date: 2016-12-20T13:14:27Z pdf:PDFVersion: 1.6 pdf:docinfo:title: Das Rätsel der Anden-Orogenese: Ist der Erdmantel für den Start der Gebirgsbildung verantwortlich? xmp:CreatorTool: Adobe InDesign CS6 (Macintosh) dc:description: To this date, the question of why and how a plateau-type orogen formed with massive crustal thickening at the leading edge of western South America remains one of the hotly debated issues in geodynamics. During the Cenozoic, the Altiplano and Puna plateau of the Central Andes developed during continuous subduction of the oceanic Nazca plate in a convergent continental margin setting ? a situation that is unique along the 60 000 km of convergent margins around the globe. The key challenge is to understand why a first-order mechanical instability of the later plateau extent developed along the central portion of the leading edge of South America only, as well as why and how this feature developed only during the Cenozoic, although the cycle of Andean subduction had been ongoing since at least the Jurassic. Although the widespread presence of partial melts or metamorphic fluids at mid-crustal level has been suggested to indicate upper plate weakening from heating and partial melting, it is recently found that upper plate strain weakening at lithospheric scale plays a significantly larger role. This first order control is tuned by factors affecting the strength balance between the upper plate lithosphere and the plate interface of the Nazca and South American plates such as variations in trenchward sediment flux affecting plate interface coupling and slab rollback or the role of inherited structures. Late initiation of orogeny in the Eocene, however, and its sustained action over tens of million years is now found to be related to the penetration of the slab into the lower mantle around 50 Ma ago, producing a slowdown of the lateral slab migration (?slab anchoring?), and dragging the upper plate against the subduction zone by large-scale return flow. The combination of these parameters was highly uncommon during the Phanerozoic leading to very few plateau style orogens at convergent margins like the Cenozoic Central Andes in South America or the Laramide North America Keywords: access_permission:modify_annotations: true access_permission:can_print_degraded: true subject: To this date, the question of why and how a plateau-type orogen formed with massive crustal thickening at the leading edge of western South America remains one of the hotly debated issues in geodynamics. During the Cenozoic, the Altiplano and Puna plateau of the Central Andes developed during continuous subduction of the oceanic Nazca plate in a convergent continental margin setting ? a situation that is unique along the 60 000 km of convergent margins around the globe. The key challenge is to understand why a first-order mechanical instability of the later plateau extent developed along the central portion of the leading edge of South America only, as well as why and how this feature developed only during the Cenozoic, although the cycle of Andean subduction had been ongoing since at least the Jurassic. Although the widespread presence of partial melts or metamorphic fluids at mid-crustal level has been suggested to indicate upper plate weakening from heating and partial melting, it is recently found that upper plate strain weakening at lithospheric scale plays a significantly larger role. This first order control is tuned by factors affecting the strength balance between the upper plate lithosphere and the plate interface of the Nazca and South American plates such as variations in trenchward sediment flux affecting plate interface coupling and slab rollback or the role of inherited structures. Late initiation of orogeny in the Eocene, however, and its sustained action over tens of million years is now found to be related to the penetration of the slab into the lower mantle around 50 Ma ago, producing a slowdown of the lateral slab migration (?slab anchoring?), and dragging the upper plate against the subduction zone by large-scale return flow. The combination of these parameters was highly uncommon during the Phanerozoic leading to very few plateau style orogens at convergent margins like the Cenozoic Central Andes in South America or the Laramide North America dc:creator: O. description: To this date, the question of why and how a plateau-type orogen formed with massive crustal thickening at the leading edge of western South America remains one of the hotly debated issues in geodynamics. During the Cenozoic, the Altiplano and Puna plateau of the Central Andes developed during continuous subduction of the oceanic Nazca plate in a convergent continental margin setting ? a situation that is unique along the 60 000 km of convergent margins around the globe. The key challenge is to understand why a first-order mechanical instability of the later plateau extent developed along the central portion of the leading edge of South America only, as well as why and how this feature developed only during the Cenozoic, although the cycle of Andean subduction had been ongoing since at least the Jurassic. Although the widespread presence of partial melts or metamorphic fluids at mid-crustal level has been suggested to indicate upper plate weakening from heating and partial melting, it is recently found that upper plate strain weakening at lithospheric scale plays a significantly larger role. This first order control is tuned by factors affecting the strength balance between the upper plate lithosphere and the plate interface of the Nazca and South American plates such as variations in trenchward sediment flux affecting plate interface coupling and slab rollback or the role of inherited structures. Late initiation of orogeny in the Eocene, however, and its sustained action over tens of million years is now found to be related to the penetration of the slab into the lower mantle around 50 Ma ago, producing a slowdown of the lateral slab migration (?slab anchoring?), and dragging the upper plate against the subduction zone by large-scale return flow. The combination of these parameters was highly uncommon during the Phanerozoic leading to very few plateau style orogens at convergent margins like the Cenozoic Central Andes in South America or the Laramide North America dcterms:created: 2016-12-20T13:12:58Z Last-Modified: 2016-12-20T13:14:27Z dcterms:modified: 2016-12-20T13:14:27Z dc:format: application/pdf; version=1.6 title: Das Rätsel der Anden-Orogenese: Ist der Erdmantel für den Start der Gebirgsbildung verantwortlich? xmpMM:DocumentID: uuid:555c9dd3-fd39-4cf1-9c36-7f2f3ae2a979 Last-Save-Date: 2016-12-20T13:14:27Z pdf:docinfo:creator_tool: Adobe InDesign CS6 (Macintosh) access_permission:fill_in_form: true pdf:docinfo:keywords: pdf:docinfo:modified: 2016-12-20T13:14:27Z meta:save-date: 2016-12-20T13:14:27Z pdf:encrypted: false dc:title: Das Rätsel der Anden-Orogenese: Ist der Erdmantel für den Start der Gebirgsbildung verantwortlich? modified: 2016-12-20T13:14:27Z cp:subject: To this date, the question of why and how a plateau-type orogen formed with massive crustal thickening at the leading edge of western South America remains one of the hotly debated issues in geodynamics. During the Cenozoic, the Altiplano and Puna plateau of the Central Andes developed during continuous subduction of the oceanic Nazca plate in a convergent continental margin setting ? a situation that is unique along the 60 000 km of convergent margins around the globe. The key challenge is to understand why a first-order mechanical instability of the later plateau extent developed along the central portion of the leading edge of South America only, as well as why and how this feature developed only during the Cenozoic, although the cycle of Andean subduction had been ongoing since at least the Jurassic. Although the widespread presence of partial melts or metamorphic fluids at mid-crustal level has been suggested to indicate upper plate weakening from heating and partial melting, it is recently found that upper plate strain weakening at lithospheric scale plays a significantly larger role. This first order control is tuned by factors affecting the strength balance between the upper plate lithosphere and the plate interface of the Nazca and South American plates such as variations in trenchward sediment flux affecting plate interface coupling and slab rollback or the role of inherited structures. Late initiation of orogeny in the Eocene, however, and its sustained action over tens of million years is now found to be related to the penetration of the slab into the lower mantle around 50 Ma ago, producing a slowdown of the lateral slab migration (?slab anchoring?), and dragging the upper plate against the subduction zone by large-scale return flow. The combination of these parameters was highly uncommon during the Phanerozoic leading to very few plateau style orogens at convergent margins like the Cenozoic Central Andes in South America or the Laramide North America pdf:docinfo:subject: To this date, the question of why and how a plateau-type orogen formed with massive crustal thickening at the leading edge of western South America remains one of the hotly debated issues in geodynamics. During the Cenozoic, the Altiplano and Puna plateau of the Central Andes developed during continuous subduction of the oceanic Nazca plate in a convergent continental margin setting ? a situation that is unique along the 60 000 km of convergent margins around the globe. The key challenge is to understand why a first-order mechanical instability of the later plateau extent developed along the central portion of the leading edge of South America only, as well as why and how this feature developed only during the Cenozoic, although the cycle of Andean subduction had been ongoing since at least the Jurassic. Although the widespread presence of partial melts or metamorphic fluids at mid-crustal level has been suggested to indicate upper plate weakening from heating and partial melting, it is recently found that upper plate strain weakening at lithospheric scale plays a significantly larger role. This first order control is tuned by factors affecting the strength balance between the upper plate lithosphere and the plate interface of the Nazca and South American plates such as variations in trenchward sediment flux affecting plate interface coupling and slab rollback or the role of inherited structures. Late initiation of orogeny in the Eocene, however, and its sustained action over tens of million years is now found to be related to the penetration of the slab into the lower mantle around 50 Ma ago, producing a slowdown of the lateral slab migration (?slab anchoring?), and dragging the upper plate against the subduction zone by large-scale return flow. The combination of these parameters was highly uncommon during the Phanerozoic leading to very few plateau style orogens at convergent margins like the Cenozoic Central Andes in South America or the Laramide North America Content-Type: application/pdf pdf:docinfo:creator: Oncken X-Parsed-By: org.apache.tika.parser.DefaultParser creator: O. meta:author: O. dc:subject: meta:creation-date: 2016-12-20T13:12:58Z created: Tue Dec 20 14:12:58 CET 2016 access_permission:extract_for_accessibility: true access_permission:assemble_document: true xmpTPg:NPages: 6 Creation-Date: 2016-12-20T13:12:58Z access_permission:extract_content: true access_permission:can_print: true meta:keyword: Author: O. producer: Adobe PDF Library 10.0.1 access_permission:can_modify: true pdf:docinfo:producer: Adobe PDF Library 10.0.1 pdf:docinfo:created: 2016-12-20T13:12:58Z