult.

Summary

We presented the first empirical prospective test for the
U.S. NSHM with the following major findings.

1. Aggregating all observations since 2000 and avoiding the
effects of aftershocks and induced earthquakes, the ob-
served hazard was found to be compatible (subjected to
the limitation by the statistical power) with the forecasted
hazard for PGA for California and PGA and SA1 for the
CEUS.

2. The NSHM for SA1 for California appeared to be
conservative.

3. Recent versions of the NSHM appeared to be more con-
sistent with the observed hazard for California, whereas
the corresponding trend for the CEUS was less obvious.

4. In the CEUS, induced seismicity has increased the ob-
served seismic hazard but did not invalidate the hazard
forecast as a whole.

5. It is quite unlikely (≤30%) that a prospective aggregated
test of the scale of the California or the CEUS case can
reveal the difference between the actual and forecasted
hazards of the return period of 400 years, if the actual
hazard is within 0.75–1.5 times the forecasted hazard.
The limit of an empirical evaluation of a PSHA model
is reflected by the statistical power of the test.

6. Macroseismic intensity data from DYFI, after proper
probabilistic conversion, could adequately represent the
observed hazard. This makes testing hazard models for

Figure 9. Observed and forecasted aggregated hazards for 400 Monte Carlo samplings (ordinate) and 6 return periods (RP, in years) for
PGA for the CEUS, including induced earthquakes. The abscissa is the same as the ordinate of Figure 1d. This figure is identical to Figure 6a,
except that induced earthquakes are not removed. The color version of this figure is available only in the electronic edition.
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a region with poor instrumental coverage like the CEUS
feasible.

7. The forecast of the total number of sites that have expe-
rienced at least one ground-motion exceedance is a Pois-
son-binomial random variable. Hypothesis tests can be
conducted based on this distribution.

Data and Resources

Regular updates of weather forecast performance can be
found on the webpage of the European Centre for Medium-
Range Weather Forecasts (ECMWF (www.ecmwf.int/en/
forecasts/quality‑our‑forecasts). The U.S. Geological Survey
(USGS) National Seismic Hazard Maps were downloaded
from earthquake.usgs.gov/hazards/products/conterminous.
The USGS report of Stirling and Gerstenberger (2011) was
downloaded from earthquake.usgs.gov/research/external/
reports/G11AP20024.pdf. Instrumental records from Shake-
Map stations were downloaded from earthquake.usgs.gov/
earthquakes/shakemap. Macroseismic intensity records from
“Did You Feel It?” (DYFI) were downloaded from earthquake
.usgs.gov/earthquakes/dyfi. The Next Generation Attenuation
(NGA)-West2 flatfile was downloaded from peer.berkeley.
edu/ngawest2/databases. The zones of induced seismicity dis-
played in Figure 2c were identical to those used in the NSHM
2014, obtained through direct communication with Charles
Mueller (USGS). Figures 2 and 4 were prepared using Generic
Mapping Tools (Wessel et al., 2013). Computations related to
the Poisson-binomial distribution were conducted using the
package poibin (cran.r-project.org/web/packages/poibin) of R
(www.R-project.org). All webpages were last accessed on
March 2016.
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Appendix A

Four Forms of Aggregated Hazard Curve

Notations used throughout the two appendixes are defined
here. Suppose that there are M sites, each has Ni records ob-
served throughout ti years, and the record j of site i has a value
of oij. For a given ground-motion level g, a given probabilistic
seismic-hazard assessment (PSHA) model gives λi as the cor-
responding annual rate of exceedance for site i. Ax is a Poisson
random variable with mean x. Bp is a Bernoulli random var-
iable with parameter p (i.e., p is the probability for success).
1�·� is the usual indicator function that takes the value one
when the bracketed statement is true, or zero otherwise.

Form 1

Ordinate: Total number of exceedances over multi-
ple sites.

Abscissa: Ground-motion level.
Example: Figure 1a.

For a given ground-motion level g, the observed hazard is

EQ-TARGET;temp:intralink-;dfa1;313;721h�1�obs �
XM
i

XNi

j

1�oij ≥ g�: �A1�

The counting method when the observation is macroseismic
intensity is different (see equation 1).

The corresponding model-dependent forecasted hazard is

EQ-TARGET;temp:intralink-;dfa2;313;639H�1�
f �

XM
i

Aλiti �A2�

with the mean as the expected hazard:

EQ-TARGET;temp:intralink-;dfa3;313;579h�1�ex �
XM
i

λiti: �A3�

H�1�
f is a Poisson random variable because it is the sum of

Poisson random variables.

Form 2

Ordinate:Number of sites with at least one exceedance.
Abscissa: Ground-motion level.
Example: Figure 1b.

For a given ground-motion level g, the observed hazard is

EQ-TARGET;temp:intralink-;dfa4;313;431h�2�obs �
XM
i

1�∃j : oij ≥ g�: �A4�

The counting method is different when the records are given
in macroseismic intensity (see equation 2).

The corresponding model-dependent forecasted hazard is

EQ-TARGET;temp:intralink-;dfa5;313;356H�2�
f �

XM
i

Bp�i� with p�i� � Pr�Aλiti > 0� �A5�

with the mean as the expected hazard:

EQ-TARGET;temp:intralink-;dfa6;313;304h�2�ex �
XM
i

Pr�Aλiti > 0�: �A6�

Pr�:� literally means the probability of observing at least one

exceedance at site i. H�2�
f is a Poisson-binomial random

variable with parameters p�i� because it is a sum of hetero-
geneous Bernoulli random variables. There is no closed-form
expression for the distribution function of a Poisson-
binomial distribution (see Wang, 1993).

Form 3

Ordinate: Total number of exceedances over multi-
ple sites.

Abscissa: Return period.
Example: Figure 1c.
For a given annual rate of exceedance r and a given

PSHA model, the ground-motion level at return period 1=r
for site i is gi. The observed hazard is

1830 S. Mak and D. Schorlemmer

http://dx.doi.org/10.1785/gssrl.82.5.623
http://dx.doi.org/10.1016/j.tecto.2012.06.047
http://dx.doi.org/10.1016/j.tecto.2013.01.024
http://dx.doi.org/10.1785/0120090336
http://dx.doi.org/10.1785/0120050176
http://dx.doi.org/10.1785/gssrl.83.2.231
http://dx.doi.org/10.1093/gji/ggu191
http://dx.doi.org/10.4401/ag-5354
http://dx.doi.org/10.1002/2013EO450001
http://dx.doi.org/10.1785/0120110156


EQ-TARGET;temp:intralink-;dfb2;55;729h�3�obs �
XM
i

XNi

j

1�oij ≥ gi�; �A7�

which is model dependent because gi is given by a PSHA
model. The counting method is different when the records
are given in macroseismic intensity (see equation 1).

The corresponding model-independent forecasted haz-
ard is

EQ-TARGET;temp:intralink-;dfa8;55;631H�3�
f �

XM
i

Arti �A8�

with the mean as the expected hazard:

EQ-TARGET;temp:intralink-;dfa9;55;580h�3�ex �
XM
i

rti: �A9�

H�3�
f is a Poisson random variable because it is the sum of

Poisson random variables.

Form 4

Ordinate:Number of sites with at least one exceedance.
Abscissa: Return period.
Examples: Figures 1d, 3, 5, 6, 7, and 9.

For a given annual rate of exceedance r and a given
PSHA model, the ground-motion level at return period 1=r
for site i is gi. The observed hazard is

EQ-TARGET;temp:intralink-;dfa10;55;408h�4�obs �
XM
i

1�∃j : oij ≥ gi�; �A10�

which is model dependent because gi is given by a PSHA
model. The counting method when the observation in macro-
seismic intensity is different (see equation 2).

The corresponding forecasted hazard is independent of
both the model and observed ground motions:

EQ-TARGET;temp:intralink-;dfa11;55;297H�4�
f �

XM
i

Bp�i� with p�i� � Pr�Arti > 0� �A11�

with the mean as the expected hazard:

EQ-TARGET;temp:intralink-;dfa12;55;241h�4�ex �
XM
i

Pr�Arti > 0�: �A12�

H�4�
f is a Poisson-binomial random variable with parameters

p�i� because it is a sum of heterogeneous Bernoulli random
variables. It becomes binomial if the durations of observation
for all sites are the same (i.e., ti is constant for all i).

Appendix B

Calculation of Statistical Power

The statistical powers for tests shown in Figure 8 were
computed as follows. (See Appendix A for the definitions
of notations.) For a given annual rate of exceedance r, the

forecasted aggregated hazard (form 4), H�4�
f , is a Poisson-

binomial random variable with parameters Pr�Arti > 0�
(equation A11). Assuming that the actual annual rate of ex-
ceedance for the same ground-motion levels is Kr (K is the
ordinate of Fig. 8), for an upper one-tail test, the statistical
power is the probability:

EQ-TARGET;temp:intralink-;dfb1;313;568 Pr�H�4��
f > q�1 − α��; �B1�

in which H�4��
f is the Poisson-binomial random variable with

parameters Pr�AKrti > 0�:

EQ-TARGET;temp:intralink-;dfb2;313;502H�4��
f �

XM
i

Bp��i� with p��i� � Pr�AKrti > 0� �B2�

and q is the quantile function (or inverse cumulative distribu-

tion function) ofH�4�
f . For the corresponding lower one-tail test,

replace 1 − α by α and replace the > by < in equation (B1) to
obtain the power. It can be seen from equations (B1) and (B2)
that for a fixed r, the power increases with ti, K, M, and α.

Another equivalent interpretation of the statistical power
involves the concept of confidence interval, illustrated here
using an example. If the annual rate of exceedance for the
ground-motion level of the return period of 100 years
(i.e., r � 0:01), defined by the NSHM 2014 for the CEUS,
is estimated from the available observations, the estimated
rate will have a 90% confidence interval of �K1r; K2r�, in
which K1 and K2 are about 0.4 and 2 (read from Fig. 8d),
respectively. The corresponding 30% confidence interval
would have K1; K2 of about 0.75, 1.4, meaning that the es-
timated return period for those ground-motion levels has a
confidence of 30% to lie between 1=�0:01 × 1:4� � 71

and 1=�0:01 × 0:75� � 133 years. Certainly, it is not neces-
sary for the actual annual rate of exceedance of all sites to be
the same multiples of r, so the description here is a special
case. A more rigorous treatment for the equivalence between
hypothesis test and confidence interval is given by DeGroot
and Schervish (2012, pp. 540–543).
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