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ABSTRACT
The characterization of vegetation is a very important ecological
task, especially in sensitive mountain areas, as alpine regions often
respond to small short-term variations of abiotic and biotic com-
ponents as well as long-term global changes. Spatial techniques,
such as imaging spectroscopy, allow for detailed classification of
different syntaxonomic categories of vegetation and their status.
Based on the Airborne Prism Experiment (APEX) and simulated
Environmental Mapping and Analysis Program (EnMAP) data, this
study focused on subalpine and alpine vegetation mapping in the
eastern part of the Polish Karkonosze National Park (KPN). The
spatial resolution of APEX (3.12 m) enabled the classification of
21 vegetation communities, which was generalized into eight
vegetation types. These types were identified on scaled-up APEX
data, as both 252 bands from most of the spectral range and a
spectrally reduced dataset of 30 minimum noise fraction (MNF)
transforms, and compared to the simulated (30 m spatial resolu-
tion) EnMAP data using test areas extracted from the field survey
derived reference non-forest vegetation map. After preprocessing,
a pixel purity index (PPI) was calculated using the MNF image and
then the training and validation pixels were selected with Support
Vector Machine classification of vegetation communities carried
out using different kernel functions: linear, polynomial, radial basis
function, and sigmoid. The classification accuracy was obtained for
21 base classes, and the best result was achieved by using the
linear function and 252 bands (overall accuracy (OA) of 74.39%).
The next step was to classify the eight generalized vegetation
types, and the OA for the APEX data reached 90.72% while
EnMAP reached 78.25%. The results show the potential use of
APEX and EnMAP imagery in mapping subalpine and alpine vege-
tation on a community and vegetation-type scales, within a
diverse ecosystem such as the Karkonosze National Park.

ARTICLE HISTORY
Received 15 December 2015
Accepted 5 December 2016

CONTACT Adriana Marcinkowska-Ochtyra adriana.marcinkowska@uw.edu.pl Department of Geoinformatics,
Cartography and Remote Sensing Warsaw, Faculty of Geography and Regional Studies, University of Warsaw, 30
Krakowskie Przedmieście Street, Warsaw 00-927, Poland

INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017
VOL. 38, NO. 7, 1839–1864
http://dx.doi.org/10.1080/01431161.2016.1274447

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any
medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

http://www.tandfonline.com


1. Introduction

Hyperspectral scanners acquire data in a large number of narrow, contiguous, spectral
bands at high spatial and spectral resolutions (Goetz et al. 1985), with the discrimination
of vegetation communities and the extraction of more precise quantitative information
about the terrestrial environment (Jarocińska 2014; Kycko, Zagajewski, and Kozłowska
2014; Waske et al. 2010; Camps-Valls et al. 2004) becoming possible. Mountainous plants
adapt themselves to survive difficult conditions through quantitative changes in the
relationships between the chlorophyll and carotenoid pigments, and plant tissue struc-
ture, e.g. cuticle layer growth, carbon, nutrient, and lignin content. These adaptations
depend on species’ properties and have a direct impact on the spectral reflectance,
which can be quantified by imaging spectroscopy.

One of the first applications of hyperspectral imaging for mountain ecosystems
classified 23 forest and 15 non-forest communities in the Yellowstone National Park
using Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. The final result,
which used the spectral feature analysis method, identified 16 communities with an
overall accuracy (OA) of 74.1% (kappa coefficient of 0.62) (Kokaly et al. 2003). AVIRIS data
were also used by Filippi and Jensen (2006), who analysed 22 vegetation classes in
Florida (USA) using artificial neural networks. The final map presented 11 classes with an
OA ranging between 84% and 86%.

A classification of alpine and subalpine zones within the Polish Tatra National Park
(UNESCO’s Man and the Biosphere Reserve (M&B)) based on Digital Airborne Imaging
Spectrometer (DAIS 7915) images with the Spectral Angle Mapper (SAM), fuzzy neural
nets approach and detailed field maps allowed for the identification of 39 dominant
vegetation communities (Zagajewski 2010). All 79 bands, covering the electromagnetic
spectrum from visible to thermal infrared wavelengths, were scrutinized to identify the
most significant spectral bands that allowed for the selection of 40 significant bands; the
Adaptive Resonance Theory Map (ARTMAP) simulator was used for plant community
classification by applying a fuzzy classification algorithm (fuzzy ARTMAP). Generally, the
40 bands of input data offered 88.6% accuracy and the kappa coefficient was 0.87.

Chan and Paelinckx (2008) classified 16 ecotopes (grasslands, arable areas, and
forests) based on the Hyperspectral Mapper (HyMap) data and two decision tree
classifiers: Random Forest (RF) and Adaptive Boosting (AdaBoost). OA for classification
was 69.5%, but individual classes had much higher accuracies. A problem of poor
separation was seen for some classes, and the authors concluded that regrouping or
class merging improved the applicability of their classification method. In addition,
vegetation mapping at different scales was conducted by Zhang and Xie (2013) for
communities and species in the Kissimee River watershed using HyMap data with
Support Vector Machine (SVM) and RF combined with object-based image analysis
techniques. For 14 communities, the original and the minimum noise fraction (MNF)
datasets reached an OA of 74% and 90%, respectively, and for 55 species it was 73% and
85%, respectively. The conclusion was that the more detailed classification, at the
species level, was more accurate for the SVM method with the communities-level
classification being comparable.

According to Camps-Valls et al. (2004), the SVM method is more efficient than typical
neural networks in terms of accuracy, robustness, and simplicity, as well as the speed of
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the classification process. They used SVM and the multilayer perceptron for six crop
classes with 128 bands of HyMap data that reached a user accuracy of more than 90%
and producer accuracy of more than 83% per class. Even noisy bands are successfully
detected, and provide a useful result when classifying high-dimensional datasets
(Tarabalka et al. 2010).

Based on AVIRIS data and three classification methods, including SVM, vegetation was
classified for northern US Indiana; the classes covered corn, soybean, and grass trees.
The best results were obtained by SVM for a four class subset scene that achieved an
accuracy of 95.9%, with 16 classes covering the full scene achieving an accuracy of
87.3% (Gualtieri and Cromp 1988). Hyperspectral DAIS 7915 data and SVM were used to
map nine land-cover types within the La Mancha region (Spain), where SVM achieved
the best accuracy – 97.5% (Pal and Mather 2004). The different kernel used by the SVM
method, and various multiclass strategies, were tested by Melgani and Bruzzone (2004)
with AVIRIS data and nine land-cover classes. The analysis was compared to different
classification methods (the radial basis function (RBF) neural networks and k-nearest
neighbours (k-NN) classifier) and, like all of the above studies, showed that SVM was the
best algorithm in terms of accuracy, computational time and stability to parameter
settings.

The Airborne Prism Experiment (APEX) has been available since 2010 (Demarchi et al.
2014) with articles in the literature primarily oriented towards a general overview about
the sensor (Itten et al. 2008), its radiometric calibration (Hueni et al. 2014a; Hueni,
Schlaepfer, and Jehle 2014b), geometric (Vreys et al. 2016), and atmospheric correction
(Schlaepfer et al. 2008; Sterckx et al. 2016). These data were successfully used to simulate
images and products of upcoming space missions (D’Odorico et al. 2013). Thematic
APEX applications were oriented towards the analysis of vegetation indices and chlor-
ophyll fluorescence (Damm et al. 2015), burned areas within four vegetation types
(Schepers et al. 2014) and also for classifications; detailed urban land cover mapping
was developed using two-dimensional reduction techniques: auto-associative neural
networks (AANN) and BandClust alongside the full set of bands for classification meth-
ods such as RF, AdaBoost, multiple layer perceptron, and SVM (Demarchi et al. 2014).
The results showed that the SVM method and full band set combination gave the best
OA (82.9%). The APEX data were successfully used for tree species mapping; in the work
of Tagliabue et al. (2016) in Forêt de Hardt (France) it was possible to discriminate four
species using maximum likelihood (ML) method achieving 74.4% of OA; Raczko et al.
(2015) classified five tree species in Karkonosze Mountains (Poland) using SVM, which
allowed for reach 78.7% of OA.

The Environmental Mapping and Analysis Program (EnMAP) system is not in orbit at
the time of writing, but published articles already describe the characteristics of the
mission and the anticipated applications (Guanter et al. 2015; Heldens et al. 2011).
Applications have been developed and tested using simulated data derived from higher
resolution airborne hyperspectral data using the EnMAP End to End Simulator (EEtES)
(Segl et al. 2012). EnMAP simulated data based on the Advanced Imaging Spectrometer
for Applications (AISA) images were used to map the gradual transition in shrub
vegetation in a semi-arid, natural environment in Portugal using the Support Vector
Classification (SVC) model (Suess et al. 2015). Simulated EnMAP data were also used to
retrieve information on the seasonal development of vegetation parameters, such as leaf
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area index (LAI), by generating look-up-table libraries to invert the PROSAIL model – the
combination of two radiative transfer models: the leaf optical Properties Spectra
(PROSPECT), and Scattering by Arbitrary Inclined Leaves (SAIL, Locherer et al. 2015).

Therefore, in summary, there have been numerous investigations of protected, semi-,
and natural ecosystems that used hyperspectral data to determine the extent of differ-
ent vegetation classes using various classification techniques, with a mixture of out-
comes found. Karkonosze Mountains has a complicated vegetation mosaic with high
community diversity, mostly with high spatial heterogeneity, so the use of machine
learning method to classification was promising to achieve satisfactory results, rather
than endmember-based approaches or traditional parametric classifiers (Zhang and Xie
2013). A big advantage of SVM is that it is able to produce higher accuracy than
traditional classifiers using a small number of training datasets that characterize the
communities of this area. In comparison to different methods described in the literature
review, SVM gave the best results for different types of classes, and it was the reason for
choosing this method to classify diverse mountain vegetation.

For this research, the SVM classification approach was chosen with different kernel
functions tested for non-forest vegetation communities. The aims of this study were to:

● develop a processing method for APEX hyperspectral imagery to identify mountai-
nous vegetation communities for the Karkonosze UNESCO’s M&B Reserve using
SVM,

● check the capabilities of vegetation-type classification when using data with
EnMAP’s spatial resolution,

● assess the usefulness of aerial APEX and simulated satellite EnMAP data to classify
the vegetation types in the Karkonosze UNESCO’s M&B Reserve.

The work was divided into two parts: first, the classification of vegetation communities
based on an APEX image subset that’s the dataset referred to as ‘APEX_comm’ (Figure 1).
Second, the classified communities were generalized into vegetation types to provide a
classification for the greater geographical area covered using the APEX dataset called
‘APEX_types’ and a new EnMAP dataset called ‘EnMAP_types’ (Figure 1).

The main research problems were expressed as an identification of each non-forest
vegetation community and also a study of how the use of different kernel types and a
reduction of spectral dimensionality impacts classification accuracy. In a subsequent
step, there was upscaling of the units from communities to types alongside an upscaling
of the data from an airborne to satellite spatial resolution. The eastern part of
Karkonosze National Park was selected for these upscaling tests because of its high
variability in terms of vegetation communities near the Mały Staw lake area.

2. Area and object of the study

2.1. Study area

Karkonosze belongs to the Sudety Mountains, a chain of middle mountains shared by the
Czech Republic, Poland, and Germany. The study area is situated in the eastern part of
Karkonosze in the border region between the Czech Republic and Poland. It was divided

1842 A. MARCINKOWSKA-OCHTYRA ET AL.



into a greater and smaller part, depending on research objectives, as described in Section
2.2 (Figure 1). The larger area covers 7.33 × 3.46 km (50°46ʹ00″–50°44ʹ09″ N 15°40ʹ20″–15°
46ʹ33″ E), and it is located between 1270 and 1602m above sea level (a.s.l.) while the smaller
area covers 1.86 × 1.83 km (50°45ʹ30″ –50°44ʹ30″ N, 15°42ʹ00″–15°43ʹ30″ E), and it is located
between about 1270 and 1430 m a.s.l. The bedrock of the eastern Karkonosze is mainly
acidic and primarily comprised of granites, gneiss and crystalline schists (Kondracki 2009).
The mean annual precipitation in the summit parts is about 1512 mm, with a mean annual
temperature variation of between 0.7°C and 4.2°C and the first frosts begin in November
(Sobik et al. 2013). Considerable varieties of climate conditions, along with the altitudinal
gradient, result in distinct vegetation belts. The middle subalpine belt (1250–1450 m) is a
mosaic of Sudetic dwarf pine shrubs, matt-grass meadows and subalpine mires covering
mostly flat and gently sloping summit areas. The alpine belt extends to the highest peak of
Sniezka, which reaches 1602 m a.s.l. located in greater part of the study area.

The eastern part of subalpine and alpine belts in Karkonosze is exceptional due to its
geomorphology and vegetation pattern, with the most remarkable geomorphological
landmarks being the summit planation surfaces, nivation hollows, and glacial corries.
The arctic–alpine vegetation also constitutes one of the most significant centres of geo-
biodiversity for this mountain (Śtursa 2013). Large plantations in the study area are
covered by dwarf-pine stands (Pinetum mughi sudeticum association), mat-grass com-
munities of the Nardion alliance (mostly Carici (rigidae)-Nardetum association), and peat
bogs that are dominated by plant communities of the class Oxycocco-Sphagnetea. Glacial
corries and nivation hollows are the most diverse environments in the Karkonosze, with
a large number of plant communities and associated variety of habitats (rock faces,
avalanche tracts, snowbeds, subalpine scrubs, subalpine tall forbs, and springs). The
Mały Staw Cirque, as the biggest glacial cirque in the Karkonosze, together with Biały Jar
nivation hollow (Figure 1), are the locations with the highest plant community diversity
in this mountain range.

Figure 1. The study area in the eastern part of Karkonosze.
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2.2. Subalpine and alpine vegetation

The analysis included subalpine and alpine vegetation types with the communities
located in the highest parts of the Polish side of the Eastern Karkonosze Mountains.
The non-forest vegetation map from 2002 acted as a reference, containing 17 vegetation
types and 49 vegetation communities identified across the whole of the Karkonosze
National Park (Wojtuń and Żołnierz 2002). It was derived by manual interpretation of
orthophotomaps and validated by field surveying. The selected area, near Mały Staw
lake, contains the vegetation listed in Table 1.

All of the vegetation communities listed in Table 1 are important from a phytosocio-
logical point of view, and could be separately distinguished within the non-forest
vegetation map (Wojtuń and Żołnierz 2002). However, it was not possible to identify
all of them in the image data visually and based on the spectral characteristics alone due
to their spectral similarity. For example, it was not possible to differentiate Pino-mugo
Sphagnetum and Pinetum mugo sudeticum communities using APEX data due to a
difference only in the soil properties. Therefore, they were merged into a community
termed Pinetum mugo sudeticum. In addition, the associations of the Molinio-
Arrhenatheretea class were removed from the final map because this community was
dominated by Deschampsia caespitosa in the study area, and the Calamagrostion alliance
was replaced by the communities contained within it – Carici (rigidae)-Nardetum,
Deschampsia flexuosa, and Deschampsia caespitosa. The associations from the
Artemisietea vulgaris class were merged with Urtica dioica comm. because they covered
relatively small areas separately and both classes are mostly covered by nettles. Finally,
two classifications were used (Table 1): vegetation community and vegetation type.
There were 21 vegetation community units, alongside the early stages of vegetation
succession (the area located near Biały Jar nivation hollow), and areas without vegeta-
tion. For vegetation type, the 21 community units were merged into larger units

Table 1. Vegetation communities (21) and types (9) in the study area
of the eastern part of Karkonosze National Park.
Vegetation community Vegetation type

Carici (rigidae)-Nardetum Alpine grasslands
Empetro-Vaccinietum Heathlands
Pinetum mugo sudeticum Subalpine dwarf pine scrubs
Crepido-Calamagrostietum villosae Subalpine tall-forbs
Pado-Sorbetum Deciduous shrubs vegetation
Salicetum lapponum Deciduous shrubs vegetation
Athyrietum distentifolii Herbs
Adenostyletum alliariae Herbs
Scheuchzerio-Caricetea nigrae Fens
Oxycocco-Sphagnetea Bogs
Cardamino-Montion Springs
Calamagrostio villosae-Piceetum Forests
Rhizocarpion alpicolae Rock and scree vegetation
Umbilicarion cylindricae Rock and scree vegetation
Vaccinium myrtillus com. Heathlands
Calluna vulgaris com. Heathlands
Molinia caerulea com. Subalpine tall-forbs
Deschampsia flexuosa com. Alpine grasslands
Deschampsia caespitosa com. Subalpine tall-forbs
Peucedanum ostruthium com. Ruderal vegetation
Urtica dioica com. Ruderal vegetation
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according to the non-forest vegetation map (Wojtuń and Żołnierz 2002). Two vegetation
type classes: including Urtica dioica community – ruderal vegetation, and including
Athyrietum distentifolii and Adenostyletum alliariae – herbs were removed from the
final version because classification using 30 m EnMAP data resulted in only 5 pixels for
ruderal vegetation and 7 pixels for herbs, so it was considered too small a sample. This
resulted in 8 vegetation types alongside areas without vegetation.

3. Data

3.1. Image data

The data used in this study were the APEX and simulated EnMAP images. APEX is the
Swiss-Belgian dispersive push broom imaging spectroradiometer, operating between
380 and 2500 nm in 288 bands (bandwidths of about 5 nm in the visible and near-
infrared (VNIR) and 10 nm in the shortwave infrared (SWIR)) with a spatial ground
resolution ranging from 1.75 to 3 m depending on the flying altitude (Itten et al.
2008; Vreys, Iordache, and Meuleman 2014). The spectroradiometer was installed on
board a Dornier 228 aircraft operated by DLR (the German Aerospace Center), and the
flight campaign covered the whole area of the Karkonosze Mountains within both the
National Park borders and their surroundings (Jelének et al. 2014). Data were acquired
on 10 September 2012, in the framework of the European Facility for Airborne Research
(EUFAR) project entitled Hyperspectral Remote Sensing for Mountains Ecosystems
(HyMountEcos) that involved scientists from the Polish University of Warsaw and the
Czech Charles University of Prague. The September date of image acquisition allowed
the greatest colouration differences for the species within the communities to be
captured (Żołnierz and Wojtuń 2013).

The APEX data were pre-processed at the Flemish Institute for Technological Research
VITO’s Centre for Remote Sensing and Earth Observation Processes. First, it was radio-
metrically calibrated into radiance cubes, and then it was geometrically corrected using
the light detection and ranging (LiDAR) derived digital terrain model (DTM) tiles,
followed by an atmospheric correction using the MODTRAN® 4 radiative transfer code
and reflectance retrieval algorithms from de Haan et al. (1991). Reference spectra of
homogenous areas (e.g. concrete and asphalt) collected using the ASD FieldSpec® 3
spectroradiometer, during the flight campaign, were used to validate the atmospheric
correction. As a result, the image data were provided as geo-referenced at-surface-
reflectance having a ground sampling distance of 3.12 m.

The area near Mały Staw lake, and its surroundings, was chosen for the purposes of
vegetation community classification (APEX_comm, Table 2). A greater area was selected
for vegetation-type classification, because this area included joined vegetation commu-
nities (APEX_types, Table 2). For the APEX_comm and APEX_types datasets, bands linked
to atmospheric water vapour absorption (1335–1422 nm and 1759–1955 nm) were
removed with 252 bands retained.

EnMAP is a future German hyperspectral satellite mission that enables a characterization of
the Earth’s surface, due to be launched in 2018. This push broomprism instrument will cover a
30 km swath width with a spectral range from 420 to 2450 nm using two spectrometers: VNIR
(420–1000 nm, with 89 bands) and SWIR (900–2450 nm, with 155 bands) (Guanter et al. 2015).
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In order to simulate an EnMAP image over the study area, the spectrally similar APEX
characteristics were resampled to 30 m pixel size. This was performed by convolving the
APEX image with the wavelength-dependent point spread functions (PSF) of EnMAP and
extracting every nth data point of the convolution result, where n was the ratio between the
average EnMAP and the averageAPEXground sampling distance. As occurred for APEX, bands
in thewater vapour absorption region (1335–1476 nmand1773–2007 nm)were removed and
so, finally, 190 bands were used (EnMAP_types, Table 2).

3.2. Reference data

The information about existing vegetation communities and types was extracted from a 2002
non-forest vegetation map (described in Section 2.2) alongside visual interpretation of the
high, 12 cm resolution, orthophotos and field documentation. The vector layer contained 49
vegetation communities for the whole of the Karkonosze National Park (Wojtuń and Żołnierz
2002), but was resized to the study area that contained 21 communities. The pixel purity index
(PPI) (Theiler et al. 2000) was calculated from the MNF transformed APEX data without the
noisy bands, in order to find the most spectrally pure pixels to support training sample
selection. It required human interaction to manually select the final set of pure pixels (Chang
and Plaza 2006).

A field survey was conducted from 20 to 30 August 2013 and from 30 to 31 August 2014.
The validation sample locations were chosen in homogenous polygons and also with major
variationwithin each vegetation community class. Around 14,000 sampleswere collected, and
a stratified random sampling scheme was applied in order to avoid the effects of spatial
autocorrelation, which is dependent on the size of each vegetation community’s area.
Separate random samples were generated to perform the accuracy assessment on the pixel
wisemapping unit, and as the classification had a large number of categories (defined asmore
than 12)more than 75–100 samples per category (Congalton 1991)was optimal. However, this
was not realized in the case of five vegetation community classes: Adenostyletum alliariae,
Calluna vulgaris, Deschampsia flexuosa, Peucedanum ostruthium, and Urtica dioica that occupy
smaller areas, but for SVM smaller training samples are not obstacles. Finally, a total of 9562
pixelswereused for training and4608pixelswereused for validationof vegetation community
classification, which were labelled according to the finest level of a non-forest vegetationmap
developed by Wojtuń and Żołnierz (2002).

For the vegetation-type classification, samples created in the previous analysis step were
merged. The information about the non-forest vegetation types was extracted from the
reference non-forest vegetationmapdatabase, and generalized fromvegetation communities
into vegetation types with class names assigned according to the 2002 non-forest vegetation

Table 2. Specifications on spatial and spectral properties of three datasets.
APEX_comm APEX_types EnMAP_types

Spectral bands 252a/30b 252a 190a

Spectral range (nm) 413–2448 413–2448 423–2439
Spatial resolution (m) 3.12 3.12 30
Area size (pixels) 656 × 646 2767 × 1542 261 × 146

aRemoved water vapour absorption bands.
bMNF transforms.
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map. In total, 10,149 training and 5022 validation pixels were collected for the APEX_types
dataset with 329 and 191 pixels, respectively, collected for the EnMAP_types data.

4. Methods

The stages used to prepare the image data and then undertake the classification are
presented in Figure 2 and explained in Sections 4.1–4.3.

4.1. Dimensionality reduction of APEX_comm dataset

A commonly used method of dimensionality reduction in hyperspectral analysis is the
MNF transformation, which is used to determine inherent dimensionality and segregate
noise (Green et al. 1988; Boardman and Kruse 1994; Underwood, Ustin, and DiPietro

Figure 2. Classification procedures for the APEX and EnMAP data.
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2003). The MNF tool in ENVI was used to apply the approach, and then analyse the
output image using eigenvalues; from which the first 30 MNF transforms were used. This
approach resulted in two datasets: 30 MNF transforms and original 252 band dataset.

4.2. Masking areas

In order to extract only subalpine and alpine vegetation, the forests and mid-forest
clearings were masked, as well as the Czech side of National Park as this region was not
studied, using a mask based upon pre-existing non-forest vegetation map that included
the gaps of shelters. The next step was the suppression of shadows and waterbodies.
Although the data were atmospherically corrected and the topographic correction was
not performed, it was not possible to eliminate shadows in areas of large height differ-
ence. Therefore, shadows were masked using the reflectance in the 106th spectral band
(952 nm) for APEX with a 6% threshold value and 94th band (95 nm) with a 7% threshold
value for EnMAP. However, some areas of water were also detected as shadows and so
had to be adjusted manually. Finally the forest, sheltered area and shadow masks were
merged into a single mask that was applied to the images (Figures 3(a) and (b)).

4.3. SVM classification

The SVM approach is a supervised learning method of classification that employs
optimization algorithms to locate optimal boundaries between classes to separate
them with a hyperplane, which maximizes the margin between them in high dimen-
sional space (Huang, Davis, and Townshend 2002). Data points closest to the hyperplane
are support vectors, which are the most important elements of the training set (Burges
1988), with kernel functions converting nonlinear boundaries into linear ones in high
dimensional space. To appoint a discriminate function for locating boundaries, SVM uses
a different type of kernel functions. In the ENVI software, four types of kernel functions K
(xi, xj) are available: linear (1), polynomial (2), RBF (3), and sigmoid (4). The equations for
each of them are as follows, with detailed mathematical formulations given in the works
of Gualtieri and Cromp (1988), Huang, Davis, and Townshend (2002), Burges (1988),
Vapnik (1995):
linear

K xi; xj
� � ¼ xiTxj (1)

polynomial

K xi; xj
� � ¼ γxiTxj þ r

� �d
; γ < 0 (2)

RBF

K xi; xj
� � ¼ exp �γ xi � xj

�� ���� ��2� �
; γ > 0 (3)

sigmoid

K xi; xj
� � ¼ tanh γxiTxj þ r

� �
; (4)
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where xi, xj are the x data vectors (i,j – pixel window coordinates), γ is the Gamma term
in all kernel functions except linear, d is the polynomial degree term in the kernel
polynomial function, r is the bias terms in the kernel polynomial and sigmoid functions,
and tanh is the hyperbolic tangent.

To find an optimal SVM kernel function in ENVI, all available functions and the
parameters were tested and based on the results the classification accuracy was
assessed. The polynomial degree (2) was set at 2.00 for the polynomial function (it
was based on the literature: increasing the degree of kernel polynomial causes decreas-
ing classification accuracy, Shah et al. 2003), the biases in the kernel polynomial (2) and
sigmoid (4) functions were set to the default of 1.00 as this was the most optimal value.
If the kernels required a gamma parameter, it was tuned with the C parameter that
represented the cost of the penalty in order to find the best combination. Different
gamma parameter values (from 0 to 1000) for the polynomial (2), RBF (3), and sigmoid
(4) functions were tested and finally set as the inverse of the number of used original
bands and it was 0.004 for 252 original and 0.033 for MNF APEX bands. If the penalty

Figure 3. Masking of unwanted areas within the APEX (a) and EnMAP (b) images.
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parameter is too large the classification accuracy is high in the training phase but low in
the phase of testing, however, when this value is too small, the classification accuracy is
too low, making the classification model useless. After testing different penalty para-
meter values, from 0 to 1000, the same value (100.00) was used for all kernel functions,
and the classifications were carried out without the probability threshold.

4.4. Accuracy assessment

The accuracies of the obtained maps were compared by constructing an error matrix
and calculating the kappa coefficient (Congalton 1991). OA is computed by dividing the
total number of correct pixels by the total number of pixels in the matrix, and the kappa
statistic is based on the difference between the actual and the chance agreement in the
matrix; both of these values indicate how well the classification result agrees with
reference data. For each class the producer and user accuracies were also calculated,
where the producer accuracy (PA) is the probability of a reference pixel being correctly
classified and the user accuracy (UA) indicates the probability that a pixel classified on
the map actually represents that category on the ground.

For each classification result, described accuracies were calculated. In the first step for
the APEX_comm dataset of 252 bands and 30 MNF transforms and also for different
kernel functions of SVM. In the second step, classification performance has been
assessed at vegetation-type level for the APEX_types and EnMAP_types band datasets
for 252 and 190 bands sets, respectively.

5. Results

The results are reported in two sections: in Section 5.1, APEX vegetation community
classification results were obtained by using the band and MNF transform datasets,
where the classification accuracy impact of using different SVM kernel functions was
assessed; and in Section 5.2, APEX and EnMAP vegetation-type classification as the
classification maps and accuracies was obtained for both datasets using the same
parameters.

5.1. APEX vegetation community classification

The SVM classification was performed for both the original APEX bands (252) and the
MNF transforms (30), with 23 classes (21 vegetation communities) extracted. Table 3

Table 3. Overall accuracies (OAs) for the four kernel functions and two
different band sets for APEX_comm image.

SVM kernel function

OA (%)

252 bands 30 MNF transforms

Linear 74.39 74.35
Polynomial 62.28 73.57
Radial basis function 73.57 73.57
Sigmoid 46.54 71.78
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presents the OA of the classification for all four kernel functions and the different
datasets.

The best OA was achieved for the linear function using the original APEX bands
(74.39%), while the MNF transforms had a slightly lower accuracy (74.35%). Second best
was the RBF, achieving the same results for original and MNF bands datasets (73.57%).
The worst results were observed for the sigmoid function using the full set of bands
(46.54%).

In this study, the performance of the original band dataset depended on the chosen
kernel function: for a linear approach, the OA was slightly higher (0.4%) but the MNF
transformation gave better results for polynomial (about 11% higher accuracy) and
sigmoid (about 25% higher); for RBF, the results were exactly the same. Figure 4(b)
presents the classification image with the best result, with 21 classified vegetation
communities (23 classes including water and mask) against a reference non-forest
vegetation vector map (Figure 4(a)) with Table 4 showing the confusion matrix for this
result.

The list of accuracies for each class is presented in Table 5.
Based on Tables 4 and 5, the best classified class was the early stages of succession

that has PA and UA of about 95%. This unit occurs in bare and uncovered areas that are
very well identified by the SVM classifier, though the area of the class is quite small. Very
high accuracies were also achieved for the Oxycocco-Sphagnetea with a 97.4% UA and

Figure 4. Reference non-forest vegetation map (a) and post-classification map of vegetation com-
munities (b). Abbreviations developed in Table 1. 1: Carici (rig.)-Nard.; 2: Empetro-Vacc.; 3: Pinetum
mugo sudet.; 4: Pino mugo-Sphagnetum; 5: Calamagrostion; 6: Crepido-Calamagrost. vill.; 7: Pado-
Sorb.; 8: Salic. lapp.; 9: Athyrietum dist.; 10: Adenostyletum all.; 11: Scheuchzerio-Caric. nigr.; 12:
Oxycocco-Sphagn.; 13: Cardamino-Mont.; 14: Artemisietea vulg.; 15: Calamagr. villosae-Piceetum; 16:
Rhizocarp. alp.; 17: Umbilic. cyl.; 18: Vacc. myrt. com.; 19: Calluna vulg. com.; 20: Molinia caer. com.;
21: Molinio Arrhenatheretea; 22: Deschamp. flex. com.; 23: Deschamp. caesp. com.; 24: Peucedanum
ostr. com.; 25: Urtica dioica com.; 26: early stages of succ.; 27: areas without veg.; 28: lakes; 29:
masked areas.
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93.2% PA and for Empetro-Vaccinietum with 91.2% PA and 77.5% UA. These classes are a
mixture of different minor species, which can be strongly distinguished from the
surroundings that are homogenous grasslands or tall-forbs. High PA and UA were also
obtained for Pinetum mugo sudeticum, which is the dominant class within the data and
has 91.5% and 70.5%, respectively. It is supported by studies of Zagajewski (2010) where
the best classified communities of Tatra Mountains in Poland, were also among others
Empetro-Vaccinietum in a complex with Pinetum mugho and mountain-pine scrub on
silicate substrate. Generally, the PA and UA of the results can be considered as high and
range from 60% to about 95% for 18/23 classes of PA and for 16/23 classes of UA.

The poorest classification result was obtained for the Salicetum lapponum, which was
greatly overestimated (34.2% PA and 56.1% UA). It is a shrub that is about 1 m in height,
and not very widely located on steep shady slopes. So, if it was not present in groups
then it was difficult to map due to both the terrain and APEX pixel size. Lower levels of
both of accuracies were also reached for the Urtica dioica community with 49.3% PA and
50.8% UA which was represented by smaller test sample sizes such as Athyrietum
distentifolii with 38.6% PA but higher UA of 73.9% and for Calluna vulgaris with 47.7%
UA and 75% PA. The first two classes were difficult to map because of their temporal
variability between the field survey dates, in 2013 and 2014, and the 2002 non-forest
vegetation map. Urtica dioica belongs to ruderal vegetation located near shelters and its
range is changeable and depends on the degree of human pressure which is also
confirmed by studies in Tatras where one of the worst classified were communities
dominated by ruderal plants and modified by seasonal grazing by animals (Zagajewski
2010). In 2008, Athyrietum distentifolii was observed to experience dieback connected
with weevil attacks on the leaves. Both accuracies achieved about 50% for the

Table 5. Producer and user accuracy for classified vegetation communities
(com. = community).
Class Producer’s accuracy (%) User’s accuracy (%)

Carici (rigidae)-Nardetum 61.9 94.4
Empetro-Vaccinietum 91.2 77.5
Pinetum mugo sudeticum 91.5 70.5
Crepido-Calamagrostietum villosae 67.8 51.1
Pado-Sorbetum 86.0 86.9
Salicetum lapponum 34.2 56.1
Athyrietum distentifolii 38.6 73.9
Adenostyletum alliariae 68.4 89.7
Scheuchzerio-Caricetea nigrae 66.1 75.7
Oxycocco-Sphagnetea 93.2 97.4
Cardamino-Montion 84.9 68.9
Calamagrostio villosae-Piceetum 55.1 52.6
Rhizocarpion alpicolae 82.5 83.2
Umbilicarion cylindricae 85.1 83.3
Vaccinium myrtillus com. 55.2 52.7
Calluna vulgaris com. 75.0 47.7
Molinia caerulea com. 79.6 69.5
Deschampsia flexuosa com. 87.2 54.7
Deschampsia caespitosa com. 72.0 82.4
Peucedanum ostruthium com. 60.0 75.0
Urtica dioica com. 49.3 50.8
Early stages of succession 95.2 94.4
Areas without vegetation 85.3 62.6
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Calamagrostio villosae-Piceetum community. It is not really a non-forest community, and
it is located on the border of the reference non-forest vegetation map (Wojtuń and
Żołnierz 2002). It consists of single trees surrounded by other communities and was
mostly confused with Pinetum mugo sudeticum because of the spectral similarity.

5.2. APEX and EnMAP vegetation types classification

Vegetation-type classification was conducted for both the APEX_types and
EnMAP_types datasets. The results of this classification are presented in Figures 5(a)
and (b) and Tables 6–8.

The OA for the APEX classification reached 90.72% and for EnMAP it was 78.25%, and
the kappa statistics were 0.85 and 0.74, respectively. Very high classification accuracies in

Figure 5. Vegetation-type classification images derived from the APEX (a) and EnMAP (b) datasets. 1:
subalpine tall-forbs; 2: deciduous shrubs vegetation; 3: subalpine dwarf pine scrubs; 4: forests; 5:
grasslands; 6: heathlands; 7: rock and scree vegetation; 8: bogs, fens, and springs; 9: areas without
vegetation; 10: masked areas.
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both datasets were reached for subalpine dwarf pine scrubs (about 90% of PA and UA)
and grasslands (for APEX about 98% UA and PA and for EnMAP about 94% PA and 86%
UA). Both classes are represented by large homogeneous patches and, even for the 30 m
EnMAP pixels, finding representative samples was straightforward. In general, most of
the classes were well classified with five of the APEX_types classes having PA of more
than 70% and seven for UA, alongside six of the EnMAP_types classes also having PA
and five of UA of more than 70%.

However, classes were classified better with the APEX_types dataset and the change
was the greatest in case of bogs, fens and springs (about 33% more of PA and about
25% more of UA). APEX data vegetation community classification, which included
Oxycocco-Sphagnetea, reached an accuracy of more than 90% for both PA and UA as
this unit is easier to classify with the finest spatial resolution data because of the mosaic
of different species. Less changeable, but also improved for APEX-based classification,
were areas without vegetation, that were primarily mountain trails less than 30 m in
width and composed of pixels with a mixture of trail and surrounding vegetation (about
19% difference between PA for the APEX and EnMAP data). However, deciduous shrubs
vegetation and forests were classified better using the EnMAP data (for deciduous
shrubs vegetation it was about 10–12% more of PA and UA and for forests about
5–6% more of PA and UA) because of the 30 m spatial resolution allowed for including
shrubs or trees with surrounding vegetation into one class. A slightly better PA for
EnMAP was also obtained for homogeneous rock and scree vegetation (about 5% more),
but UA was better for APEX data. This class was well identified because it was spectrally
homogeneous and easy to find on the image and in the terrain. The same class was
classified the worst for both datasets – heathlands. In the APEX_types dataset 62.3% of
heathlands have been correctly identified (PA), while UA being better (94%). A similar
situation was also present in the EnMAP_types dataset where the PA was only 44.8%
and the UA was slightly higher and it was 52%. This unit contains different types of
bilberries and heathers, so it is heterogeneous and covers smaller areas. Especially for
EnMAP, the spatial resolution makes it difficult to determine the exact boundaries of the
training samples and so the mixed nature of this vegetation type made it a challenge to
classify; potentially, more training pixels could improve the results.

Table 8. Producer and user accuracies for the APEX and EnMAP classified vegetation types.
APEX_types EnMAP_types

Class
Producer’s
accuracy (%)

User’s
accuracy (%)

Producer’s
accuracy (%)

User’s
accuracy (%)

Subalpine tall-forbs 86.2 76.1 79.2 67.9
Deciduous shrubs vegetation 67.4 69.9 80.0 80.0
Subalpine dwarf pine scrubs 97.5 96.8 91.1 94.1
Forests 84.9 57.3 89.7 63.6
Grasslands 98.4 97.0 94.2 86.0
Heathlands 62.3 94.0 44.8 52.0
Rock and scree vegetation 66.6 87.9 71.9 82.1
Bogs, fens and springs 93.4 91.4 60.0 66.7
Areas without vegetation 65.8 90.9 46.9 83.3
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6. Discussion

An OA for the 252 band APEX dataset reached about 75% and kappa coefficient was
0.72, which is a satisfactory result. These results are supported by preliminary results for
a non-forest and forest vegetation communities classification using raw APEX data in the
western part of Karkonosze (Marcinkowska et al. 2014), where an OA reached 79.1% and
kappa 0.77. The OA and kappa obtained for forest species classification using APEX in
Karkonosze was 78.6% and 0.71, respectively (Raczko et al. 2015), which also confirms
the accuracy of this article. It is also supported by studies of vegetation communities in
Tatras (Zagajewski 2010), where, admittedly, the OA was higher at 88.6% and the kappa
0.87 but the accuracies for individual classes were comparable, e.g. more than 90% PA
for Empetro-Vaccinietum or Pinetum mugo and the worst classified complex communities
as willow thicket or Vaccinium myrtilus community in a complex with tall herb
communities.

It was difficult to map heterogeneous mountain vegetation, especially at the com-
munity level. To reduce the mixed pixel classification problem, Belluco et al. (2006)
suggests using a high spatial resolution dataset. Clark, Roberts, and Clark (2005) dis-
criminated tropical rain forest tree species at leaf to crown levels using three scales: field
spectral characteristics, HYDICE airborne image and also simulated multispectral broad-
band imagery with fixed spatial resolution. They observed a decrease in classification
accuracy from fine to coarser scales, which is also confirmed by the present study. Ghosh
et al. (2014), where the three spatial data resolutions were 4, 8 (HyMap data), and 30 m
(Hyperion data), concluded that 8 m resolution was the best for tree species classifica-
tion. It was explained as a compromise between over-generalization and spectral mixing
within 30 m pixels, contrasting with higher spectral variance within a species class
resulting in lower spectral separability amongst species in 4 m pixel. Overall, the
differences between the best results of 4 and 8 m were small and not negatively
influencing accuracies. It should be noted that tree species have different physiognomy
compared to non-forest vegetation communities or types, with the compromise
between a too general and too detailed spatial resolution being consistent with the
results presented, i.e. why the classification of APEX data for vegetation types achieved
the best result. In this context, the result obtained for vegetation communities should be
considered as satisfactory, because a fine spatial resolution dataset (e.g. 12 cm ortho-
photomaps) could cause communities containing mosaics of different species not to be
distinguished properly. A comparative study of different scales performed by Zhang and
Xie (2013) found that the community-level classification was easier and better per-
formed than species-level, with the RF method achieving an OA of 36% for the original
dataset and 79% for the MNF transformed data. The authors used also segmentation,
which improved discrimination of larger and more complex communities than a big
number of different species. Comparison of OA and kappa coefficient in vegetation-type
classification of presented study, for both the APEX and EnMAP datasets, revealed that
using finer spatial scales was slightly better. However, comparing vegetation-type
classifications between both datasets, showed that the data are characterized by a
significantly different spatial resolution and therefore it could be concluded that the
OA differences and kappa values are not high and also PA and UA for classes are not
very varied.
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The most common approach in the literature is to use the RBF kernel (Foody and
Mathur 2004; Chan et al. 2012; Lin et al. 2008), which was in second position for the
vegetation community classification accuracy. There are some situations where the RBF
is not the best, when the number of features is very large, which is where one may just
use the linear kernel (Hsu, Chang, and Lin 2010). In this case, the best OA was achieved
for this approach when using the original APEX spectral bands. The worst classification
accuracy was obtained for sigmoid function (about 28% worse than for linear) which is
supported by studies of Shah et al. (2003). Testing the penalty and gamma parameters
allowed for choose the most optimal combinations for the functions requiring these
parameters leading to reach the best classification accuracy. The results for all functions
were more stable using data without noise (MNF transforms).

Hyperspectral data give an opportunity to find even slight differences between
similar classes, which is not possible using multispectral data with wider ranges and
less number of bands. Some classes of vegetation community or type differentiate more
in the red edge region, another classes are distinguishable significantly in the SWIR
region. For that reason, the data with many bands bring higher probability to find
differences between classes, especially when the object of the classification is a mosaic
of different species as a vegetation community. Demarchi et al. (2014), for detailed urban
mapping (22 classes), also achieved the best accuracy when all the original bands were
used. Using dimensionality reduction techniques is varying depending on used data and
methods. Pal and Mather (2006) found that MNF transformation resulted in decreased
accuracy, but in the studies of Zhang and Xie (2013), the authors observed increased
classification accuracy. The fact is that this transformation decreases the computational
time, and so speeds up the classification process, which would be a potential trade-off
against OA. So, in the presented work, combining the MNF method and SVM classifier is
promising for reducing the high data volume with no significant loss of accuracy, but for
presenting the full potential of APEX and forthcoming EnMAP data, it was better to
present the whole spectrum of available spectral bands.

Visual interpretation supported the accuracy assessment results. The vegetation
community map was similar to a reference non-forest vegetation map, but attention
should be paid on its actuality and the information from the 2013 and 2014 field survey.
The maps of vegetation type were similar in most areas, especially in large, and homo-
geneous patches. For EnMAP_type dataset, some breaks were observed in linear trails
labelled as areas without vegetation and confused with rock and scree vegetation
because of their spectral similarity. Too large a spread was observed for bogs, fens,
and springs which is confirmed by its commission in the error matrix.

The accuracy results could be improved by performing topographic correction of the
APEX data, which might allow the classification of shadow affected areas. Including
these areas would be important because of their very high diversity, especially near Mały
Staw Cirque. For EnMAP, this problem was less significant because of its spatial resolu-
tion, which could not distinguish linear-shaped thin vegetation such as herbs, so the
area would have been classified as the majority of the neighbouring pixels – subalpine
dwarf pine scrubs. The rest of the masked area is located near Sniezka peak, where there
is only rock and scree vegetation alongside subalpine dwarf pine scrubs. Therefore, the
lost information comes only from these two classes, whose location is possible to predict
so the problem is less serious than in the classification of vegetation communities.
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Otherwise, the lack of topographic correction did not significantly affect the classifica-
tion results.

7. Conclusions

This study showed that hyperspectral aerial and satellite data can be used to classify
subalpine and alpine vegetation, for satellite at vegetation types and for aerial at both,
vegetation community and types scale. For the vegetation community classification, the
252 band set offered the highest accuracies when compared to the MNF input (30
transforms) that underlines the necessity for full spectrum analyses and the use of
imaging spectroscopy overall; the 252 band set achieved an OA of 74.39% while the
MNF transforms reached 74.35%. The difference is not significant, however, the MNF
input did provide a classification time that was more than two times shorter. Overall, the
SVM linear kernel function provided the best results (74.39%), with the worst being from
the sigmoid kernel function (46.54% for the 252 band set). Very similar results were
achieved for the polynomial and RBF kernels with MNF transforms dataset, with OA of
around 73%, for original dataset the difference between these two function was greater
(about 10% less for polynomial function).

These classifications provided maps of 21 vegetation communities, where 13 classes
were classified with accuracies of higher than 70% (PA), and three classes at less than
50% accuracy. Furthermore, SVM was especially beneficial for heterogeneous classes, for
which only a few training samples could be identified and when the number of samples
was large (around 400 pixels). Overall, the achieved results were acceptable (more
than 70%).

This research also demonstrated the potential of APEX data and the SVM method for
producing detailed vegetation maps, which represent a large number of classes that
were difficult to identify in the terrain; especially in mountainous areas. The best
classified vegetation communities, excluding early stages of succession which were
not a community, but very well classified (about 95% PA and UA) were the Oxycocco-
Sphagnetea and Empetro-Vaccinietum (more than 90% PA), which were smaller units and
a mosaics of different minor species. In addition, high PA was obtained for Pinetum
mugo sudeticum, which is the dominant class on the image. Also, the reference non-
forest vegetation map included some classes that are (from a phytosociological point of
view) important, but not identified by the unmixing of pixels within the APEX image. The
Pino-mugo Sphagnetum and Pinetum mugo sudeticum communities were combined into
one because they were very much spectrally similar, the same situation was for
Artemisietea vulgaris and Urtica dioica so it should be one class in the hyperspectral
mapping. EnMAP classifications of ruderal vegetation and herbs classes were not distin-
guishable because too small an area was covered by these classes, and so it was not
possible to classify and assess their accuracy properly.

The forthcoming EnMAP data will be a very powerful tool for vegetation identi-
fication and monitoring. The overall accuracies of the EnMAP and APEX classifications
reached high values, with most classified to an accuracy of more than 65% in both
datasets. Some classes reached higher accuracy values for APEX (e.g. deciduous
shrubs vegetation), because of the complexity and smaller geographical range of
these classes. Noting, that the spatial resolution of EnMAP is significantly lower than
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APEX, this did not have a significant impact on the overall accuracies and kappa
results. However, it did have an impact in the case of small and non-compact
patches of vegetation types as in the case of ruderal vegetation that was removed
from the final version.

According to this research, hyperspectral airborne data are a suitable solution for
obtaining information about vegetation, because the high spatial and spectral resolution
allows for the detailed classification of communities. Unfortunately, airborne data can be
costly and often has only limited availability. Hence, spaceborne imaging spectroscopy
enables a higher temporal resolution that benefits the overall monitoring approach, and
even enables the investigation of short-term trends. Therefore, it is concluded that
hyperspectral remote sensing techniques can be used to reduce the amount of field-
work, especially when searching for and mapping vegetation communities and types. In
addition, it allows consistent and spatiotemporal extensive monitoring of sensitive and
difficult to access mountainous regions.
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