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S U M M A R Y
The material properties of earth materials often change after the material has been perturbed
(slow dynamics). For example, the seismic velocity of subsurface materials changes after
earthquakes, and granular materials compact after being shaken. Such relaxation processes
are associated by observables that change logarithmically with time. Since the logarithm
diverges for short and long times, the relaxation can, strictly speaking, not have a log-time
dependence. We present a self-contained description of a relaxation function that consists of a
superposition of decaying exponentials that has log-time behaviour for intermediate times, but
converges to zero for long times, and is finite for t = 0. The relaxation function depends on two
parameters, the minimum and maximum relaxation time. These parameters can, in principle, be
extracted from the observed relaxation. As an example, we present a crude model of a fracture
that is closing under an external stress. Although the fracture model violates some of the
assumptions on which the relaxation function is based, it follows the relaxation function well.
We provide qualitative arguments that the relaxation process, just like the Gutenberg–Richter
law, is applicable to a wide range of systems and has universal properties.

Key words: Elasticity and anelasticity; Acoustic properties.

1 I N T RO D U C T I O N

The properties of rocks depend on many variables that include
pressure, temperature, and moisture content. Laboratory studies
(Ten Cate & Shankland 1996; Zaitsev et al. 2003; Vakhnenko
et al. 2004; Ten Cate 2011) and seismological field observations
(Poupinet et al. 1984; Schaff & Beroza 2004; Wegler & Sens-
Schönfelder 2007; Brenguier et al. 2008; Wu et al. 2009; Nakata &
Snieder 2011; Hobiger et al. 2012; Nakata & Snieder 2012; Wu &
Peng 2012; Brenguier et al. 2014; Obermann et al. 2014; Richter
et al. 2014; Gassenmeier et al. 2016) show that the seismic velocity
of rocks is often reduced during shaking, and recovers afterwards.
Gassenmeier et al. (2016) demonstrated that, at least in some cases,
these changes are caused by the shaking of the subsurface that dam-
ages the material. Alternatively, static changes of the stress field
have been thought to be the cause of transient velocity changes.
The recovery process that returns the material properties to an
equilibrium after a damaging event has been called slow dynam-
ics (Ten Cate & Shankland 1996; Guyer & Johnson 2009) because
high frequency shaking, or an instantaneous perturbation, causes
a transient response of the seismic velocity. A similar behaviour
is also observed in buildings, where the normal-mode frequencies
or velocity of travelling waves is reduced after the building has
been shaken by an earthquake (Clinton et al. 2006; Nakata et al.
2013, 2015). Because of the high accuracy (about 0.05 per cent) of

measurements of velocity changes with coda waves (Poupinet et al.
1984; Snieder et al. 2002; Grêt et al. 2006; Hadziioannou et al.
2009), it is now possible to monitor time-lapse velocity changes in
detail. Apart from changing the wave velocity, the shaking of rocks
has also led to observed changes in the attenuation (Sato 1986,
1988).

The reduction in shear modulus due to shaking can contribute to
triggering of earthquakes (Johnson & Jia 2005). The interplay be-
tween present and past deformation and friction properties has gen-
erated much interest because of its implication for triggering earth-
quakes. As a result, friction laws that are state- and rate-dependent
have been applied to describe friction and slip on faults (Dieterich
1978, 1979; Ruina 1983; Heslot et al. 1994; Scholtz 1997). The
imprint of deformation on the mechanical properties of rocks im-
plies that the mechanics of rocks is, in general, nonlinear (Guyer &
Johnson 2009; Rivière et al. 2013, 2015), and observations show
that the seismic velocity and/or attenuation changes systematically
with earth tides (Reasenberg & Aki 1974; Yamamura et al. 2003;
Hillers et al. 2015). Because of the dominance of shear motion
in strongly scattering elastic media (Aki & Chouet 1975; Weaver
1982; Snieder 2002), the measured change in arrival times of seis-
mic waves corresponds for such media mostly to a change in shear
velocity.

The recovery of the seismic velocity varies in many experiments
logarithmically with time (Ten Cate et al. 2000; Johnson & Jia 2005;
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Wu et al. 2009; Ten Cate 2011; Wu & Peng 2012; Gassenmeier
2015). A similar log-time dependence of relaxation has been ob-
served for the slope of sandpiles that have been perturbed (Jaeger
et al. 1988; Bocquet et al. 1998), numerical models for the slope
of sandpiles (Duke et al. 1990), the compaction of granular me-
dia (Knight et al. 1995; Peng & Ohta 1998; Linz & Döhle 1999),
slider-block models for earthquakes (Huisman & Fasolino 2006)
and post-seismic deformation (Griggs 1939; Benioff 1951; Savage
et al. 2005; Avouac 2015).

The macroscopic relaxation of materials that have been perturbed
is, in general, due to a combination of different relaxation mecha-
nisms on the microscopic scale. These mechanisms likely operate
of different spatial and temporal scales. The healing rates of micro-
cracks in quartz depend on the crack size (Brantley et al. 1990).
Rock deformation depends on a variety of processes that include
stress corrosion cracking, deposition, and pressure solution, these
processes act on a variety of spatial and temporal scales and are
temperature-dependent (Rutter 1976; Ojala et al. 2003; Kawada
et al. 2006; Kay et al. 2006; Brantut et al. 2014). The formation and
breaking of capillary bonds with different size within fractures have
different activation energy, and therefore correspond to relaxation
processes operating at different timescales (Bocquet et al. 1998).
Observations of healing of cracks in gels reveal that the healing
process takes place on different length and timescales, and that the
distribution of healed parts of a fracture may have an intricate spatial
organization (Renard et al. 2009).

On an intuitive level, one can understand the log-time behaviour
of relaxation to imply that the relaxation does not operate on one spe-
cific timescale. Suppose the relaxation would depend on a timescale
τ , then the time dependence would be given by ln (t/τ ) = ln (t) −
ln (τ ). The relaxation time τ just shifts the relaxation with a con-
stant: ln (t) → ln (t) − ln (τ ), for this reason one can understand the
log-time dependence to be due to the absence of only one specific
relaxation time. A number of studies explain log-time relaxation by
a superposition of different relaxation mechanisms that are associ-
ated with transitions of the system to states with a different energy
(Gibbs et al. 1983; Shaknhovich & Gutin 1989; Ten Cate et al.
2000; Brey & Prados 2001; Amir et al. 2012; Zaitsev et al. 2014).
It is thus established that relaxation that varies with the logarithm
of time can be understood as the net result of the superposition of
relaxation mechanisms with different relaxation times.

The logarithmic recovery poses, however, a conceptual problem,
because when t → 0 and as t → ∞ the logarithm is infinite. The
log-time relaxation model thus predicts that immediately after the
perturbation (t = 0) and after a very long time (t → ∞), the relax-
ation function, and hence the perturbed seismic velocity, diverges.
This obviously cannot be the case, and the explanation of the re-
laxation must be modified to give a finite relaxation both for t = 0
and for very long time, while maintaining the log-time behaviour
for intermediate times.

The purpose of this paper is to give a self-contained descrip-
tion of a relaxation function that (a) is consistent with observa-
tions in the sense that it varies logarithmically with time during
most of relaxation process, (b) that is finite just after the perturba-
tion (t = 0), (c) that approaches a finite value for very long time
(t → ∞), and (d) that is based on the Arrhenius model for the rate
of chemical reactions. In contrast to earlier work (Brey & Prados
2001; Amir et al. 2012), we derive these properties without invok-
ing the integral exponential function and its asymptotic properties.
Our analysis does not rely on a waiting time tw, as used by Amir
et al. (2012), to make the short and long-time asymptotic behaviour
finite.

We introduce the mathematical form of the relaxation model,
along with numerical examples, in Section 2. In Section 3, we derive
the properties of the relaxation function, including its behaviour for
short and long times. We compare the behaviour of the relaxation
model with a numerical simulation of a crude model for the closing
of a fracture in Section 4, and describe the details of the fracture
model in Appendix A. We propose in Section 5 that the behaviour
of the relaxation function for long and short times may be a useful
diagnostic to understand the healing process. The ubiquity of log-
time relaxation suggests, just as the Gutenberg–Richter law does
(Bak 1996), that the explanation of log-time relaxation does not
depend on the details of the physics and chemistry that causes the
relaxation, but that it is due to generic, or universal, properties of
the relaxation process. We present the reasons for this universality
in Section 6.

2 A M O D E L F O R T H E R E L A X AT I O N

We define a relaxation function R(t) as a perturbation to a physical
observable O(t) of a system:

O(t) = O0(1 + S R(t)), (1)

where O0 is the equilibrium value of O, and S a scale factor. The
observable O might be the seismic velocity, an elastic modulus,
the density of a granular material, or the electric or hydraulic
conductivities.

The log-time relaxation is inconsistent with a relaxation mecha-
nism that operates at one fixed relaxation time. In fact, a relaxation
with a specific relaxation time τ corresponds to a relaxation func-
tion exp (−t/τ ), which obviously does not vary logarithmically with
time. Following earlier work (Gibbs et al. 1983; Shaknhovich &
Gutin 1989; Ten Cate et al. 2000; Brey & Prados 2001; Amir et al.
2012), we assume that a variety of relaxation processes are op-
erative, and in this work we assume that the relaxation times are
distributed between a minimum relaxation time τmin and a max-
imum relaxation time τmax. The total relaxation is given by the
following superposition of relaxation processes:

R(t) =
∫ τmax

τmin

1

τ
e−t/τ dτ. (2)

This relaxation function is dimensionless and must be scaled with
expression (1) to describe time-dependent material properties. For
example, when the velocity is perturbed at t = 0 from initial value
v0 to a reduced value v0 + δv with δv < 0, the relaxation is given by
v(t) = v0 + δvR(t)/R(0). The normalization with R(0) ensures that
v(t = 0) = v0 + δv.

The weight factor 1/τ in the integrand can be justified from (1) the
application of Arrhenius’ law, (2) quantum mechanical tunnelling
and (3) a product of relaxation processes operating of different
timescales (Amir et al. 2012). Here we present the explanation
based on Arrhenius’ law (Gibbs et al. 1983; Amir et al. 2012).
Suppose we have a relaxation process with activation energy E,
then following Arrhenius’ law (Laidler 1987), the corresponding
relaxation time is given by

τ = A exp

(
E

kBT

)
, (3)

with A a constant, T absolute temperature and kB the Stephan–
Boltzmann constant. Suppose the activation energy has a density
of states N(E), meaning that the number of activation mechanisms
between E and E + dE is equal to N(E)dE. The density of states
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Rock healing as a universal relaxation process 3

Figure 1. Relaxation function R(t) for τmin = 1 s and τmax = 104 s (black),
τmax = 103 s (blue) and τmax = 102 s (red).

Figure 2. Relaxation function R(t) for τmax = 104 s and τmin = 1 s (black),
τmin = 10 s (blue) and τmin = 100 s (red).

P(τ ) for the relaxation times satisfies P(τ ) = N(E)dE/dτ . Using
expression (3), dτ/dE = (A/kBT)exp (E/kBT) = τ/kBT, hence

P(τ ) = kBT

τ
N (E). (4)

When the distribution of the activation energy is uniform between
a minimum activation energy Emin and maximum Emax, N(E) is
constant, and according expression (4) the density of states for a
relaxation process with relaxation time τ is for a fixed temperature
T proportional to 1/τ , which explains the 1/τ dependence of the
integrand of expression (2). Following expression (3), the minimum
and maximum relaxation times are related to the minimum and
maximum activation energies by

τmin = A exp

(
Emin

kBT

)
, τmax = A exp

(
Emax

kBT

)
. (5)

We show examples of the relaxation function in Figs 1 and 2
with time on a logarithmic scale along the horizontal axis. The
curves are obtained by numerically evaluating the integral of expres-

Figure 3. Relaxation function R(t) for τmax = 104 s and τmin = 1 s (black),
τmin = 10 s (blue) and τmin = 100 s (red) as a function of linear time.

sion (2). The curves in Fig. 1 decrease almost linearly up to a time
t ≈ τmax, and then flatten out. The relaxation thus is proportional
to ln (t) for t < τmax. The maximum relaxation time τmax can be
inferred from relaxation curves by estimating the point where the
logarithmic decay with time flattens off.

The dependence of the relaxation function on the minimum re-
laxation time τmin is shown in Fig. 2. In these examples the middle
segment of the relaxation curves decays logarithmically with time,
and for t ≈ 104 s = τmax the relaxation functions flatten off. Note
that the curves deviate from a logarithmic time dependence for t <

τmin; the transition from the logarithmic dependence to the weaker
log-time dependence at the left occurs at t ≈ τmin, which suggests
that τmin can also be estimated from a given relaxation curve. One
might infer from Fig. 2 that the relaxation curves are horizontal at
t = 0. To show that this is not the case we show the same curves
again in Fig. 3, but now with t on a linear scale. The curves clearly do
not flatten near t = 0, and the slope increases for decreasing values
of τmin.

3 P RO P E RT I E S O F T H E R E L A X AT I O N
F U N C T I O N

The integral in eq. (2) cannot be solved analytically, but when t = 0
the integral can be computed and is given by

R(0) = ln(τmax/τmin). (6)

Unlike a purely logarithmic relaxation, and in contrast to expression
(1) of Amir et al. (2012) that was derived from the short-time limit
of the logarithmic response to a perturbation over a time tw, the
relaxation function (2) is finite for t = 0.

To make the connection with ln (t) behaviour we change the
integration variable in eq. (2) from τ into u = t/τ , hence

R(t) =
∫ t/τmin

t/τmax

1

u
e−udu. (7)

Taking the derivative with respect to t gives

dR(t)

dt
= 1

t

(
e−t/τmin − e−t/τmax

)
. (8)

To explain the logarithmic nature of the relaxation function we
consider the case when τmin � τmax and consider times t such that
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τmin � t � τmax. In that case e−t/τmin ≈ 0 and e−t/τmax ≈ 1, which
implies with eq. (8) that dR/dt ≈ −1/t. Integrating this gives

R(t) ≈ B − ln(t) for τmin � τ � τmax, (9)

with B an integration constant. The relaxation function R(t) thus
displays logarithmic behaviour, but only in a time interval bounded
by the relaxation times. The slope of R(t) versus ln (t) always is the
same, as confirmed in figure 1, but this in only the case for a given
normalization of R(t). Multiplying the relaxation function with a
scale factor S in eq. (1) multiplies of the logarithm in expression (9)
with the same constant, and hence leads to a change in the slope of
the relaxation versus ln (t).

The behaviour of R(t) near t = 0 follows by making a Taylor
expansion of the exponentials in eq. (8) and taking to limit t → 0,
this gives

dR

dt
(t = 0) = −

(
1

τmin
− 1

τmax

)
. (10)

With expression (6) the first-order Taylor series of R(t) is thus given
by

R(t) = ln

(
τmax

τmin

)
−

(
1

τmin
− 1

τmax

)
t + O(t2). (11)

When τmax � τmin, the slope at t = 0 is approximately equal to
R′(t = 0) ≈ −1/τmin, and the ratio of the slope to R(0) satisfies

|R′(0)|
R(0)

≈ 1/τmin

ln(τmax/τmin)
. (12)

The maximum relaxation time τmax is the time by which the relax-
ation curve flattens out (see the numerical examples in Fig. 1). With
this estimates of τmax, expression (12) can then be used to estimate
τmin. Note that this procedure is independent of the normalization
of the relaxation R(t), that is, it can be applied directly to data.

The long-time behaviour of R(t) follows by analysing expression
(7) for the case τmin � τmax � t. In that case the upper limit of the
integral can be replaced by ∞, so that

R(t) =
∫ ∞

t/τmax

1

u
e−udu. (13)

Using that e−u = −de−u/du and applying integration by parts, re-
duces expression (13) to

R(t) = τmax

t
e−t/τmax −

∫ ∞

t/τmax

1

u2
e−udu. (14)

The last integral satisfies∫ ∞

t/τmax

1

u2
e−udu ≤ τ 2

max

t2

∫ ∞

t/τmax

e−udu = τ 2
max

t2
e−t/τmax , (15)

hence

R(t) = τmax

t
e−t/τmax

(
1 + O

( τmax

t

))
. (16)

Alternatively, one can apply integration by parts repeatedly to the
right-hand side of expression (14) to derive an asymptotic series
for R(t). When the upper bound in expression (13) is not replaced
by ∞, the same process of integration by parts can be applied
and the right-hand side of expression (16) has an additional term
−(τmin/t)e−t/τmin . This term is, however, exponentially small, and
the example of Fig. 2 shows that for t � τmin the relaxation function
does not significantly depend on τmin. Note the long-time behaviour
predicted by expression (1) of Amir et al. (2012) does not include
the exponential exp ( − t/τmax). This is a consequence of the fact that

their derivation of the long-time behaviour is, erroneously, based on
the long-time limit of the logarithmic time behaviour.

If only the relaxation mechanism with the largest relaxation time
τmax would contribute, the relaxation function would be equal to
R(t) = e−t/τmax instead of expression (16). The additional time de-
pendence τmax/t in eq. (16) thus is due to relaxation mechanisms
with relaxation time τmin < τ < τmax. Since the time dependence
of 1/t is slow compared to e−t/τmax the relaxation is for large time
approximately exponential.

The integrated relaxation function follows from expression (2)∫ t

0
R(t ′)dt ′ =

∫ t

0

∫ τmax

τmin

1

τ
e−t ′/τ dτdt ′. (17)

Interchanging the integrations over t′ and τ and carrying out the
t′-integral gives∫ t

0
R(t ′)dt ′ =

∫ τmax

τmin

(
1 − e−t/τ

)
dτ. (18)

As t → ∞ the exponential vanishes, hence∫ ∞

0
R(t ′)dt ′ = τmax − τmin. (19)

Integrating measurements of R(t) over time thus provides another
constraint on τmin and τmax.

Exponential relaxation is a special case of the general relaxation
function (2), this is the case when τmin and τmax are close. Setting
τmin = τ 0 − � and τmax = τ 0 + � gives to first order in �/τ 0:

R(t) = 2�

τ0
e−t/τ0 , (20)

and the relaxation function (2) in this case decays exponentially
with time.

4 A C RU D E M O D E L F O R A C L O S I N G
F R A C T U R E

The relaxation function (2) is justified in this work on Arrhenius’
law. Alternative justifications are quantum mechanical tunnelling,
or a product of relaxation processes acting on different timescales
(Amir et al. 2012). In this section, we present a model that satisfies
neither of these criteria, but that follows the relaxation function (2)
reasonably well. We use a crude model for a closing fracture, and
have chosen this model because the healing of the seismic velocity
might well be influenced by the closing of microcontacts in frac-
tures. The closing of a fracture under an external load depends on
the fracture topography (Greenwood & Williamson 1966; Brown &
Scholz 1985a,b, 1986), a feature that is reproduced by our fracture
model. The relation between fracture topography and the mechan-
ical properties of fractures is not well understood, especially when
there are mechanical interactions between different fractures.

Akin to earlier studies (Gangi 1978; Pyrak-Nolte & Morris 2000;
Detwiler & Morris 2014) we describe a model for a closing fracture
as a number of pillars, see Fig. 4. In contrast to these studies we
simplify the model further by assuming that the pillars are placed on
half spaces that do not deform. We assume that a constant normal
stress σ compresses the pillars. The pillars themselves behave vis-
coelastically, and, as shown in Appendix A, the strain rate ε satisfies
the following equation

ε̇ = − 1

nη

(
Nσ −

∑
i,closed

κεi

)
, (21)
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Figure 4. A model of pillars to describe the closing of a fracture.

Figure 5. Numerically computed strain for a uniform distribution of pillar
heights (blue) and scaled relaxation function (red). Dashed vertical lines
denote τmin = 40 s and τmax = 2000 s, respectively.

where the overdot denotes a time derivative, N denotes the total
number of pillars, n the number of closed pillars, κ the bulk modulus,
and η the viscosity. The sum

∑
i, closed is over all closed pillars. We

integrate eq. (21) in time while keeping track of which pillars are
touching. Note that the strain rate ε̇ is the same for all touching
pillars because they are placed between the same rigid half-spaces.

Our fracture model is extremely simple, and it is not meant to be
an accurate description of a closing fracture. For example, we do
not account for the shear stress between adjacent pillars. The pillar
model violates a number of assumptions on which the relaxation
model of Section 2 was based. The pillar model does not follow
Arrhenius’ law because the model does not include any thermally
activated process. In addition, expression (2) presumes that the total
relaxation is a superposition of relaxation mechanisms operating at
different relaxation times τ . By contrast, our pillar model relaxes
at any moment in time with only one fixed relaxation time that is
determined by the fraction of pillars that touch at that moment;
when few pillars touch the fracture is compressed rapidly, this com-
pression slows down as more pillars touch an carry the load. The
fracture model thus violates some of the assumptions on which the
relaxation function (2) is based, but nevertheless relaxes in a way
that is close to the relaxation function (2).

The strain in the pillar model computed by numerical integration
of expression (21) is shown in Fig. 5 for a pillar distribution that

Figure 6. Estimated relaxation time τ est as a function of time for the model
with the uniform distribution of pillar height (blue line) and the model
with normal distribution in pillar heights (red line). Dashed line shows the
viscoelastic relaxation time τ relax = η/κ = 667 s.

initially is uniform with heights between 100 and 101. (Since only
the strain is important, the unit used for the length of the pillar is not
relevant.) The external stress is σ = 5 × 108 Pa, κ = 6 × 1010 Pa and
η = 4 × 1013 Pa s, and the time step in the numerical integration is
dt = 0.1 s. Fig. 5 also shows a closely matching relaxation function
a + bR(t) for τmin = 40 s and τmax = 2000 s. The offset a and the
scaling b account for the fact that the strain relaxes to a nonzero
value for long times, and for the scaling of the relaxation function.
We choose constants a and b so that the scaled relaxation function
a + bR(t) matches the strain at the last time sample (t = 104 s) and
at the extrapolated value for t = 0.

The scaled relaxation function (2) matches the numerically com-
puted relaxation reasonably well. This may be surprising, given the
fact that the numerical model violates the assumptions on which
the relaxation function is based. The agreement can be understood
as follows. The pillar model relaxes at any moment in time with a
characteristic relaxation time that is determined by the external load
and the fraction of pillars that carry the load. As time progresses,
more pillars carry the load, and the instantaneous relaxation time
becomes longer. One can estimate the instantaneous relaxation time
by evaluating

τest(t) = −ε(t) − ε∞
ε̇(t)

, (22)

where ε∞ is the strain for very long time. The instantaneous relax-
ation time (blue curve in Fig. 6) increases from τ est ≈ 112 s for early
time to τ est ≈ 667 s at late time. This produces a similar behaviour
as a the superposition of relaxation mechanisms in expression (2),
for early times the fast relaxation mechanism with relaxation time
close to τmin dominate, while for late times the slow relaxation
mechanism with relaxation time close to τmax contribute most.

The factor 1/τ in the relaxation function (2) indicates that relax-
ation mechanisms with short time τ contribute more than slower
relaxation mechanisms. The pillar model satisfies a similar depen-
dence on the contribution of different relaxation mechanisms. At
early times, few pillars touch, and the relaxation is rapid because the
few pillars that touch deform rapidly. (The rapid relaxation at early
times is not obvious in Fig. 5 because of the logarithmic timescale
used in the plot, but the rate of change does decrease with linear
time.) At late times more pillars touch, and as a result the relaxation
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6 R. Snieder, C. Sens-Schönfelder and R. Wu

Figure 7. Numerically computed strain for a normal distribution of pillar
heights with mean 1 and variance 0.5 (blue) and scaled relaxation func-
tion (red). Dashed vertical lines denote τmin = 0.7 s and τmax = 2000 s,
respectively.

Figure 8. The number of touching pillars for the model with the uniform
distribution of pillar height (blue line) and the model with normal distribution
in pillar heights (red line). Dashed line shows τmax = 2000 s.

is slow and the contribution to the compression is small. This re-
sults in a similar behaviour as the 1/τ weighting in the relaxation
function (2).

The relaxation of a fracture with a normal distribution of pillar
heights can be described reasonably well with the relaxation func-
tion (2), but now for τmin = 0.7 s and τmax = 2000 s (Fig. 7).
Note that in this case the relaxation is much more rapid than for
the uniform distribution of pillar heights. The reason for the dif-
ference in the relaxation rate for early time can be understood by
considering the number of touching pillars as shown in Fig. 8 for
the uniform and the normal distribution of pillars. For the uniform
pillar distribution, 109 pillars touch after the first time step. These
pillars collectively carry the load, which results in a relatively slow
relaxation. The normal distribution is known for its outliers, and
for early times only a few pillars with an anomalously large height
carry the load (Fig. 8). As a result the initial relaxation for the
pillar model with a normal distribution of pillar heights is much
more rapid than it is for the model with a uniform distribution of

pillar heights. This rapid relaxation for the model with the normal
distribution of pillar heights in confirmed in Fig. 6, which shows
a much smaller instantaneous relaxation time τ est ≈ 3.2 s at early
times for the normal distribution than for the uniform distribution.
Despite these differences in relaxation time, the relaxation is for
both models approximated well by the relaxation function (2).

Note that the number of touching pillars for the uniform and
normal distribution has a similar time dependence, both curves in
Fig. 8 change at approximately the same rate. The time τmax =
2000 s has the same value in the red relaxation curves in Figs 5 and
7. As shown in Fig. 8, this time corresponds to the time when the
closing of pillars has come to an end and an equilibrium between the
external stress and the static load carried by the pillars is reached.

5 R E L A X AT I O N A S A D I A G N O S T I C O F
C H A N G E S I N S E I S M I C V E L O C I T Y

Relaxation of the seismic velocity after perturbing rocks has been
observed in laboratory studies (Ten Cate & Shankland 1996;
Zaitsev et al. 2003; Vakhnenko et al. 2004; Ten Cate 2011) and
field observations (Poupinet et al. 1984; Schaff & Beroza 2004;
Wegler & Sens-Schönfelder 2007; Brenguier et al. 2008; Wu et al.
2009; Nakata & Snieder 2011, 2012; Wu & Peng 2012; Brenguier
et al. 2014; Obermann et al. 2014; Richter et al. 2014), and is thus
an observable property under the right conditions. These observa-
tions usually show a recovery similar to the relaxation shown in
Fig. 1 that varies logarithmically with time, until the recovery stops.
This can be described by the relaxation function (2). The numerical
experiments of Figs 5–7 show that, for the pillar model of a clos-
ing fracture, the relaxation depends on the statistical distribution
of the fracture roughness. In general, the relaxation depends on the
distribution of relaxation processes acting on different timescales,
which in many cases correspond to relaxation processes operating
on different spatial scales. The relaxation function can therefore
be a diagnostic for the temporal and spatial distribution of healing
processes.

The relaxation function (2) may suffice for many observations of
relaxation, but for a general distribution P(τ ) of relaxation times
the relaxation function can be written as

R(t) =
∫ ∞

0
P(τ )e−t/τ dτ. (23)

Such a general superposition of relaxation processes has been pro-
posed for induced polarization (Morgan & Lesmes 1994), nuclear
magnetic resonance (NMR; Whittall & MacKay 1989), and rock
deformation (Kawada et al. 2006). When P(τ ) is not proportional
to 1/τ , the relaxation satisfies a power-law instead of a logarithmic
time dependence (Cole & Cole 1941; Morgan & Lesmes 1994).
Such a power-law dependence has been proposed for long-term
rock deformation (Main 2000; Kawada et al. 2006).

The distribution P(τ ) of relaxation times from the observed re-
laxation function R(t) can be estimated in different ways. First, as
shown in Figs 5 and 7 one can estimate τmin and τmax by fitting
the observed relaxation to the relaxation function (2). Alternatively,
one can gain an impression of the spread of relaxation times by
computing τ est using expression (22), an example of this is shown
in Fig. 6. Second, by making the substitution τ = 1/s, one can write
eq. (23) as R(t) = ∫ ∞

0 F(s)e−st ds, with F(s) = s−2P(1/s). The re-
laxation function can thus be written as a Laplace transform, and
one can find P using an inverse Laplace transform (Davies & Martin
1979; Abate & Whitt 1995; Kuhlman 2013). Third, one can view
expression (23) as a linear inverse problem to estimate P(τ ) given
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R(t). In that approach techniques of linear inversion (Menke 1984;
Tarantola 1987; Aster et al. 2004) can be utilized to estimate the
distribution of relaxation times P(τ ). Methods for estimating relax-
ation spectra are an essential part for interpreting measurements of
induced polarization (Morgan & Lesmes 1994; Tong et al. 2006;
Tarasov & Titov 2007) and NMR (Whittall & MacKay 1989). In
NMR the relaxation time may, in fact, depend on location (Blümich
2000).

We applied the first approach, estimation of τmin and τmax to
the fracture model. For the pillar with the uniform distribution of
pillar height (Fig. 5), τmin = 40 s and τmax = 2000 s. (Note that
the fit of the relaxation curve in Fig. 5 is not perfect). The spread
of estimated instantaneous relaxation times τ est from 101 to 667 s,
shown in Fig. 6, is of the same order of magnitude as τmin and
τmax, respectively. But Fig. 6 shows that the largest instantaneous
relaxation time is explained well by the viscoelastic relaxation time
η/κ = 667 s of the pillars, rather than τmax = 2000 s. The reason
for this discrepancy is that the relaxation in the pillar model does
not satisfy the relaxation function (2) in its details. As shown in
Fig. 5 the pillar model relaxes more slowly for late times than
the relaxation function (2) predicts. Such discrepancies can be an
indication to seek a relaxation function (23) with a more general
distribution function P(τ ) of relaxation times than the relaxation
function (2).

In realistic observations of the relaxation of the seismic velocity
of Earth materials, the relaxation function (2) may adequately ex-
plain the observations within the experimental uncertainties. In that
case one may hope to retrieve the minimum and maximum relax-
ation times τmin and τmax. What do these times say in general about
relaxation mechanisms? The minimum relaxation time τmin is re-
lated to the relaxation mechanism on the smallest scale. This could
be the nanoscale, or even the atomic scale. Observed post-seismic
velocity variations show a logarithmic relaxation as a function of
time from the earliest measurement (Wu et al. 2009; Wu & Peng
2012), which indicates that the shortest relaxation mechanism oper-
ates on a time less than the smallest observation time. The minimum
relaxation time τmin can, however, not be equal to zero, because the
integral (6) diverges for τmin = 0. The longest relaxation time τmax

is the time where the relaxation stops (e.g. Fig. 1). Observations
of this equilibration time range from about 100 s for the MW 6.6
mid-Niigata earthquake sequence (Wu et al. 2009), to about 10 d for
the MW Tohoku-Oki earthquake (Wu & Peng 2012), to about 2–3 yr
for the MW Parkfield earthquake (Brenguier et al. 2008). The maxi-
mum relaxation time τmax depends in an as yet unknown way on the
initial perturbation (such as the shaking that causes slow dynamics),
the ambient stress, temperature and fluid content, and the depth at
which the velocity is perturbed. It may be a useful diagnostic of the
physics and/or chemistry of the relaxation process.

6 C O N C LU S I O N S

The relaxation function (2) explains the logarithmic relaxation that
is observed in laboratory experiments and field observations of earth
materials, and is finite just after the perturbation t = 0 and for long
times t → ∞. Although the relaxation function (2) can be explained
by Arrhenius law, quantum mechanical tunnelling, and a product
of relaxation processes (Amir et al. 2012), it is applicable to other
models as well. The pillar model is an example of a model that
does not satisfy either of these assumptions, but that fits the relax-
ation (2) reasonably well. Sandpiles and compacting granular media
have grains that are too heavy to be influenced by thermal motion

(Jaeger & Nagel 1992) or by quantum mechanical tunnelling, yet
such systems display relaxation that varies logarithmically in time
as well. The ubiquity of logarithmic relaxation suggests a universal
behaviour of the relaxation function. The essential elements of the
relaxation function (2) and the pillar model are listed below:

(i) At different times different relaxation mechanisms dominate.
In the pillar model the relaxation time as the number of pillars that
touch changes (Fig. 6) while in the relaxation law (2) contributions
e−t/τ do effectively not contribute when t � τ .

(ii) The effective relaxation time increases with time.
(iii) The faster relaxation mechanisms (small τ ) give a larger con-

tribution to the relaxation than the slower relaxation mechanisms.
The pillar model is compressed much when few pillars touch, while
in the relaxation function (2) the term 1/τ gives a greater weight to
fast relaxation processes.

(iv) Beyond a maximum relaxation time no relaxation mecha-
nisms contribute. This time depends on the perturbation that triggers
the relaxation and ambient conditions such as pressure, temperature
and chemistry.

(v) Below a minimum relaxation time there are no relaxation
processes that contribute. This minimum relaxation time may be so
small that it not observable.

The properties listed above are general characteristics of multi-
scale relaxation phenomena. This explains the ubiquity of the ob-
served log-time behaviour in slow dynamics. The relaxation law (2)
does not necessarily give an accurate description of the distribution
of relaxation times, and the relative contribution of the relaxation
operating at different relaxation times. In that case the relaxation
function (2) can be extended to the more general relaxation law (23).
Given an observed relaxation function R(t), and can apply linear in-
verse theory to estimate the density P(τ ) of relaxation mechanisms
as a function of τ .

In practice, the relaxation function (2) may suffice to explain ob-
servations of relaxation. The shortest and longest relaxation times
τmin and τmax may be inferred from observations of the relaxation.
Measurements of τmin potentially give information on the fastest re-
laxation mechanism, which is likely related to the relaxation process
that takes place on the smallest spatial scale. Since that scale can be
very small, it may not be possible to obtain reliable measurements
of τmin. Measuring the dependence of τmax as a function of the
strength of the perturbation and ambient parameters such as pres-
sure and temperature is a potentially useful diagnostic of healing
mechanisms. It may be especially interesting to combine macro-
scopic observations of the healing of rocks with measurements of
the micro-structure of these materials.
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A P P E N D I X A : T H E P I L L A R M O D E L O F
T H E C L O S I N G F R A C T U R E

We describe in this section the dynamics of the pillar model of
Fig. 4. The pillars at the top and the bottom of the fracture may have
different length, but once they touch the normal stress in these pillars
is the same, and therefore the strain in pillars that touch is equal
too. The subscript i refers to the pillars. Since the strain in the top
and bottom pillars is the same, the only relevant quantity to monitor
is the combined height hi of each pair of top and bottom pillars.
When the strain rate ε̇ is known, the time evolution of the pillar
height and the distance between the half spaces can be computed,
because the pillar height satisfies

∂hi

∂t
= ε̇hi , (A1)

and the distance D between the half spaces, as defined in Fig. 4,
satisfies the same equation

∂ D

∂t
= ε̇D. (A2)

The strain rate can also be used to update the strain in the pillars
that touch.

When the pillars behave viscoelastically, the stress σ i in each
pillar is related to the strain by

σi = κεi + ηε̇, (A3)

where we used that the pillars are placed on rigid half-spaces, and
hence the strain rate in all pillars that touch is identical. The stress
carried by the pillars, the left hand side of expression (A3), is
balanced by the external normal stress σ :∑
i,closed

(κεi + ηε̇) = −Nσ, (A4)

where
∑

i, closed is a sum over all pillars that touch, and N is the total
number of pillars. The minus sign accounts for the fact that for a
compressive stress, the pillars shorten, which corresponds to ε < 0.
Solving eq. (A4) for the strain rate gives

ε̇ = − 1

nη

(
Nσ −

∑
i,closed

κεi

)
, (A5)

where n is the number of pillars that touch.
The closing of the fracture can be modelled by using eq. (A5)

to compute the strain rate. For a given strain rate, the change in
the distance D can be computed using expression (A2). With this
update in D it can be determined if new pillars close. The change in
pillar height can be computed from expression (A1). This gives the
updated strain εi in each pillar, which can be used to compute the
new strain rate with eq. (A5).
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