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Abstract Terrestrial reference frames (TRF), such as
the ITRF2008, are primary products of geodesy. In this

paper, we present TRF solutions based on Kalman fil-

tering of very long baseline interferometry (VLBI) data,

for which we estimate steady station coordinates over

more than 30 years that are updated for every sin-
gle VLBI session. By applying different levels of pro-

cess noise, non-linear signals, such as seasonal and seis-

mic effects, are taken into account. The corresponding

stochastic model is derived site-dependent from geo-
physical loading deformation time series and is adapted

during periods of post-seismic deformations. Our re-

sults demonstrate that the choice of stochastic process

has a much smaller impact on the coordinate time se-

ries and velocities than the overall noise level. If pro-
cess noise is applied, tests with and without addition-

ally estimating seasonal signals indicate no difference

between the resulting coordinate time series for periods

when observational data are available. In a comparison
with epoch reference frames, the Kalman filter solu-

tions provide better short-term stability. Furthermore,

we find out that the Kalman filter solutions are of simi-

lar quality when compared to a consistent least-squares

solution, however, with the enhanced attribute of being
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easier to update as for instance in a post-earthquake
period.
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1 Introduction

The creation and maintenance of terrestrial reference

frames (TRFs) is one of the fundamental tasks of geodesy.

In the past, TRFs have usually been defined by the posi-
tions at a certain epoch and velocities of selected mark-

ers on the crust of the Earth, i.e. observing stations of

the different space geodetic techniques. Primary exam-

ples are the International Terrestrial Reference System
(ITRS) realizations ITRF2008 (Altamimi et al, 2011)

and DTRF2008 (Seitz et al, 2012).

In addition to a linear trend, caused mostly by secu-

lar geophysical effects like plate motion and glacial iso-

static adjustment, the observed station motions clearly
exhibit non-linear signals, for instance due to seasonal

or post-seismic effects (Krásná et al, 2015). Basically,

four options exist for dealing with such signals. First

of all, models to reduce these effects can be applied,
such as it is done for solid Earth tides. However, the

models for effects like non-tidal atmospheric pressure

loading, non-tidal ocean loading, or continental water

storage loading are not yet unambiguously approved

and recommended by the IERS Conventions (2010).
Likewise, no models are conventionally applied for any

kind of post-seismic deformation. The second option is

therefore to simply ignore such unmodeled effects. In

this case, the unmodeled effects will show up in the
residuals, but could possibly also contaminate the esti-

mated parameters (van Dam et al, 2001). Option num-

ber three is the parameterization and the subsequent
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estimatation of these signals. Since the non-linear ef-

fects reach amplitudes of several centimeters and some

of them can be expressed by simple harmonics, estimat-

ing them might seem superior to ignoring them. There-

fore, the different IERS (International Earth Rotation
and Reference Systems Service) combination centers

working on ITRF (International Terrestrial Reference

Frame) solutions that include data up to the end of 2014

(such as the ITRF20141, released in January 2016) de-
cided to extend the parameter space at least to include

annual and semi-annual signals. However, loading de-

formations are often of irregular amplitude and phase

and some post-seismic deformations are very complex,

which challenges their parameterization. The fourth ap-
proach is based on a time series representation of es-

timated station coordinates. With time intervals of a

few days or weeks, non-linear signals can be taken into

account without parameterizing them by explicit func-
tions. Examples of this technique are epoch reference

frames (Bloßfeld et al, 2014) and TRF solutions based

on Kalman filtering (Wu et al, 2015). The latter also

allows for extended parameterization and is thus a mix-

ture of option three and four.
Kalman filtering (Kalman, 1960) or other similar

sequential algorithms are established techniques for pa-

rameter estimation, widely used in several geodetic fields,

such as Global Navigation Satellite Systems (GNSS)
positioning (e.g., Webb and Zumberge, 1993; Schüler,

2001; Li et al, 2013), combination of Earth orientation

parameters (EOP, Gross et al, 1998; Gross, 2000) or

gravity field determination (Kurtenbach et al, 2009). A

Kalman filter approach has been successfully used by
the ITRS combination center at NASA Jet Propulsion

Laboratory (JPL) for their JTRF2008 solution, pro-

viding station coordinates at weekly intervals together

with secular velocities and seasonal signals (Wu et al,
2015). For the analysis of very long baseline interfer-

ometry (VLBI, Schuh and Behrend, 2012; Schuh and

Böhm, 2013) observations, Kalman filtering was intro-

duced by Herring et al (1990), and recently applied in

studies by Nilsson et al (2015), Soja et al (2015), and
Karbon et al (2015).

The ITRF has always been a combined solution

based on individual contributions of the space geode-

tic techniques GNSS, VLBI, Satellite Laser Ranging
(SLR), and Doppler Orbitography and Radioposition-

ing Integrated by Satellite (DORIS), which are in turn

combinations of the solutions of the different analysis

centers (AC) of the respective International Association

of Geodesy (IAG) services (Altamimi et al, 2002). Aside
from the ITRF, also single-technique (e.g., Böckmann

et al, 2010; Rebischung et al, 2012) and single-AC TRF

1 http://itrf.ign.fr/ITRF_solutions/2014/

solutions (e.g., Spicakova et al, 2011; Heinkelmann and

Tesmer, 2013) are often used in the geodetic analysis as

they are easier to update, a necessity for instance for

new stations, after breaks caused by earthquakes, an-

tenna repairs in the case of VLBI, or changes of GNSS
antennas. However, such TRF solutions usually do not

reach the accuracy and stability of ITRF due to the fact

that individual technique errors are not compensated

or attenuated by using other techniques that are unaf-
fected by them (e.g., Blue-Sky effect for SLR (Sośnica

et al, 2013), solar radiation pressure mismodeling for

GNSS (Arnold et al, 2015)).

In this work, we investigate a Kalman filter ap-

proach for TRF determination solely based on VLBI
data. However, most of our findings should be easily

transferable to TRFs based on other space geodetic

techniques. With a Kalman filter, it is possible to model

the estimated parameters as stochastic processes, e.g.
randomwalks, which is highly advantageous in the pres-

ence of station coordinate variations that cannot be de-

scribed by linear, harmonic, or other kinds of determin-

istic functions. The short-term stability (meaning less

scatter in the coordinate time series) can be realized by
restrictive noise modeling, an advantage over epoch ref-

erence frames, for which the coordinates of each epoch

are computed independently.

After introducing the data used in our study (sec-

tion 2), we present our methodology (section 3) and
discuss in particular the differences with respect to the

approach followed at the JPL combination center. Com-

pared to the software KALREF developed there, which

uses weekly updates, our implementation supports vari-
able time steps, depending on the availability of VLBI

data. The reason is that VLBI sessions featuring a sta-

tion network suitable for TRF creation are scheduled

on irregular intervals from one to a few days. In our

approach, it is thus not necessary to temporally inter-
polate the input coordinates to a specific epoch, what

could be a potential error source. The derivation of the

stochastic model of our Kalman filter (section 3.2) is

thus different to the approach followed at JPL. While
both feature site-dependent noise modeling, our soft-

ware supports optional time-varying process noise dur-

ing periods of post-seismic deformation (sections 3.3

& 4.2). Besides the default setup of modeling station

coordinates as a random walk and estimating secular
velocities (sections 3.1 & 4.1), options for using an in-

tegrated random walk for modeling station coordinates

and velocities and additionally estimating seasonal sig-

nals are discussed in section 4.3. By setting the noise
in the stochastic model of the Kalman filter to zero,

a purely secular TRF is obtained, which we compare

to a data-consistent least-squares solution as well as to

http://itrf.ign.fr/ITRF_solutions/2014/


Determination of a TRF via Kalman Filtering of VLBI Data 3

ITRF2008 (section 4.4). With the 5th section we con-

clude our investigations.

2 Data and preliminary analysis

2.1 VLBI data

Our Kalman filter TRF solutions are based on the ob-
servational VLBI data provided by the International

VLBI Service for Geodesy and Astrometry (IVS, Schuh

and Behrend, 2012), covering a period from 1980 to the

end of 2013. We only use VLBI sessions with a network
geometry suitable for global TRF creation and thus ex-

clude sessions in which less than four radio telescopes

participated or the volume of the polyhedron defined

by the network stations is smaller than 1015 m3. The

resulting data set consists of 4239 VLBI sessions. Fur-
thermore, only stations with regular observations for

more than a year are considered. Therefore, only 104

out of 143 potential radio telescopes are used in our

TRF solutions. The locations of these stations and their
observation history are illustrated in Fig. 1. Typical for

VLBI, the network is much less dense on the southern

hemisphere. Only very few sites, e.g. Wettzell or West-

ford, have an observing period covering most of the last

35 years.

In the analysis of the individual VLBI sessions, sta-

tion coordinates, radio source coordinates, EOP, tro-

pospheric delays and gradients, as well as clock pa-
rameters are estimated with the least-squares module

of VieVS@GFZ (Nilsson et al, 2015), a fork from the

Vienna VLBI Software (Böhm et al, 2012). The ter-

restrial datum is realized by no-net translation (NNT)

and no-net rotation (NNR) conditions with respect to
ITRF2008 coordinates. Ten of the 104 stations are not

included in the ITRF2008 and are therefore not part of

the single-session datum definitions. Additionally, sta-

tions affected by earthquakes not considered in
ITRF2008 are excluded from the datum after the re-

spective events (for instance station Tsukuba after the

earthquake in 2011). For the celestial datum, NNR con-

ditions for ICRF2 (Fey et al, 2015) defining sources

are applied. The analysis is performed adhering to the
IERS Conventions (2010). Thus, non-tidal loading de-

formations due to atmospheric pressure loading, ocean

loading, and continental water storage loading are not

corrected for.

2.2 Geophysical loading data

We employ time series of geophysical loading deforma-

tion models to derive stochastic characteristics of sta-
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Fig. 1 Locations of the 104 VLBI stations (upper plot) and
the history of their participation in the 4239 sessions (1980-
2013) considered in this study (lower plot). The stations are
ordered alphabetically by their 8-letter IVS names, the ses-
sions chronologically. The ten stations used for the global
datum definition are indicated by red color

tion coordinates (section 3.2). These model time series
are at no point used to correct the input or output

station coordinate time series. We obtained all load-

ing data in the form of displacement time series from

the internet platform called International Mass Loading

Service (IMLS2), for the same time span as the obser-
vational data, i.e. 1980 until end of 2013. The predicted

displacement time series are calculated employing the

spherical harmonic transform approach (e.g., Petrov,

2015) and are computed in a Center of Mass isomor-
phic frame.

For non-tidal atmospheric pressure loading, the dis-

placements are obtained using the pressure anomalies

given at 6-hourly intervals from MERRA (NASA, Rie-

necker et al, 2011). Non-tidal ocean loading displace-
ments are derived from the ocean bottom pressure of

the OMCTmodel (GFZ), which is forced by operational

analysis of ECMWF (Dobslaw and Thomas, 2007), and

is provided every six hours as well. Finally, loading
displacements due to hydrological loading are based

on the horizontal transport of hydrological mass from

MERRA, however, at intervals of three hours. In order

2 http://massloading.net

http://massloading.net
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Fig. 2 Sum of the time series of non-tidal atmosphere and
ocean, as well as continental water storage loading deforma-
tions at station Algonquin Park, Canada. Shown is the radial
component after trend and annual signals were removed

to treat all loading constituents consistently, we only

use every second value of the continental water storage

loading time series.

Due to the parameterization in the Kalman filter

(section 3.1), trends and annual signals are already taken
into account and should not be part of the stochastic

model of the coordinate offsets. Therefore, they need to

be removed from the loading displacement time series.

The non-tidal atmospheric pressure time series exhibit
no trends due to the computation with respect to a ref-

erence pressure, but the other two loading models fea-

ture (possibly even artificial) trends. After calculating

the sum of the three loading models for every station

and component, we estimate their trends and annual
signals and remove them from the time series. As an

example, the resulting time series for station Algonquin

Park, Canada, is depicted in Fig. 2. While most of the

coordinate variations that reach the centimeter level
seem to be of random nature, irregular signals on time

scales of multiple years are present as well, which is also

visible in the time series of other stations. A TRF so-

lution based on strictly linear and harmonic functions

is not able to take these variations into account.

3 Methods

3.1 Kalman filter setup

The session-wise VLBI station coordinates and their

formal errors serve as the input to a Kalman filter and

smoother. The formalism of the filter and smoother can
be found in, e.g., Gelb (1974). The state vector x in-

cludes the station coordinates, velocities, and optionally

parameters for seasonal signals, which for this study are

assumed to be annual harmonic oscillations. The filter

is updated for every VLBI session, resulting in both the

state transition matrix F and the covariance matrix of

the prediction error Q being time-dependent:

x(t+∆t) = F(t)x(t) +w(t) (1)

Q(t) ≡ 〈w(t)w(t)T 〉 (2)

Different options exist for the choice of the process noise

w. In the simplest case, it is set to zero, resulting in a

TRF that is strictly linear (except for annual signals if

estimated). By adding noise to the station coordinate
offsets, but not to the velocities, the coordinate changes

are represented by the sum of a random walk (RW) and

the deterministic contribution of the velocities. For a

fictitious state vector

x =

(

X

VX

)

(3)

just including coordinate offset and velocity in X direc-
tion for one particular station, the process noise matrix

would be

Qrw(t) = Φrw(t) ·

(

∆t 0

0 0

)

(4)

with the power spectral density (PSD) Φrw of the white
noise driving the random walk and the time difference

between the last and current epoch ∆t. For this stan-

dard case, the noise model is derived taking into ac-

count station-dependent differences (section 3.2) and

post-seismic deformations (section 3.3). Another option
is to add noise to both coordinate offsets and veloci-

ties. In this case, the coordinate variations are modeled

purely stochastically, and represent an integrated ran-

dom walk (IRW):

Qirw(t) = Φirw(t) ·

(

∆t3

3
∆t2

2
∆t2

2
∆t

)

(5)

For the parameters of the optionally estimated annual

signals, the noise is always set to zero, assuming that all
additional position variations can be absorbed by the

noise added to the coordinate offsets X . The annual

signals are parameterized as oscillator processes (Chin

et al, 2009; Wu et al, 2015) with the damping constant

and noise set to zero.
For every station, the state vector x includes either

six parameters (three components for coordinate offsets

and velocities) or, in case annual signals are additionally

estimated, twelve. By using only VLBI data and thus a
limited number of stations, the computational demands

are low and allow for experimentation with different

filter setups.
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Breaks in the coordinate time series are taken into

account by increasing the process noise by several or-

ders of magnitude so that the state estimates after the

break are independent of any previous information. In

case of antenna repairs or equipment changes, the pro-
cess noise for velocities is kept unchanged, but for breaks

due to earthquakes, both coordinate and velocity noise

are inflated. The noise of the annual signal is never

changed and always remains zero. In the Kalman filter,
no segmentation according to breaks is done. The num-

ber of state parameters is thus independent of the num-

ber of breaks. No additional parameters or constraints,

for instance for the velocity in case of an antenna repair,

need to be introduced. While the smaller state vector
of this approach is advantageous in terms of computa-

tional effort (in particular for multi-technique TRF so-

lutions), creating segments and introducing additional

variables after each break could help in assessing the
covariance of an estimate of the size of a certain break.

The list of breaks is based on the one applied for

ITRF2008. However, it has been extended to include
recent events, e.g. earthquakes in Chile and Japan. Fur-

thermore, we adapt the number of breaks depending

on whether process noise is used in the filter. For in-

stance, the complex post-seismic deformations at sta-

tion Gilmore Creek, Alaska, are taken into account by
introducing additional breaks (e.g. five as in ITRF2008)

in the case of zero noise, while with the application of

process noise a single break is sufficient.

The covariance matrix of the observations is ob-

tained from the inverse of the squared formal errors

of the input coordinates plus an additional, empirically

chosen 1 cm2 noise floor to compensate for too opti-
mistic formal errors. The underestimation of the for-

mal errors is for instance due to neglecting correlations

between the VLBI group delay observations (e.g., Hal-

sig et al (2014)). Tests with different observation noise
floors have shown that their impact on the results is

much smaller compared to tuning the process noise.

The reasonable performance of the Kalman filter (cf.

section 4.4) suggests that the current setup is sufficient

for the kind of investigations we conduct.

ITRF2008 coordinates or, if unavailable, coordinates

computed from a global VLBI solution using

VieVS@GFZ (see section 3.4) are used as a priori co-
ordinates to initialize the filter. The a priori values for

velocities and annual signals are set to zero. The filter

is usually run three times (forward-backward-forward),

and the a priori states are updated by the last estimate
when changing direction. By performing three runs, the

impact of the starting values, necessary for initializing

the filter in the first run, is negligible.

After all filter runs are completed, smoothed esti-

mates of the parameters are computed as an average of

the results from the last forward and backward runs,

weighted by the full covariance matrices of the state

vectors. The output is a filtered and smoothed time se-
ries of the coordinates of 104 VLBI radio telescopes at

4239 epochs.

In addition to the time series output, average values

of the state parameters are computed by a least-squares
fit to the smoothed time series. For stations with breaks,

average coordinates and velocities are calculated for ev-

ery segment. The sine and cosine amplitudes of the an-

nual signals are computed from the entire time series,

disregarding any breaks. Comparing the time series of
parameters for which no process noise was added to a

particular solution (usually velocities and oscillator pa-

rameters, for certain solutions also the coordinate off-

sets) with the fitted functions, the differences remain
well below 10−3 mm or 10−3 mm/yr. This indicates

that the filter does not suffer from numerical stability

issues.

By using these average values, a datum is realized

by a twelve parameter Helmert transformation with re-
spect to ITRF2008, including translations and rotations

but not the scale for the coordinates and velocities.

VLBI is capable of precisely deriving the scale informa-

tion from its observations. The transformation is com-
puted based on a selection of datum sites that feature

long observational history and stable behavior. In our

solutions ten stations are used for the datum defini-

tion, which fulfill these criteria and exhibit a sufficiently

global distribution (Fig. 1). Stations that experienced
strong seismic displacements, for example in Japan or

South America, have not been considered in order to

prevent non-linearities from entering the datum. More

stations could be used, however at the cost of settling
with lower quality stations. The current set of datum

stations yields acceptable results, as the comparison of

transformation parameters in section 4.4 shows.

For the estimation of the transformation, the coordi-

nates and velocities of the datum stations are assumed
to be uncorrelated and of equal weight (Altamimi et al,

2002). With the transformation parameters, the coordi-

nates and velocities of all 104 stations are then aligned

to ITRF2008. This step ensures a long-term stable da-

tum compared to the single-session datum realization
which can be affected by a changing network.

In order to eliminate outliers, a test solution is com-

puted as well as coordinate differences between the in-

put data and this solution. If the ℓ2-norm of the 3D
coordinate difference is larger than 10 cm, the corre-

sponding station-session pair is flagged as an outlier

and eliminated in the following runs. This process is
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repeated iteratively until no more outliers are detected.

In total, about 200 outliers were excluded, i.e. less than

1% of the input data.

3.2 Stochastic model from geophysical deformations

In the standard case, the station coordinate offsets are

modeled as random walk processes. For the determina-

tion of the PSD values Φrw, we use an approach based

on non-tidal loading deformations due to mass trans-
port in the fluid envelope of the Earth (see section 2.2).

In the input VLBI data, neither effects due to non-

tidal atmosphere and ocean loading nor continental wa-
ter storage loading are corrected for, although the mag-

nitude of these deformations can exceed the centimeter

level. In the Kalman filter, we do not directly apply

these models either, but assume that the observed co-
ordinate variations can be explained by these models

in a stochastic sense. This allows the derivation of a

station-based noise model that takes into account tem-

poral coordinate variations of the individual sites.

To characterize the noise of station coordinates, we

first compute the sum of the time series of the load-

ing deformations due to continental water storage, non-

tidal atmosphere and ocean loading effects after remov-
ing the trend and annual signal. From the resulting time

series, we calculate the two-sample Allan standard devi-

ation (ADEV) σy (Allan, 1966) for time lags τ between

the minimum of 6 hours and 8.75 years, which is about
a quarter of the total time span of the loading data we

used. For example, Fig. 3 shows the ADEV for the load-

ing time series of station Algonquin Park. The plots of

other stations look very similar, with differences not in

the dependency of ADEV on τ but mostly in the overall
magnitude of the ADEV.

Assuming power-law noise (σy ∝ τk), it is possible

to classify the type of stochastic process of the under-
lying time series by determining the spectral index k,

which is equivalent to the slope in a log-log plot like

Fig. 3. In the case of Algonquin Park, estimating k from

all ADEV samples (red line) yields a value of−0.96, and

also for most other stations the value is between −0.95
and −1. The latter would indicate a perfect white noise

process.

Thus, one possibility would be to use white noise
processes for the station coordinates in the Kalman

filter. This woud be supported by Abbondanza et al

(2015), who found that the noise in VLBI station co-

ordinate time series is mostly white. However, for the
application of TRF determination, a representation of

station coordinates as white noise processes would be

inapt since no continuity and short-term stability could

τ [days]
10

0
10

1
10

2
10

3

A
D

E
V

 [
m

/d
a

y
]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

ADEV
Linear fit: k = -0.96
Linear fit with τ ∈ [1,4] days and k := -0.5
RW noise scaling 0.1
RW noise scaling 0.01

Fig. 3 Allan standard deviations (ADEV) computed from
the sum of loading time series at station Algonquin Park (ra-
dial component, cf. Fig. 2) plotted against time shift τ . A fit
to all ADEV samples is shown in red, one with τ between
one and four days and slope k fixed to −0.5 in yellow. The
thin lines correspond to the PSD derived from the yellow line
being scaled by factors of 0.1 (purple) and 0.01 (green)

be realized. The parameters of every epoch would be in-

dependent of the other epochs and the solution would

be similar to an epoch reference frame. A theoretical

option would be to use flicker noise (f−1 frequency de-

pendency), for example often found in GNSS station
coordinate time series (Abbondanza et al, 2015); how-

ever, this would be very difficult and impractical to im-

plement in a Kalman filter. For these reasons, a random

walk process (f−2 dependency) is a much better choice
and has already been successfully applied for TRF so-

lutions (Wu et al, 2015).

It has to be noted that a random walk has more

power at low frequencies compared to white or flicker

noise, and therefore gives more weight to the begins
and ends of the data span. With an integrated random

walk (f−4 dependency), this effect is even larger. Still,

when comparing the average velocities (basically very

low frequencies) of the random walk and integrated ran-
dom walk solutions (section 4.3), no significant impact

can be seen.

For τ between 1-4 days, the ADEV is very close to

that of a random walk process, i.e. k = −0.5. Since

we assumed a random walk process for the coordinate
model, and by taking into consideration that most time

differences ∆t between VLBI sessions fall exactly into

this interval, it seems reasonable to use only this part

from the range of ADEV samples for the computation of
the PSD of the driving white noise Φrw = σ2

y(τ) ·τ . The

corresponding fit is portrayed in Fig. 3 by the yellow

line.
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Fig. 4 Individual power spectral density (PSD) values Φrw

for the radial component of 104 VLBI stations. The PSD is
determined from the sum of the deformation time series due
to non-tidal atmosphere and ocean, as well as continental
water storage loading

Table 1 Average PSD values Φrw in mm2/day for loading
deformations of non-tidal atmosphere (NTAL) and non-tidal
ocean (NTOL), as well as continental water storage (CWS)
loading, split into radial, east, and north components. Ad-
ditionally, the PSD values of the sum of these three loading
models are included

Φrw [mm2/day] Radial East North

Sum 6.58 1.85 1.33
NTAL 4.24 0.25 0.38
NTOL 1.77 1.32 0.87
CWS 0.008 3 · 10−4 3 · 10−4

The PSD values Φrw, derived by this technique, are

depicted in Fig. 4 for all 104 stations. PSD values av-

eraged over all stations and split up into the three co-

ordinate components are tabulated in Table 1, includ-
ing those for the individual loading models. The largest

process noise is, as expected, in the radial component,

and primarily affected by non-tidal atmospheric pres-

sure loading. Sites close to the sea and at lower latitudes
are affected less due to the inverse barometer effect and

attenuated pressure fluctuations near the equator, re-

spectively (Wijaya et al, 2013). The PSD values of the

east-west and north-south components, which are of
much smaller magnitude, are mostly affected by non-

tidal ocean loading. Continental water storage loading

is on average close to negligible on time scales of just a

few days and therefore affects the derived process noise

only marginally.

With the process noise model based on geophysical

loading, the filtered and smoothed coordinates are gen-

erally less noisy than the input coordinates, which are
also subject to data errors or correlations with parame-

ters like tropospheric zenith wet delays or clock offsets

that are traditionally estimated in the single session

VLBI analysis. Still, the variations in the filtered and
smoothed coordinate time series are larger compared

to the conventional TRF solutions. The overall noise

level is thus a subjective choice, ranging from no noise

at all (classical linear model), over the noise level de-

rived from geophysical loading, up to closely following

the session-wise coordinates (what would be similar to

epoch reference frames). As both accuracy and stability

are of concern in TRF solutions, a conservative com-
promise regarding the process noise seems reasonable.

If the derivation of the noise model would be based on

time intervals longer than four days while still assuming

a random walk process (for example in Wu et al, 2015),
the noise level would be considerably lower, as visible

in Fig. 3. We have therefore opted to investigate solu-

tions with the station-based PSD values derived from

loading models scaled by factors of 1, 0.1, and 0.01.

3.3 Earthquake handling

After strong earthquakes, non-linear surface deforma-

tions with coordinate variations of several tens of cen-

timeters can occur at observing sites close to the epi-

center, e.g. at TIGO Concepción in 2010. For accu-
rate TRF solutions it is thus imperative to model these

deformation either deterministically (e.g., via logarith-

mic and/or exponential functions) or stochastically by

adapting the process noise accordingly. We follow the
latter approach and apply an additional scaling factor

α to our station-based noise model depending on the

time difference ∆teq with respect to the epoch of the

earthquake. To simplify our approach, we assume that

scaling is only necessary within a period T after a major
earthquake for a particular station:

α(∆teq) =

{

f(∆teq) 0 < ∆teq < T

1 else
(6)

We have implemented three different functions f for
scaling the noise to account for post-seismic deforma-

tions, all depending on 1) an initial scaling factor α0

that is valid right after the earthquake (α = α0 for

∆teq = 0) and 2) the period T (α = 1 for ∆teq = T ).
The function f is either exponential (Eq. 7), quadratic,

or linear, as shown in Fig. 5.

f(∆teq) = α
1−∆teq/T
0 (7)

The maximum scaling factor α0 is chosen to be

dependent on the size of the coordinate jump due to
the earthquake. Before the Kalman filter and smoother

is run, the coordinates of ten VLBI sessions directly

before and after an earthquake are used to compute

the median positions valid before and after that earth-
quake. For every coordinate component, the difference

is calculated. As a default value, we set α0 = 10 for a

coordinate jump of 3 m and α0 = 1 for 0 m, scaling
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Table 2 Scaling factors α0 for the process noise, valid right
after an earthquake, are tabulated for selected stations. The
values for TIGO are obtained for the 2010 Chile earthquake,
the others for the 2011 Tōhoku earthquake

Station X Y Z

TIGO Concepción 10.2 2.5 2.5
Tsukuba 2.2 2.7 1.1
Kashima 3.3 3.5 1.8
Mizusawa 8.5 6.1 4.6

Time after earthquake
0 T

S
c
a
lin

g
 f
a
c
to

r 
α

1

α
0

Exponential
Quadratic
Linear

Fig. 5 Different functions for the seismic scaling factor α

linearly in between. The scaling factors are thus differ-

ent for the three coordinate components. For the largest

earthquakes relevant to VLBI, they can be found in Ta-
ble 2. Results with different values for α0 are discussed

in section 4.2. The period T , during which the scal-

ing is applied is set to one year for every earthquake.

Of course, post-seismic deformations often last longer
than that, but by a period of one year the coordinate

variations are small enough that the standard process

noise (cf. section 3.2) is sufficient.

The advantage of this method is that only the epoch
of the main event is required as external information

for post-seismic modeling, which is in any case neces-

sary to account for the coordinate jump. The scaling

factors are then calculated automatically. Geophysical

information such as the magnitude of the earthquake
and the distance of a station to the epicenter could be

used alternatively and will be investigated by us in the

future. However, the disadvantage is that all of these

parameters are not necessarily correlated with the ex-
tent of the post-seismic deformation. Nevertheless, we

have found our basic approach to work reasonably well

(cf. section 4.2).

3.4 Least-squares TRF solution

For comparison, a TRF solution based on the same
VLBI sessions and stations is determined using the soft-

ware VieVS@GFZ. The main difference to the Kalman

filter solutions is that free normal equation systems of

all sessions are stacked and inverted in a least-squares

adjustment. To solve the rank deficiency, the datum is
defined by NNT/NNR conditions with respect to the

same ten core stations in ITRF2008 as in the Kalman

filter solutions. Likewise, the intrinsic VLBI scale is

used.

3.5 Epoch reference frame solutions

In order to investigate differences between time series

based TRF solutions, three epoch reference frame so-

lutions were computed based on the same VLBI input

data that were used for the Kalman filter solutions. For

every interval of a certain length, the coordinates of the
stations that observed during that interval were used to

calculate average coordinates. The interval lengths of

the three solutions were chosen as 7, 14, and 28 days.

The datum is preserved from the session-wise VLBI
data inversions.

4 Results and discussion

4.1 Kalman filter TRF solution

As an example, Fig. 6 depicts Kalman filter and smoother

TRF solutions for station Wettzell, Germany. Here, and

in all other figures of this section, the individual coordi-

nate variations are shown in local coordinate systems.

No reference solutions or trends have been subtracted,
thus the plots reflect the true behavior of the coordi-

nate variations. Besides the linear (zero noise) solution

in Fig. 6, three solutions with differently scaled station-

dependent noise are presented. No seasonal signals are
estimated in these solutions. Despite the fact that the

filtered coordinates are not as noisy as the input co-

ordinates, still strong non-linear signals are visible at

the cm level. These signals are not easily approximated

by fitting harmonic functions as the amplitude strongly
varies over time.

Evident is the different level of scatter for the three

random walk solutions with different noise scaling fac-

tors. In particular, the solution with unscaled noise

picks up a large portion of the scatter found in the input
station coordinates, which is not only due to unmodeled

loading displacements but also because of correlations

with other parameters estimated in the VLBI analysis
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Fig. 6 Time series of radial coordinates of station Wettzell.
Shown are the input coordinates (blue dots), a linear Kalman
filter (KF) solution (red), and three Kalman filter solutions
based on random walk processes with different levels of pro-
cess noise, scaled by 1 (yellow), 0.1 (purple), and 0.01 (green)

or effects of different observing networks. Also, the so-

called analyst noise is certainly more prominent in our
input data set than if it was a combination of solutions

from different VLBI ACs (i.e., what is used for ITRF so-

lutions). For these reasons, we believe that the solution

with the noise level scaled by a factor of 0.1 seems to be
most appropriate for our input data set. When looking

at Fig. 3, the ADEV of this noise level (purple line)

is on average closer to the calculated ADEV from the

geophysical loading models (blue dots) over the range

of considered time differences. In particular, it does not
overestimate the low-frequency noise as much as the un-

scaled noise solution does. Still, the choice of noise level

is subjective, as discussed in section 3.2. For instance,

tuning down the noise level in order to mitigate artifi-
cial noise contributions might not be important when

dealing with GNSS data, which usually feature smaller

station coordinate scatter compared to VLBI.

In order to investigate the effects of the different

noise levels on the parameters of a similarity transfor-

mation, we computed the transformation parameters

with respect to ITRF2008 based on the ten datum sta-

tions for every session in which at least three datum
stations participated. Datum stations that did not ob-

serve in a particular session were excluded from the

calculations. In the following, we concentrate on the

scale information, the most important contribution of
VLBI to multi-technique TRFs, but the results are very

similar for the other six transformation parameters.

In Fig. 7, the scale estimates for the same random
walk solutions as in Fig. 6 are shown. Except for de-

viations in the 1980s, characterized by insufficient net-

work geometries, the scale remains mostly flat. In terms
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Fig. 7 Time series of scale estimates with respect to
ITRF2008 based on the ten datum stations are shown for
the input coordinates (blue dots) and three Kalman filter so-
lutions based on random walk processes with different levels
of process noise, scaled by 1 (red), 0.1 (yellow), and 0.01 (pur-
ple). The green dashed line represents the average scale of the
three Kalman filter solutions

Table 3 For the scale time series with respect to ITRF2008
of Kalman filter and epoch reference frame solutions (Fig. 7
and Fig. 8), biases, RMS (without subtracting a bias), and
standard deviations (STD; bias subtracted) are provided in
units of mm. Only data from 1994 until the end of 2013 were
considered in the calculations

Scale [mm] Bias RMS STD

Input coordinates -3.4 10.8 10.2

RW noise scaling 1 -3.1 5.4 4.4
RW noise scaling 0.1 -3.0 4.1 2.8
RW noise scaling 0.01 -3.0 3.4 1.9

ERF 7 days -2.9 7.6 6.8
ERF 14 days -2.8 6.5 5.8
ERF 28 days -2.9 5.9 5.2

of smaller variations (e.g., the bulge around 2010), all

solutions show similar signals, which means that the
Kalman filter maintains such information. However, the

scatter is significantly reduced compared to the input

coordinates, which can also be seen in the statistics

from Table 3. For more homogeneous data sets, only

the time period after 1994 was used to calculate the
statistics. Comparing the input coordinates with the

Kalman filter solution with the original noise model, a

reduction of the scatter by more than 50% is seen, even

more when looking at the solutions with reduced noise
levels. A PSD scaling factor of ten results in about 35%

smaller standard deviations (STD) of the scale time se-

ries.

We did the same calculations for the epoch refer-

ence frame solutions described in section 3.5. Fig. 8

features the scale estimates with respect to ITRF2008
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Fig. 8 Time series of scale estimates with respect to
ITRF2008 based on the ten datum stations are shown for the
input coordinates (blue dots) and three epoch reference frame
solutions based on interval lengths of 7 days (red), 14 days
(yellow), and 28 days (purple). Due to the reduced number of
epochs of the latter solution, lines were used instead of points
for better discernability. The green dashed line represents the
average scale of the three epoch reference frame solutions

and Table 3 provides statistics. As expected, the scatter

of the epoch reference frame solutions is smaller than
for the input coordinates due to the averaging. Also, it

is clearly visible that the scale variations are decreased

when longer intervals are chosen. When comparing the

three solutions to those from the Kalman filter, it be-
comes evident that epoch reference frames generally in-

hibit larger RMS and STD values, even when only the

Kalman filter solution with unscaled noise is considered.

The standard Kalman filter solution with process noise
scaled by 0.1 yields STD values more than 50% smaller

than those of the epoch reference solution with interval

lengths of 7 and 14 days, while retaining the high tem-

poral resolution of the input coordinates (usually 1-4

days). If the whole time span was considered instead of
from 1994 onwards, the degradation of the statistics of

the epoch reference frame solutions would be more se-

vere compared to the Kalman filter solutions, since the

sparse data in the early years result in the epoch refer-
ence frame coordinates often being derived just from a

single session.

In Fig. 9, solutions with estimated annual signals are

shown for station Algonquin Park for both linear and
random walk Kalman filter setups. In the latter case,

the noise is scaled by the standard value of 0.1. The am-

plitude of the annual signal in the radial component is

about 3 mm. However, when applying process noise, it
does not matter whether annual signals are estimated,

as seen in the coordinate time series. The differences be-

tween the random walk solutions are marginal, which
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Fig. 9 Time series of radial coordinates of station Algonquin
Park. Shown are the input coordinates (blue dots), a linear
Kalman filter solution (red), a Kalman filter solution based
on a random walk process with the process noise scaled by 0.1
(yellow), a zero noise Kalman filter solution including annual
signals (purple), and a solution for which both process noise
(scaled by 0.1) is applied and annual signals are estimated
(green)

in turn differ from the pure “linear+annual” solution

by sometimes more than 1 cm.

Although estimating annual signals in the presence

of process noise is thus not important during times

when observational data are available, it is still advanta-

geous for predictions of future coordinates by extrapo-
lating the deterministic model. The additional process-

ing time required by having twice as many unknowns

in the Kalman filter (or thrice in case also semi-annual

signals are estimated), is bearable for VLBI only solu-

tions. Ideally, the selection of harmonic signals to rep-
resent the coordinate time series would involve spectral

analysis on a site-per-site basis. This way it would be

possible to include signals with periods longer than a

year as can be seen in Fig. 2.

4.2 Post-seismic deformations

Figure 10 depicts the coordinate jump and post-seismic

deformation due to the 2011 Tōhoku earthquake

(9.0 Mw) at station Tsukuba, Japan. At the epoch of

the earthquake, for both the linear and the random

walk solution, the process noise is strongly increased so
that the jump can be bridged. In the case of the linear

model, it becomes evident that the post-seismic defor-

mations can not be captured well, causing differences

up to 8 cm. By applying process noise, the Kalman fil-
ter more strictly follows the input coordinates. Here,

the process noise after the earthquake is scaled by an

exponential function (Eqs. 6 and 7, section 3.3).
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Fig. 10 Time series of east coordinates of station Tsukuba.
Shown are the input coordinates (blue dots), a linear Kalman
filter solution (red), and a Kalman filter solution with process
noise of the random walk scaled by 0.1 and after the earth-
quake additionally scaled by an exponential function (yellow)

The other exceptionally strong earthquake affect-
ing VLBI station coordinates took place 2010 in Chile

(8.8 Mw), followed by an aftershock in 2011. In Fig. 11,

Kalman filter solutions using different noise levels are

shown for the station TIGO Concepción during the first
years after the earthquake. For the linear solution and

the one with noise scaled by a factor of 0.01, the coor-

dinate difference to the solution with unscaled noise is

up to 5 cm. A factor of 0.1 causes differences of up to

2 cm. With unscaled process noise the Kalman filter is
able to capture the post-seismic deformation reasonably

well, but might by too noisy otherwise (e.g. as visible

in Fig. 6). By applying exponential scaling during the

period after the earthquake to the random walk solu-
tion with overall noise level already scaled by a factor of

0.1, the resulting time series agrees much better with

the input data in the vicinity of the earthquake and

returns to a smoother pace after a few months. This

can be seen well in Fig. 11, where the blue line (scaled
for post-seismic deformations) first resembles the yel-

low one (unscaled noise) and later the purple one (noise

scaled by a factor of 0.1).

Figure 12 shows the resulting coordinate time series
when applying the three different scaling functions that

are illustrated in Fig. 5. It becomes evident that the re-

sults are almost identical for all three scaling functions.

For other stations (not shown here), the differences are
even smaller. It is therefore sufficient to use the simplest

one, i.e. linear scaling.

Larger is the impact of selecting different values for

the initial scaling factor α0. The default value of 10,
valid for a jump of 3 m and thus for the east component

of TIGO (cf. Table 2), is complemented by α0 = 5

and α0 = 20 in Fig. 13. The differences in the east
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Fig. 11 Time series of east coordinates of station TIGO Con-
cepción. Shown are the input coordinates (blue dots), a lin-
ear Kalman filter solution (red), three Kalman filter solutions
based on random walk processes with different levels of pro-
cess noise, scaled by 1 (yellow), 0.1 (purple), and 0.01 (green),
and a Kalman filter solution with process noise scaled by 0.1
and after the earthquake additionally scaled by an exponen-
tial function (light blue)
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Fig. 12 Time series of east coordinates of station TIGO
Concepción. Shown are the input coordinates (blue dots), a
linear Kalman filter solution (red), and three random walk
based Kalman filter solutions with process noise scaled by
0.1 and after the earthquake additionally scaled by different
functions: linear (yellow), quadratic (purple), and exponential
(green)

coordinate of TIGO are up to 2 mm when α0 is changed
by a factor of two. Larger scaling factors let the filtered

coordinates more closely follow the input coordinates.

For other earthquakes and stations (not shown here),

the differences are smaller.

4.3 Integrated random walk and Kalman filter

velocities

Another option we have tested is the application of an

integrated random walk for Kalman filter TRF deter-
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Fig. 13 Time series of east coordinates of station TIGO Con-
cepción. Shown are the input coordinates (blue dots), a linear
Kalman filter solution (red), and three random walk based
Kalman filter solutions with process noise scaled by 0.1 and
after the earthquake additionally scaled by functions depend-
ing on scaling factors α0 equivalent to 5 (yellow), 10 (purple),
and 20 (green)

mination. Here, noise is added to both coordinate offset

and velocity components (cf. Eq. 5). We have not de-

rived a station based noise model for integrated random
walks, but instead use an empirically chosen PSD value

of 10−4 mm2/day3. In Fig. 14, we compare the inte-

grated random walk solution with the previously inves-

tigated ones for station Fortaleza, Brazil. A very good
agreement of the coordinates can be found between the

solutions that use process noise larger than zero. How-

ever, the velocity time series differ appreciably because

the integrated random walk approach results in instan-

taneous velocities, which account for short-term varia-
tions, e.g. due to seasonal signals. For certain applica-

tions, like in hydrology or volcanology, such information

might be valueable. Since a constant velocity is more

useful for coordinate predictions, we see not much merit
in using integrated random walks for geodetic applica-

tions though. Furthermore, our investigations regarding

the type of process noise (cf. section 3.2) rather support

the application of a random walk. In any case, the simi-

larity of the coordinate time series shows that the choice
of process type is secondary, much more important is

the selection of the overall noise level.

To investigate the impact of different choices of sto-

chastic models and parameterizations on the average
velocities, we consider the solutions presented in Fig. 14.

Long-term velocities are of interest for many geophysi-

cal interpretations, e.g. regarding tectonic or post-glacial

rebound effects, and are therefore sought with highest-
possible accuracy. In order to reduce the amount of

unsuitable stations in our velocity investigations, we

only use the 74 stations that are without coordinate
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Fig. 14 Time series of radial coordinates (top) and veloci-
ties (bottom) of station Fortaleza. Shown are the input coor-
dinates (blue dots), a linear Kalman filter solution (red), one
additionally including annual signals (yellow), a Kalman fil-
ter solution based on a random walk process with the process
noise scaled by 0.1 and including annual signals (purple), an
identical one except for excluding annual signals (green), and
a Kalman filter solution based on an integrated random walk
featuring a similar noise level compared to the random walk
solutions (light blue)

breaks and have observational periods longer than three

years (Blewitt and Lavalle, 2002). The average veloci-

ties are computed from the Kalman filter time series

as described in section 3.1. We use the linear Kalman
filter solution as a reference and compute the veloc-

ity differences for all three components, from which

we additionally derive 3D velocity differences: ∆V3D =

(∆V 2
x +∆V 2

y +∆V 2
z )

−1/2.

Figure 15 depicts the 3D velocity differences for

the 74 stations plotted against the number of VLBI

sessions a station participated in. For stations with a

larger number of sessions, the differences are smaller.
For instance, most stations that participated in more

than 500 sessions have 3D velocity differences at the

0.1 mm/yr level. Some particular stations that just par-
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Fig. 15 Average 3D velocity differences of the solutions
shown in Fig. 14 with respect to the linear Kalman filter
solution, plotted against the number of VLBI sessions a par-
ticular station participated in. For better visibility, the X axis
starts at 50 and the Y axis is capped at 3 mm/yr

ticipated in a few sessions have velocity differences reach-
ing the cm/yr level (not shown in the plot). Fourteen

stations participated only in ten or less stations. The

reason for investigating the dependency on the number

of sessions instead of the length of the observational
history is that there is a much stronger anti-correlation

with the velocity differences. Some VLBI stations are

focused on astronomy and have only observed in a few

geodetic sessions over several years. For instance, the

radio telescope at Parkes Observatory, Australia, con-
tributes to only 32 sessions distributed over 18 years in

our TRF solutions. With only one or two sessions per

year, the velocity is affected by different Kalman filter

setups to a much larger extent compared to, for exam-
ple, that of station Badary, Russia, which observed in

684 sessions during a comparatively short time of about

six years.

In Table 4, we present RMS values of the veloc-

ity differences with respect to the linear KF solution.

The largest differences are typically found in the ra-

dial component, which has also the largest process noise
added (cf. section 3.2). The results of using all 74 sta-

tions are heavily affected by single stations with not

enough observations to estimate reasonable velocities.

Here, the integrated random walk solution is even closer

to the linear solution than the linear-plus-annual solu-
tion. The agreement improves when only considering

stations that participated in more than 200 sessions

(22 stations in total). In this case, the estimation of an-

nual signals has a very small impact on the velocities.
The RMS values of all solutions that have process noise

applied are almost identical. By using the standard

noise level (station-based noise model scaled by 0.1),

the RMS in the radial component is about 0.3 mm/yr

and in the horizontal components 0.1 mm/yr.

4.4 Linear TRF comparisons

While we compared several Kalman filter solutions to

a linear one in the previous section, here we want to

compare the latter to other TRF solutions not based

on Kalman filtering. This allows insights regarding the

impact of using different estimation algorithms and da-
tum realizations. On the one hand, we compare the lin-

ear Kalman filter solution to the data-consistent least-

squares solution described in section 3.4 and, on the

other hand, to ITRF2008.
In Table 5, the 14-parameter Helmert transforma-

tions between the frames are given. The parameters

are estimated in an unweighted least-squares adjust-

ment using the ten core stations with long observational

history that are used for the datum definition. In the
case of the least-squares solution, the transformation is

based on the final TRF coordinates, but for the Kalman

filter solution on the state of the solution before align-

ment to ITRF2008. The transformation parameters of
the final coordinates of the Kalman filter solution with

respect to ITRF2008 are not shown as they are below

10−7 mm and mm/yr (except for the scale) since the

final Kalman filter coordinates and velocities are deter-

mined by applying the transformation parameters given
in Table 5, excluding the scale.

The transformation parameters of the non-aligned

Kalman filter solution are on average slightly larger

compared to the ones obtained by the least-squares
solution. Since the initial datum of the Kalman filter

is only based on single-session NNT/NNR constraints,

this is not surprising. Nevertheless, the differences of

the transformation parameters of the two VLBI solu-

tions with respect to ITRF2008 are within 1 σ and
thus not significant. This shows that also the inherently

weaker datum definition in the non-aligned Kalman fil-

ter solution yields acceptable results.

The largest differences with respect to ITRF2008
are in the scale and the Z translation. Since the scale is

not included in the datum of the minimum constraint

VLBI solutions and for ITRF2008 it is derived from a

weighted mean of VLBI and SLR, the scale difference

of about 2-3 mm is expected. It is in agreement with
the ones derived by Seitz et al (2012), Table 18, and

Böckmann et al (2010), Table 6. Shifts in Z direction

at the millimeter level are also present in these studies.

Even though the radio telescopes at the high-latitude
sites Ny-Ålesund, Norway, Hartebeesthoek, South Africa,

and Hobart, Australia, are part of the datum, the ge-

ometry of the VLBI network (with most stations in the
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Table 4 RMS values of the velocity differences between Kalman filter solutions shown in Fig. 14 and a linear one in units of
mm/yr. In the right panel, only stations that participated in more than 200 VLBI sessions are included in the computation of
the RMS values

74 stations 22 stations (> 200 obs.)
RMS [mm/yr] R E N 3D R E N 3D

Linear + annual 1.65 0.64 0.52 1.85 0.03 0.01 0.01 0.04
RW noise scaling 0.1 + annual 3.52 0.88 2.61 4.47 0.30 0.12 0.09 0.34
RW noise scaling 0.1 1.26 0.56 1.48 2.02 0.31 0.13 0.10 0.35
IRW 10−4 mm2/day3 1.26 0.39 0.61 1.45 0.28 0.09 0.19 0.35

Table 5 Helmert transformation parameters (translations T , scale D, and rotations R) and their formal errors are given for
a linear Kalman filter (KF) solution (before alignment to ITRF2008) and a consistent least-squares (LS) solution, both with
respect to ITRF2008. The transformation parameters for the position are valid for the epoch 2005.0

KF TRF TX TY TZ D RX RY RZ

Position (mm) 0.39 ± 0.83 −0.29 ± 0.85 1.86 ± 0.81 −2.18 ± 0.80 0.15 ± 1.12 −0.53 ± 0.89 0.44 ± 1.02
Velocity (mm/yr) 0.08 ± 0.09 −0.07 ± 0.09 0.01 ± 0.09 −0.05 ± 0.09 0.06 ± 0.12 −0.03 ± 0.10 0.16 ± 0.11

LS TRF

Position (mm) 0.66 ± 0.87 0.33 ± 0.90 1.25 ± 0.85 −2.73 ± 0.84 0.00 ± 1.17 −0.01 ± 0.93 0.02 ± 1.08
Velocity (mm/yr) −0.02 ± 0.15 −0.01 ± 0.16 −0.05 ± 0.15 0.09 ± 0.15 0.00 ± 0.20 0.01 ± 0.16 0.02 ± 0.19

northern hemisphere) may not be able to thoroughly
realize the NNT condition in Z direction.

The horizontal velocities estimated in the aforemen-

tioned solutions (in the case of the Kalman filter solu-
tion after the final transformation to ITRF2008) are

depicted in Fig. 16. Only segments present in all three

solutions and lasting longer than three years are in-

cluded. For example, for station Tsukuba, only the ve-

locity of the segment before 2011 is shown. In general,
the velocities agree well, but there are larger differences

in the regions affected by seismic activity (bottom plot

of this figure). A reason for some of the velocity differ-

ences could be that in our VLBI solutions, data until
the end of 2013 is considered, what is not the case for

ITRF2008.

In Fig. 17, the 3D velocity differences of the least-

squares and Kalman filter VLBI solutions with respect
to ITRF2008 are shown. Similar to section 4.3, only

stations without breaks and with observational history

of more than three years are considered. For the sake of

comparison, stations that are not in ITRF2008 are ex-
cluded here, resulting in 64 remaining stations. Table 6

provides the corresponding RMS values. Additionally,

RMS values based on 21 out of 64 stations that have

observed in more than 200 VLBI sessions are included.

The differences are in general, and especially when

only considering stations with good observational his-

tory, larger than those in section 4.3, indicating that

the choice of estimation algorithm and datum realiza-
tion weights heavier than the different ways the Kalman

filter can be set up. Again, larger differences can be de-

tected for stations with fewer observations and in the
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Fig. 17 3D velocity differences of linear Kalman filter (blue)
and least-squares (green) VLBI TRF solutions with respect
to ITRF2008, plotted against the number of VLBI sessions a
particular station participated in. The axis are the same as
in Fig. 15

radial component. The RMS values show that the ve-
locities of the Kalman filter solution are closer to those

of ITRF2008. This could be due to the fact that both

are based on input data at the solution level in contrast

to the least-squares adjustment, which uses data at the
normal equation level.

5 Conclusions

In this paper, we have presented TRF solutions based

on Kalman filtering and smoothing of VLBI data cov-
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Fig. 16 Horizontal velocities (top) and their differences (bottom) obtained from consistent linear Kalman filter (blue) and
least-squares (green) VLBI TRF solutions, with respect to those from ITRF2008. Only stations part of all three frames are
shown

Table 6 RMS values of the velocity differences of linear Kalman filter and least-squares VLBI TRF solutions with respect to
ITRF2008 in units of mm/yr. In the right panel, only stations that participated in more than 200 VLBI sessions are included
in the computation of the RMS values

64 stations 21 stations (> 200 obs.)
RMS [mm/yr] R E N 3D R E N 3D

KF VTRF 3.91 1.43 1.53 4.44 1.42 0.67 0.32 1.60
LS VTRF 6.59 2.23 2.35 7.34 1.87 0.70 0.44 2.05

ering more than 30 years. The station positions are up-

dated for every VLBI session. Estimated parameters in-

clude coordinate offsets, velocities and annual signals.

By adding process noise, the coordinate variations can
reflect non-linear behavior, what is especially important

in case of post-seismic deformations.

In the standard case, the coordinate offsets are mod-

eled as random walk processes with the noise model be-

ing derived station-dependent from surface loading de-

formation data. The largest effect contributing to the
noise in the radial component is non-tidal atmospheric

pressure loading, and for the lateral components non-

tidal ocean loading. The process noise is inflated to
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bridge breaks in the time series and to take into account

strong post-seismic deformations. The type of function

that is used to scale the noise during post-seismic activ-

ity is significantly less important compared to the scal-

ing factor right after the earthquake. Our concept of
adapting this earthquake-related scaling factor accord-

ing to the size of the coordinate jump works reasonable

well. A random walk type solution using an overall scal-

ing factor of 0.1 for the geophysical noise model and ad-
ditionally a scaling factor right after strong earthquakes

of 10 for a jump of 3 m proved to be successful in our

investigations.

In comparisons with epoch reference frames, the

Kalman filter solutions demonstrated a better short-

term stability in spite of the higher temporal resolution.

In terms of scale variations with respect to ITRF2008,
the standard deviation of the standard Kalman filter

solution was smaller by more than 50% compared to

the epoch reference frame solutions with 7 and 14 days

interval length.

By testing different Kalman filter setups, we found

out that if process noise is applied and observational

data are available, it makes no difference to the filtered

coordinate time series whether seasonal signals are es-
timated or not. The advantage of estimating them is

therefore only a possibly improved prediction of coor-

dinates into the future or during gaps in the observa-

tional data. Using an integrated random walk instead
of a random walk, the coordinate variations show simi-

lar behavior if the process noise levels are similar. The

choice of the overall process noise level has the largest

impact on the Kalman filter output.

Velocities obtained from different Kalman filter se-

tups are strongly dependent on the observational his-

tory of the stations. For stations that participated in

more than 200 VLBI sessions, the RMS of the velocity
differences between solutions with or without process

noise is about 0.3 mm/yr. For these stations, estimat-

ing annual signals does not affect the RMS.

A linear Kalman filter solution has been compared

to a data-consistent least-squares VLBI TRF solution

and to ITRF2008. The differences between the transfor-

mation parameters of the two VLBI only solutions with
respect to ITRF2008 have been found to be insignifi-

cant. The scales differ by 2-3 mm and the translations

in Z direction differ by 1-2 mm, when compared to

ITRF2008. In a velocity comparison, the Kalman filter
solution was slightly closer to ITRF2008.

In the future, our Kalman filter software will be ex-

tended to estimate EOP and celestial reference frames
together with TRFs. The addition and combination of

other space geodetic techniques is an option as well.

Regarding the datum realization, instead of estimating

the transformation parameters posteriori to the filter

runs, they could be added to the state vector and esti-

mated at the same time as all other parameters. This

would allow for experimentation with the process noise

of the datum parameters, ranging from instantaneous
to averaged transformation parameters. A different ap-

proach would be to use normal equations instead of co-

ordinates as input data, which would then be processed

by an information filter (e.g., Chin, 2001). In this case,
the datum could be realized in a way similar to the

least-squares solution.

Kalman filtering has been shown to be a valid tool

for the delicate art of TRF creation. Station coordi-
nates exhibit significant non-deterministic effects that

can only be taken into account by stochastic model-

ing. Furthermore, sequential estimation algorithms like

a Kalman filter allow for timely updates and might lead

to TRF solutions being maintained in near real time in
the future. With our study, we contribute to refining

the application of Kalman filtering for TRF determina-

tion and discuss potential improvements mainly with

respect to its stochastic model.
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Krásná H, Malkin Z, Böhm J (2015) Non-linear VLBI

station motions and their impact on the celes-

tial reference frame and Earth orientation parame-

ters. Journal of Geodesy 89(10):1019–1033, DOI 10.

1007/s00190-015-0830-4, URL http://dx.doi.org/

10.1007/s00190-015-0830-4
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Sośnica K, Thaller D, Dach R, Jäggi A, Beut-
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