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Abstract. Flood loss modelling is associated with considerable uncertainty. If prediction uncertainty of flood loss
models is large, the reliability of model outcomes is questionable, and thus challenges the practical usefulness. A key
problem in flood loss estimation is the transfer of models to geographical regions and to flood events that may differ
from the ones used for model development. Variations in local characteristics and continuous system changes require

regional adjustments and continuous updating with current evidence. However, acquiring data on damage influencing

factors is usually very costly. Therefore, it is of relevance to assess the value of additional data in terms of model
performance improvement. We use empirical flood loss data on direct damage to residential buildings available from
computer aided telephone interviews that were compiled after major floods in Germany. This unique data base allows
us to trace the changes in predictive model performance by incrementally extending the data base used to derive flood
loss models. Two models are considered: a uni-variable stage damage function and RF-FLEMO, a multi-variable

probabilistic model approach using Random Forests. Additional data are useful to improve model predictive

performance and increase model reliability, however the gains also seem to depend on the model approach.

1 Introduction

Flood loss modelling is associated with considerable
uncertainty which is due to an incomplete knowledge
about the damaging process and to the inherent variability
of quantities involved [1]. In view of large uncertainty in
flood loss model predictions, the reliability of model
outcomes is questionable and challenges the practical
usefulness of model results; particularly when this affects
the quality of decision as for instance on the investment
in flood defences [2]. Therefore, it is of high importance
to complement model outcomes with quantitative
information about prediction uncertainty [3]. In
comparison to traditional stage-damage functions which
simply relate flood loss to inundation depth, multi-
variable flood loss models, which take additional factors
as for instance building characteristics, precaution,
contamination etc. into account are an improvement to
explain the variability of observed flood loss data [4, 5].
In spite of this, uncertainty ranges of flood loss
predictions are still large, and thus probabilistic
modelling approaches which take uncertainty into
account and provide quantitative information about
model prediction uncertainty are required [3].

A key problem in flood loss estimation is the transfer
of models to geographical regions and to flood events
that may differ from the ones used for model
development [6]. Variations in local characteristics and
continuous system changes require regional adjustments
by updating the model with local evidence [3].
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In this light, the demand for more and systematically
collected data is an obvious conclusion. However, the
acquisition of information on flood loss and influencing
factors is elaborate and costly. Therefore, it is of
relevance to assess the value of additional data in terms
of model reliability improvement.

We use empirical flood loss data on direct damage to
residential buildings available from computer aided
telephone interviews (CATI) that were compiled after
major floods in Germany [7]. This unique data base
allows us to trace the changes in predictive model
performance and reliability within a split-sample
validation test by incrementally extending the data base
used to derive flood loss models. Further, it offers the
possibility to gain insight into the benefit of incorporating
local evidence to a flood loss model. To study the
implications of additional data on model prediction
uncertainty, the analysis is conducted for probabilistic
flood loss modelling approaches.

2 Data and Models

2.1 Empirical flood loss data

Empirical data of direct flood damage to residential
buildings and related damage influencing variables are
available from CATI that were carried out after the floods
in 2002, 2005, 2006, 2010, 2011 and 2013 in Germany. A
compilation of loss cases broken down for events and
river basins is provided in Table 1. In total 2,254
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empirical loss cases are available. Regional focuses of
loss cases are in the Elbe and Danube river basins.

Set River basin/region Event Number of
year loss cases
E02 Elbe 2002 661
D02 Danube 2002 286
D05 Danube 2005 116
E06 Elbe 2006 43
Del0 Germany 2010 242
Dell Germany 2011 103
E13 Elbe 2013 649
D13 Danube 2013 130
Germany outside
Del3 Elbe of Danube 2013 24
Total: 2254

Table 1. Loss cases for different flood events and regions in
Germany.

Within the CATI campaigns a broad range of
information were gathered covering damage influencing
aspects related to flood impacts, building characteristics,
socio economic status, precaution and early warning.
From this extensive data set, 28 candidate variables were
preselected to be used in a modelling context for
predicting the relative loss ratio of residential buildings
(rloss). These candidate variables were selected
according to experiences from previous analyses [7, 8].
This selection of variables for flood loss modelling is
narrowed further in this study based on the analysis of the
out-of-bag feature importance as an indicator for the
relevance of individual variables [8]. Accordingly, the
variables water depth (wsf), building value (bv), floor
space of building (fsb), contamination indicator (con),
return period of flood peak discharge (7p), inundation
duration (d), precautionary measures indicator (pre),
emergency measures indictor (em), age of interviewed
person (age) and indicator of flood warning information
(wi) are used to predict rloss. Further details about the
variables are documented in Merz et al. 2013 [8].

2.2 Loss models

Two flood loss models are considered: (i) uni-variable
stage-damage function and (ii)) multi-variable RF-
FLEMO which is based on the machine learning
technique of random forests (9).

The model structure of the stage-damage function
(sdf) for the estimation of rloss is defined as a two
parameter (a, b) square root function of water depth (wst)
as given in Equation 1:

rloss = a+b(wst)"”? (1)

To evaluate predictive uncertainty, the sdf model is
cast in a Bayesian modelling framework using a Monte
Carlo Markov Chain approach for Gaussian linear
regression using Gibbs sampling. Within this framework,
the posterior distributions of model parameters a and b
are used to sample the predictive distribution of rloss
which  describes model predictive uncertainty.
Calculations are carried out using the R-package
MCMCpack [10].

The multi-variable model RF-FELMO is built using
the machine learning technique of random forests (RF).
RF is an ensemble of Regression Trees (RT) derived by
generating many bootstrap replicas of the data set and by
growing a RT on each replica. RTs are tree-building
algorithms for predicting continuous dependent variables
[11]. They recursively sub-divide the predictor data space
into smaller regions in order to approximate a nonlinear
regression structure. At each split the data set is
partitioned into two sub-spaces in such a way that the
improvement in predictive accuracy is maximised.
Bootstrapping captures the effects of data variability as
one source of uncertainty in flood loss modelling [12].
The ensemble of candidate RT composing the RF
represents a variety of model structures reflecting model
structure uncertainty. The sample of rloss predictions
provided by RF-FLEMO represents the prediction
uncertainty of the multi-variable modelling framework.
RF-FLEMO model derivation and rloss predictions are
carried out using the R-package randomForest [13].

3 Analysis framework

The implications of additional data on model
performance are investigated in a split-sample validation
test framework. Basically this involves a splitting of
available data into two sub-sets which are either used for
model derivation or for an independent evaluation of
model predictive performance also referred to as model
validation [14]. Evaluation of model predictive
performance and predictive uncertainty is implemented
by means of a set of performance criteria for accuracy,
reliability, and sharpness and prediction skill.

3.1 Split-sample validation experiments

Two validation experiments are designed. The first
investigates the value of data within a gradual learning
setting. In this case, the amount of data available for
model derivation is incrementally increased and model
performance and predictive uncertainty are evaluated
using an independent split-sample of the data. This
validation sample is randomly drawn from the complete
sample and is not used to derive the models.

The second experiment examines the effect of using
local evidence, i.e. regional specific observations to
update a basic model. In this context basic flood loss sdf
and RF-FLEMO models are derived using randomly
selected loss cases from the complete data sample and
then gradually including regional data available from
specific local data sets of different CATI campaigns in
the derivation of the models. Accordingly, the regional
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updating of the basic models for instance in the Danube
catchment includes a model derivation sequence using
the data sub-set D02, next the data sub-sets D02 and D05
and finally the sub-sets D02, D05 and D13. Model
predictive  performance is evaluated using the
observations of the sub-set DI13. All experiments
conducted are compiled in Table 2.

Experiment Derivation set Validation set
200 loss cases
Incremental | 100 increments of ca. 20 randomly
split-sample | loss cases selected from
complete
sample
e 200 random loss cases
Regional from complete sample
updating e D02 D13
Danube ¢ D02 + D05
e D02 + D05 + D13
® 200 random loss cases
Regional from complete sample
updating e E02 E13
Elbe e E02 + E06
e E02 + E06 + E13

Table 2. Split-sample validation experiments for
incremental model derivation.

3.2 Performance criteria and scores

Model predictive performance and model predictive
uncertainty are evaluated in terms of mean bias error
(equation 2), mean absolute error (equation 3), quantile
range of predictions (equation 4), hit rate (equation 5) and
the interval score (equation 6); where Qs refers to the
median (50-quantile), Qg5 to the 95-quantile and Qs to
the 5-quantile of the predictive distribution and O
represents observed values of the predicted variable r/oss.
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Mean bias (MBE) and mean absolute error (MAE)
give information about the accuracy and the exactness of
model predictions. MBE and MAE are calculated using
the 50-quantile (Qsp) of the predictive distributions for
each loss case. The quantile range (QRy), Hit rate (HR)
and interval score (/S) enable to evaluate the sharpness,
reliability and

overall performance of the interval predictions generated
by the probabilistic models and are outlined in detail in
[15] and [16]. QR is defined as the mean quantile range
of model predictions between the 95-quantile and 5-
quantile. It is an accuracy measure of the prediction
interval with smaller values representing smaller ranges
of the model prediction interval. HR is an indicator for
model reliability by quantifying the ratio of observations
within the prediction interval. IS combines sharpness and
reliability scores in a single overall performance measure.
The second term in Equation 6 penalises observations
outside the prediction interval by the distance to either
the upper or lower boundary of the interval. This penalty
depends on the quantile range considered in terms of the
coefficient f which is defined as f = 1 — 0.9 for the 95 to
5-quantile range as upper and lower boundaries of the
prediction interval. Smaller IS values indicate a narrow
quantile range and higher coverage of observations
within the prediction interval.

4 Results and Discussion

The results of the incremental split-sample validation test
are shown in Figure 1 for the sdf-model and in Figure 2
for RF-FLEMO in terms of performance traces for the
different criteria and scores depending on the sample size
used for model derivation.

Figure 1. Performance traces for incremental split-sample
evaluation of sdf model, x-axis: sample size, y-axes
performance values.
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For the sdf-model larger datasets tend to reduce the
bias of predictions. In contrast, a slight improvement but
no substantial change is seen concerning MAE. The ORy
decreases clearly with larger datasets reflecting a higher
sharpness of predictions. However, this smaller
prediction interval hardly covers any of the observations
used for model validation which can be recognized from
the decreasing HR. Both developments are also reflected
in a continuous deterioration of the interval score IS for
the predictive distribution. QRgy, HR and IS seem to be
stabilizing above a sample size of ca. 1,500 loss cases.
Beyond that additional data do mnot contribute
substantially to a further improvement.

MBE

MAE

Figure 2. Performance traces for incremental split-sample
evaluation of RF-FLEMO, x-axis: sample size, y-axes
performance values.

For the RF-FLEMO model larger datasets reduce the
bias and minimize the MAE. The ORy, of the RF-FFLEMO
prediction interval increases as additional data are taken
into account for model derivation and indicates a larger
uncertainty in the model predictions. However, this
development is paralleled by a clear improvement of the
reliability of model predictions which can be recognized
from the HR score. HR approximates a value of 0.85
which is very close to the nominal coverage rate of 0.9
for the 95 to 5-quantile range and expresses an almost
complete representation of uncertainty in the framework.
The development of ORyy and HR results in a continuous
improvement of the interval score IS for the prediction
interval. As for the sdf-model the performance scores
appear to be stabilizing with increasing sample size above

1,500 loss cases, yet a clear improvement of model
performance is achieved already with ca. 500 loss cases
indicating a more rapid learning curve for the multi-
variable RF-FLEMO model in comparison to the uni-
variable sdf model.

The results of the regional updating experiments in
the Danube and Elbe catchments are summarized in
Figure 3. Performance measures are shown for each
updating step, i.e. starting from the basic model and
gradually extending the data basis for deriving the
models, cf. Table 2.
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Figure 3. Model performance of sdf and RF-FLEMO models in
regional updating in the Danube (D) and Elbe (E) catchments.

The improvement of model performance by including
gradually local specific observations in the model
derivation can be recognized for both models in terms of
reduced bias (MBE) and smaller MAE. For RF-FLEMO
the HR is continuously improved while QRy, is reduced
which is also reflected in smaller IS values, indicating an
improved reliability and sharpness of the predictive
distribution. In contrast, similar to the incremental split-
sample learning experiment for the sdf model additional
regional data are not effective to increase model
prediction reliability. The benefit of additional data is
more obvious in the Elbe updating sequence. In the
Danube catchment additional data appear to be of less
value to achieve better predictions for the D13 validation
set. A clear improvement is only achieved if the D13 sub-
set is included in model derivation. A possible
explanation for this is that in this specific sub-set many
loss cases are related to inundation as a result of major
dike breaches. This resulted in large inundation depths
and high relative losses (not shown), which are not
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represented well in the sub sets of the earlier campaigns
D05 and DOS.

Overall, even though the prediction uncertainty
remains considerable, the performance measures
achieved by sdf and RF-FLEMO model updated with
local specific information are superior to the performance
values achieved within the incremental split-sample
validation. This supports the hypothesis that local
information is useful to improve the reliability of flood
loss estimation.

5 Conclusions

The value of data for the performance and reliability
of flood loss predictions has been analysed within
incremental split-sample and regional updating validation
tests conducted for two probabilistic flood loss models.
Both experiments demonstrate that additional data are
useful to improve model predictive performance and
reliability. The importance of local specific information
to adjust loss models to regional characteristics is
stressed. Comparing both model approaches the
performance gain is higher for the multi-variable model.
Even though predictive uncertainty ranges for RF-
FLEMO are larger, which is due to the fact that with
additional variables additional uncertainty sources are
revealed, the modelling framework seems to more
realistically represent the uncertainty. In contrast, the
predictions provided by the sdf model are clearly less
reliable. Apparently the uni-variable model approach is
not capable to adequately describe the variability in loss
observations. Therefore, one recommendation is to
develop methods and to establish procedures which
enable decision makers to take uncertain model
predictions explicitly into account.

The effort to collect additional loss data seems to be
justified as it is useful to improve model predictive
performance and reliability. However, the gain also
depends on the model approach applied. In this context, it
is rewarding to not only focus on inundation depth but to
comprehensively gather information for other loss
influencing factors which enable the application of multi-
variable flood loss models. As an extension of the
analysis framework the connection of costs for data
acquisition and monetary gains of more informed
decisions should be investigated.
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