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Abstract

Earthquake focal mechanism solutions (FMS) form the basic
data input for many applications, e.g. stress tensor inversion
or ground-motion prediction equation estimation. In these
applications the FMS data is usually binned spatially or in
predetermined ranges of rake and dip based on expert elici-
tation. However, due to the significant increase of FMS data
in the past decade an objective data-driven cluster analysis
is now possible. Here we present the method ACE (Angular
Classification with Expectation-Maximization) that identifies
clusters of FMS without a priori information. The identi-
fied clusters can be used for the classification of the Style-of-
Faulting and as weights for FMS data binning in the afore-
mentioned applications. As an application example we use
ACE to identify FMS clusters according to their Style-of-
Faulting that are related to certain earthquake types (e.g.
subduction interface) in northern Chile, the Nazca Plate and
in Kyūshū (Japan). We use the resulting clusters and weights
as a priori information for a stress tensor inversion for these
regions and show that uncertainties of the stress tensor esti-
mates are reduced significantly.
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Chapter 1

Introduction

Earthquake focal mechanism solutions (FMS) are of key
importance for understanding rupture kinematics and the ge-
ometry of faults at depth. They are used e.g. to derive the ori-
entation of maximum horizontal stress and the stress regime
for the World Stress Map where they are the key contributor
to this global data base (Zoback , 1992; Heidbach et al., 2010).
Furthermore, knowledge of the Style-of-Faulting (SoF) and
the fault plane orientation are crucial in several fields of seis-
mology, e.g. seismic hazard (GMPE, b-value) and in studying
the Earth’s stress field and changes within it (Meier et al.,
2014). Furthermore, data sets of FMS are used to investigate
the seismotectonic setting of sub-regions and to derive the
stress tensor orientation and relative magnitudes by means
of a formal stress inversion (e.g. Gephart and Forsyth, 1984;
Michael , 1984). In these applications the FMS data are usu-
ally binned spatially or in predetermined ranges of rake and
dip based on expert assessment.

Several methods have been suggested to investigate clus-
ters of FMS and moment tensors (MT), respectively. FMS
represent the double couple component of a rupture plane,
while moment tensor solutions provide also non-double-couple
components. Due to the nodal plane ambiguity of the double
couple, cluster analyses so far published are limited to certain
aspects of FMS. E.g. Frohlich (1992) reduces the FMS (MT)
to the plunge of the vertical components of the PBT axes. By
expressing the focal mechanism in terms of their PBT axes,
the nodal plane ambiguity is avoided. An advantage of this
technique is the way data are presented: The complex ge-
ometry of the FMS can be represented in a two-dimensional
ternary diagram, where each triangle corner is one end mem-
ber of the Andersonian Style-of-Faulting (SoF), i.e. normal,
reverse and strike-slip faulting. FMS in the center of the plot
are classified as ”oblique” or ”odd”. Event clusters are e.g.
investigated for their consistency, a metric based on the scalar
moment (Frohlich and Apperson, 1992).

Kagan (1991) defines the relative similarity of the FMS
(MT) based on the shortest angle to rotate one FMS into an-
other. A major advantage is that results are given in one
parameter only, the minimum rotation angle between the
FMS (frequently called Kagan angle). The distribution of the
rotation angle follows a wrapped Cauchy distribution (Ka-
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Figure 1.1: Catalog growth over time of GCMT (Global
Centroid-Moment-Tensor, Dziewonski et al. (1981); Ekström
et al. (2012)), GEOFON (GEOFosrchungsNetz, Hanka and Kind
(1994)), USGS (United States Geological Survey), JUNEC FM2

(Japan University Seismic Network Earthquake Catalog of First-
Motion Focal Mechanisms, Ishibe et al. (2014)), NIED (National
Research Institue for Earth Science and Disaster Prevention,
Japan) and RCMT (European-Mediterranean Regional Centroid
Moment Tensor Catalog, Pondrelli et al. (2011)). GCMT, GEO-
FON and USGS are global catalogs, while the others are regional
catalogs: JUNEC FM2 & NIED and RCMT.
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gan, 1992). Another cluster analysis method is the so-called
density-based clustering. It is based on the DBSCAN algo-
rithm of Ester et al. (1996) and assumes that FMS (MT) are
distributed with two different ”densities” of events (Cesca
et al., 2014). This density can be measured in different ways,
in case of FMS/MT usually some angular metric, e.g. the
above mentioned Kagan angle. Events with high densities
(short distance metric values) are joined to one cluster; events
with low densities (large distances) are considered to be noise
and not included in a cluster. The advantage of this method
is that no assumption on the underlying distribution of the
data is required. The clusters are defined by two parameters,
the minimum number of data per cluster and the threshold
of the metric length at which a cluster is identified. Thus,
the definition of ”high” and ”low” densities as well as the
minimum size of a cluster are user based.

Another common way of cluster assignment thresholds are
based on the expertise and experience of scientists by includ-
ing additional information such as focal depth and informa-
tion from structural geology. Though straightforward in its
implementation, the final choice of the selected data lacks
transparency and does not provide a measure for the qual-
ity of the choice. Furthermore, two of the above mentioned
techniques are also to some extend subject to expert based
judgment. These are the event class boundaries in the ternary
plot representation and the two cluster defining parameters
of the DBSCAN based method.

In order to avoid the a priori expert assessment of FMS
data sets an objective data-driven cluster analysis is needed.
This analysis should also deliver weights in terms of the
quality of the identified clusters. Given that the amount
of FMS data has increased significantly in the past decade
(Fig. 1.1), a purely data-driven earthquake focal mechanism
cluster analysis is now possible. We develop in this paper
the method ACE (Angular Classification with Expectation-
Maximization) which identifies clusters of FMS without a
priori information. The physical fundamentals of our FMS
cluster algorithm are based on elasticity theory using the 3D
Cauchy stress tensor to formally describe the stress state at
a point in a 3D volume. The algorithm is not a stress ten-
sor inversion, but it also differs from the purely descriptive
clustering methods presented e.g. in Frohlich and Apperson
(1992) or Cesca et al. (2014). ACE follows basic assumptions
about the distribution of random stresses (Kagan, 1990). It is
a purely data-driven method that investigates the full scope
of FMS data by considering both nodal planes and as lit-
tle assumptions as possible. All parameters controlling the
results are estimated in the process, thus mitigating effects
from expert based judgment.

The identified clusters can be e.g. used for the classification
of the Style-of-Faulting and as weights for FMS data binning
in the aforementioned applications. We show how the results
of ACE can be used to improve the binning of FMS data
for the stress tensor inversions. The improvement is achieved

by separating the FMS data into more consistent subpopu-
lations of FMS with weights. The examples from northern
Chile (subduction interface), the Nazca Plate and in Kyūshū
(Japan) exemplify that the uncertainties of the stress ten-
sor orientation resulting from a formal stress inversion are
reduced significantly.

2
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Chapter 2

Cluster analysis of focal mechanisms

2.1 Theory

2.1.1 Stress definition

An earthquake can be seen as a sudden deformation process
resulting in slip caused by the ambient stress field in the sur-
rounding rock. The 3D stress state is described by a sym-
metric 3×3 tensor σ (Zang and Stephansson, 2010; Jaeger ,
1979).

σ =

σ11 σ12 σ13
σ12 σ22 σ23
σ13 σ23 σ33

 (2.1)

The stress σ can be decomposed into four terms (Kagan,
1990, and ref. therein):

σ = σl + σt + σf + σr, (2.2)

where σl is the lithostatic stress, σt the regional tectonic
stress, σf the stress related to prior earthquakes, and a ran-
dom stress term σr. The first three terms are assumed to
be related to macroscopic phenomena and therefore constant
and non-random. The random stress term is due to defects
in the rock mass.

Kagan (1990) showed that the orientation of the random
stress σr follows a Cauchy distribution. Based on this as-
sumption, the distribution of the focal mechanism orienta-
tions follows a wrapped Cauchy distribution (the concept of
wrapped distributions is introduced in the next section) (Ka-
gan, 1990, 1992).

We use the assumption of stress decomposition in Eq. 2.2
to derive a statistical model to describe the distribution of
the three FMS angles, namely strike, rake and dip.

In the following we derive the relationship between stress
σ and the slip and normal vectors of a focal mechanism and
their associated angles.

The three eigenvectors of σ indicate the principal stress di-
rections and the eigenvalues the principal stress magnitudes.
We define the principal stress orientations as v̂1, v̂2, v̂3 with
associated stress magnitudes as S1 ≥ S2 ≥ S3 and compres-
sive stress to be positive. The traction T is the force resulting
from σ acting on a surface with normal n (Fig. 2.1).

T = σn (2.3)

The normal stress σn follows from

σn = T · n (2.4)

and the vector of maximum shear stress s is

s = T− (T · n)n (2.5)

The slip d̂ on a fault is oriented in the direction of maximum
shear stress (Wallace, 1951). In case of a preexisting fault,
Bott (1959) suggested that fracturing occurs in the plane in
which the strength was first exceeded and the direction of
the initial slip is defined by the direction of the maximum
shear stress (Fig. 2.2). Furthermore it is assumed, that fault
planes are planar and that stress perturbations and rotations
on the fault surfaces are neglected. Under these conditions,
it follows, that the slip direction d̂ and the normal vector
of the rupture plane n̂ are located in the plane spanned by
v̂1 and v̂3, or in other words, with a normal vector parallel
to v̂2. This implies that v̂2 = b̂ = n̂× d̂. Lisle (2013)
pointed out that directions up to 26◦ off the maximum shear
orientation are at still at 90 % of the shear stress magnitude.
Thus, slip and shear stress orientations are not necessarily
well aligned. However, the applicability of the Wallace-Bott
hypothesis to earthquake rupture processes has been shown
by several studies (e.g. Dupin et al., 1993; Pascal , 2002).

2.1.2 Representation of a Focal Mechanism
Solution

Expressing a auxiliary/rupture plane of an earthquake with
normal vector n̂, slip vector d̂ and the cross product
b̂ = n̂× d̂ in terms of the strike (φ), rake (λ) and dip (δ)

3
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x1

x2

x3

n̂

~T

~τ

~σ

Figure 2.1: Stress vector T (red) acting on a plane (gray area)
in 3D space. The stress vector can be decomposed into its normal
(green) and shear components (blue). The normal stress compo-
nent is orthogonal to the plane (parallel to n̂). Its magnitude is
given by Eq. 2.4. The shear stress lies in the plane (parallel to it)
with orientation given in Eq. 2.5. The eigenvectors of the stress
tensor σ are orientated parallel to the three axes x1, x2, x3.

angles (Kanamori and Cipar , 1974):

n̂ =

− sin δ sinφ
− sin δ cosφ

cos δ

 (2.6)

d̂ =

sinλ cos δ sinφ+ cosλ cosφ
sinλ cos δ cosφ− cosλ sinφ

sinλ sin δ

 (2.7)

b̂ =

cosλ cos δ sinφ− sinλ cosφ
cosλ cos δ cosφ+ sinλ sinφ

cosλ sin δ

 (2.8)

The slip vector d̂ is in the plane described by the normal vec-
tor n̂, thus both vectors are orthogonal and their dot product
vanishes, i.e. n̂ · d̂ = 0. It follows from the orthogonality of
the nodal planes, that the normal vector of one nodal plane
is the slip vector of the other and vice versa (e.g. Stein and
Wysession, 2003). The two nodal planes of a FMS have sub-
scripts 1 and 2:

n̂1 = d̂2 and d̂1 = n̂2 (2.9)

γ

n̂

T

s

sγ

Tn

RU
PT

UR
E PL

AN
E

Figure 2.2: Orientation and magnitude of the resultant shear
stress / slip on a plane. Maximum shear stress is orientated par-
allel to stress vector projected onto the rupture plane (Eq. 2.5).
According to the Wallace-Bott hypothesis slip is orientated in max-
imum shear orientation. However, even directions 26◦ off the max-
imum shear orientation are still at 90 % of the magnitude of the
maximum shear stress.

Due to this symmetry, the nodal planes given by an FMS
cannot be separated into rupture and auxiliary planes. And
due to the exchangeability of both vectors follows for the null
axes:

b̂1 = n̂1 × d̂1

= d̂2 × n̂2 = −b̂2

(2.10)

Following the Wallace-Bott hypothesis the shear vector s is
in the same direction as the fault slip d̂. This relation shows
that the slip d can be considered as a function of the stress
tensor and the fault surface normal which in turn is a function
of strike and dip

d(φ, δ, λ) = d(φ, δ,σ) = d(n,σ) (2.11)

The rake λ can be regarded as a function of strike, dip and
stress orientations. Consider a given stress tensor where the
orientation of an arbitrary intermediate stress ŝ2 = b̂ is fixed.
Then the following equation can be derived from Eq. 2.8 (see

4
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Figure 2.3: Model illustrating the relation between strike and rake of a nodal plane (red & blue rough surfaces, angles with index
1) for a constant slip vector (gray vector, normal of the smooth gray plane, index 2). If a nodal plane’s strike φ1 is shifted by an
infinitesimal increment ∆φ1, then the rake λ1 is shifted by ∆λ1. The strike is defined on a horizontal plane, while the rake is defined
on the nodal plane itself. The distance between the horizontal and the nodal plane shifted by ∆φ1 and ∆λ1, respectively, is ∆φ1 cos δ1,
i.e. ∆λ1(∆φ1)−1 = cos δ1.

5
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45◦

90◦
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180◦

0◦ 90◦ 180◦ 270◦ 360◦

λ = 0.9137φ− 157◦ λ = 0.9397φ− 164◦

λ

φ

auxiliary plane
rupture plane
TLS estimate
expected value

Figure 2.4: Shape dependence of nodal plane clusters. The
clusters represent both nodal planes expressed as angles simulated
from a near isotropic stress tensor. The variance is caused by
adding normally distributed noise to the principal stress axis ori-
entations. The simulated regime is reverse with maximum hori-
zontal (and principal) stress orientation in north-south direction,
resulting in an average strike and rake of 90◦. The underlying
fracture criterion is the Mohr-Coulomb criterion with a friction
coefficient of 0.7. The first simulated rupture plane is reactivated
in subsequent rupture events, therefore simulating the reactivation
of faults. The blue cluster represents here the auxiliary plane and
has a mean dip of 70◦. Since the dip is close to zero, no relation
between strike and rake is observable. The corresponding cluster
of the rupture plane is the elongated cluster to the right (red). Due
to its shallow mean dip of 20◦, a strong relation between strike and
rake is apparent. The slope of the cluster in the strike-rake plane,
estimated by total least squares (TLS, green line), is close to a
slope of cos 20◦ ≈ 0.9397 (black line), which is the expected value
of the slope from Eq. 2.12.

appendix A.1.1 for derivation):

∂λ(φ, δ)

∂φ
= cos δ (2.12)

∂λ(φ, δ)

∂δ
= 0 (2.13)

The same relation holds for a constant slip vector d̂ of ei-
ther nodal plane, then the derivatives in Eq. 2.12 and 2.13
are found by setting the derivative of Eq. 2.7 to zero (see
appendix A.1.1). Figure 2.3 graphically visualizes the deriva-
tion of the derivatives. The two derivatives imply that in
general on one side no functional relation exists between rake
and dip (as is the case for strike and dip). On the other side
a relationship exists between strike and rake according to Eq.
2.12. In Figure 2.4 we show FMS nodal plane clusters from
synthetic data. Both relations between the angles can also be
observed in global data sets, as shown for the entire GCMT
catalog in Fig. 2.5.

The implications of the derivatives for the data distribu-
tion are taken into consideration for the cluster analysis. The
cluster analysis itself is inductive, i.e. nothing is known about
the clusters a priori. Any information about the clusters is

derived during the run of the analysis. The advantage of
not using a priori information comes with its adaptability to
the data. Thus additional information, which possibly eludes
a deterministic approach for investigating individual events,
can be observed. This additional information from the clus-
tering can be used to assign weights to FMS used in other
applications, e.g. stress tensor inversion, b-value estimation,
regression of ground-motion prediction equations etc.

2.2 Methods

In this section, we introduce the algorithm for identify-
ing clusters of nodal planes from a FMS-catalog: ACE
- Angular Classification with Expectation-Maximization.
As the acronym implies, the algorithm is based on the
expectation-maximization (EM) algorithm (Dempster et al.,
1977).

We first introduce the statistical model to describe the data
of a nodal plane population (2.2.1). This statistical model is
a mixture model of probability distributions - with each com-
ponent describing one cluster (in the ideal case, otherwise
several components describe one cluster). The parameters of
the mixture model are determined with the EM-algorithm.
Since the cluster population size is unknown, we introduce
two additional parameters to control the merging and removal
of mixture components at each iteration of the EM-algorithm
(section 2.2.2). Based on information theory, we present the
optimization of these control parameters to determine the op-
timal number of components (section 2.2.3). Following in sec-
tion 2.2.4, we identify subpopulations of nodal plane clusters
from the mixture according to their Style-of-Faulting. The
cluster subpopulations are the final outcome of ACE and are
the basis for subsequent analyses. As an application exam-
ple we show a weighted stress tensor inversion based on the
works of (Michael , 1984; Hardebeck and Michael , 2006). The
weights provided by ACE reduce the uncertainties of the in-
version. We also investigate the Kagan angle distribution of
the cluster subpopulations.

2.2.1 Statistical model of a nodal plane clus-
ter

A focal mechanism is described as a set of three angles θ =
(φ, λ, δ), consisting of strike (φ), rake (λ) and dip (δ). Each
focal mechanism is fully represented by two angle triples θ,
describing the orientation of both nodal planes (i.e. rupture
plane and auxiliary plane), respectively.

The last term in Eq. 2.2 is used to describe purely ran-
domly distributed stresses. In order to cover this randomness
we use a statistical model to describe the data distribution.
The model for one cluster is denoted by the probability den-
sity function (PDF) J (θ). This distribution has limited sup-
port in all three dimensions: φ ∈ [0, 360◦), λ ∈ [−180◦, 180◦),
δ ∈ [0, 90◦]. Additionally, the angles show periodic behavior,
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Figure 2.5: a) Distribution of dip (δ) and rake (λ) for the entire GCMT catalog from 1976 to 2016 for both nodal planes (> 90, 000).
Most nodal planes cluster at rakes of λ = {0◦,±90◦,±180◦}, i.e. most events are close to Style-of-Faulting end members of normal,
reverse and strike-slip. As indicated by Eq. 2.13 no apparent relation is visible in the distribution. b) Distribution of strike (φ) and
rake (λ) for the same catalog as in a). Due to the predominant north-south striking of most continental collision zones and mid-ocean
ridges, normal and reverse faulting (λ = ±90◦) events cluster at strikes of φ = 0◦ and ±180◦. Strike-slip events which commonly occur
at transform faults perpendicular to the mid-ocean ridges have strikes of φ = {0◦, 90◦, 180◦ 270◦}. Several clusters of reverse faulting
events (λ = 90◦) show a linear behavior as indicated by Eq. 2.12 and shown in Fig. 2.4. This linear relationship becomes even more
apparent when smaller regions are investigated (Fig. 4.3a, 4.7a, 4.10a).
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which is best illustrated by the mean of the angles (5◦, 355◦),
which is not 180◦ but 0◦. A distribution showing such behav-
ior, i.e. a distribution around a circle (for the 1-dimensional
case) is called a wrapped probability distribution (e.g. Mardia
and Jupp, 1999).

Any PDF P (x) can be converted to a wrapped PDF Pw(ω)
by wrapping its variable and summing over the period 2π:

ω = x mod 2π fw(ω) =
∞∑

u=−∞
f(ω + 2πu) (2.14)

The distribution of strike, rake and dip is three-dimensional
and the model is placed in a model space defined on a
3-dimensional torus (also known as hypertorus; a four-
dimensional doughnut, figuratively), which is the product of
the three circles each defining the domain of strike, rake, and
dip (though the dip spans only a quarter circle by definition).
As already shown in the previous section, the rake and the
strike of FMS are dependent on each other (Eq. 2.12) if the
intermediate stress orientation (cross-product of normal and
slip vector) or the slip vector is constant. We refer to a ”con-
stant stress orientation” for the first three components of Eq.
2.2 only, the random component is never considered constant,
thus the vector orientations themselves are not completely
constant.

The distribution of dip and rake of both nodal planes in
the complete FMS catalog of the Global Centroid Moment
Tensor (GCMT) catalog (Dziewonski et al., 1981; Ekström
et al., 2012) from 1976 - 2016 shows, that earthquakes tend
to cluster around λ = {0◦,±90◦,±180◦} (Fig. 2.5a). The
distribution shows no correlation between rake and dip for all
clusters of the Style-of-Faulting end members as is implied by
Eq. 2.13. The independence of the dip from either strike and
rake allows to define the distribution as a product:

J (φ, λ, δ|µ, ν, σ2, τ2, r, α, β, a, b) =

Nw(φ, λ|µ, ν, σ2, τ2, r)B(δ|α, β, a, b), (2.15)

where Nw(φ, λ) is the distribution in the strike-rake plane,
and B(δ) is the distribution of the dip. An advantage of
this model is its separability into a wrapped and an un-
wrapped distribution. The distribution Nw(φ, λ) is a bivari-
ate wrapped normal distribution and cannot separated fur-
ther into two independent distributions due to the depen-
dence introduced by Eq. 2.12, which becomes most appar-
ent for shallow dipping ruptures (e.g. thrust faulting, Fig.
2.5b). However, this distribution covers also those cases
where strike and rake are independent from each other, as
expected for strike-slip faulting with (nearly) vertically dip-
ping nodal planes.

The dip is defined on the finite interval [0◦, 90◦], i.e. the
dip does not show the same periodicity as both the strike
and rake. The distribution of the dip is modeled by a beta
distribution B(δ). The two distributions and their parameters
are described in the following section.

2.2.1.1 Wrapped normal distribution

The bivariate wrapped normal distribution for the strike φ
has mean µ and variance σ2, the distribution for the rake λ
has mean ν and variance τ2 and the bivariate wrapped normal
distribution can be written as

Nw(φ, λ|µ, ν, σ2, τ2, r) =∑
u,v∈Z

N (φ+ 2πu, λ+ 2πv|µ, ν, σ2, τ2, r) (2.16)

where N (·) is a normal distribution (see Eq. A.17 in ap-
pendix A.2). According to Eq. 2.12, a correlation between
φ and λ exists, which is expressed by the angular correlation
coefficient r (Fisher and Lee, 1983).

The reasons to choose this distribution for describing the
strike-rake distribution are the following:

1. All parameters in Eq. 2.16 have analytic representa-
tions of their estimators based on maximum likelihood
(see appendix A.2 for a more detailed description). This
contrasts with the widely used von Mises-Fisher distri-
bution, whose parameters - specifically its concentration
and in case of the more general Kent distribution the
correlation as well) - can be estimated only iteratively,
therefore increasing both inaccuracy and computational
time.

2. It is a stable distribution, i.e. a linear combination
of independent samples of that distribution results in
the same distribution, though with different parameters.
This means that e.g. when identifying a cluster with
a single distribution even though that cluster originates
from two independent (yet similar) distributions, the sin-
gle distribution is nevertheless a reasonable description of
the data. A similar argument for the stable distribution
is given by Kagan (1990, 1992) to choose the Cauchy
distribution (also a stable distribution) to describe the
FMS rotation distribution.

3. Inherent errors of the FMS data are modeled by the
closely related von Mises-Fisher distribution (Silver and
Jordan, 1982). Even though we do not include errors of
the FMS data directly, we assume that the data distribu-
tion is influenced by the von Mises-Fisher distribution.

From the definition of the nodal planes in Eq. 2.6, Eq. 2.7
and Eq. 2.9, it follows that the sign of the rake for both nodal
planes of an earthquake is always the same. This constraint
also limits the extent of the distribution of nodal planes with
a particular Style-of-Faulting along the rake. In conjunction
with the relations between strike and rake given in Eq. 2.12,
the expected maximum spread of any distribution in Eq. 2.16
along its principal axes in terms of the standard deviation is
less then 60◦. Therefore, even the widest spreading cluster
to be expected can be sufficiently approximated by a small
number of wrappings in Eq. 2.16. It is sufficient to use a
wrapping in the range of {u, v} = {−2,−1, 0, 1, 2} .
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2.2.1.2 Beta distribution

The dip is modeled by a generalized beta-distribution with
arbitrary interval [a, b] and is given by

B(δ|α, β, a, b) =
(δ − a)α−1(b− δ)β−1

(b− a)α+β−1B(α, β)
, (2.17)

where α and β are the shape parameters, B(·, ·) is the beta
function and a and b are the interval limits. We follow the
definition of Feller (1971) and exclude the limits from the
range, i.e. a < δ < b, for numerical stability, as B → ∞ at
the interval limits for α < 1 and β < 1 (See appendix A.3 for
a more detailed description of this distribution).

The beta distribution is chosen for the following reasons:

1. like the wrapped normal distribution (Eq. 2.16), the pa-
rameters in Eq. 2.17 have analytic representations of
their estimators. In this case the estimators are based
on the method of moments (see appendix A.3).

2. When α ≈ β and α > 2 the beta distribution is similar
to the normal distribution.

3. The distribution has a wide variety of shapes described
by two parameters allowing data adaptabilty without re-
sorting to distributions with large number of parameters.

4. Its shape variability allows also for fitting data with
skewed distributions, e.g. dips close to 90◦ in case of
strike-slip events.

2.2.1.3 Style-of-Faulting Index (SoFI)

Because of the same sign of the rake λ for both nodal planes
for any FMS, the joint distribution J along the rake is trun-
cated if the cluster consists mostly of either reverse or normal
faulting nodal planes. Strike-slip events are an exception, as
they cluster around λ = 0◦ or λ = ±180◦ and thus contain
FMS with rakes of both signs (though both rakes of individ-
ual FMS have the same sign). In order to assess the SoF in
which J is located, we introduce the Style-of-Faulting-Index
SoFI based on Eq. 2.6, 2.7, 2.8

SoFI =
êT3 Aê3

êT3 Cê3
, (2.18)

where

A = n̂d̂T + d̂n̂T (2.19)

C = n̂n̂T + d̂d̂T + b̂b̂T (2.20)

ê3 = (0, 0, 1)T , (2.21)

The definition of SoFI is identical for both nodal planes, i.e.
SoFI is event based rather than nodal plane based.

Plugging the angle based definitions of the normal and slip
vectors from Eq. 2.6 and 2.7 in Eq. 2.18 simplifies to

SoFI = sinλ sin 2δ (2.22)

According to Eq. 2.22, SoFI is positive in a reverse tectonic
regime, negative in a normal tectonic regime and around zero
in a strike-slip tectonic regime. The SoFI for the three end
members of the tectonic regimes are

SoFI =


1
2

√
3 if λ = 90◦, δ = 30◦ (reverse)

− 1
2

√
3 if λ = −90◦, δ = 60◦ (normal)

0 if λ = {0◦,±180◦}, δ = 90◦ (strike-slip)

(2.23)
The regime index of distribution J indicates the predominant
regime of that distribution and is calculated as a weighted
mean of the individual SoFI of the 2N nodal planes (N -
number of events) with weights based on J .

SoFI =

2N∑
i=1

JiSoFIi

2N∑
i=1

Ji

(2.24)

We use this index as the indicator whether to apply truncation
along the rake. The truncation of a distribution is applied, if
|SoFI| > 0.25

√
3. The threshold is half the absolute value of

SoFI for the end members of reverse or normal faulting. In
order to compensate for the truncation of J and to preserve
the second axiom of probability - here specifically in the form
of ∫

J dθ = 1 (2.25)

the wrapped normal distribution with truncation along λ is

Nw,T (φ, λ|µ, ν, σ2, τ2, r) =
1
FT

∑
u,v∈Z

N (φ+ 2πu, λ+ 2πv|µ, ν, σ2, τ2, r) if |SoFI| >
√

3
4

0 if |SoFI| ≤
√

3
4

(2.26)

where 1/FT is the truncation factor with

FT =
1

2

∑
v∈Z

erf

(
π + 2vπ − |ν|

τ
√

2

)
− erf

(
2vπ − |ν|
τ
√

2

)
(2.27)

The SoFI from Eq. 2.22 in Eq. 2.26 for a distribution is
estimated by

SoFI = sin ν sin
πα

α+ β
, (2.28)

i.e. the means of λ and δ. This definition corresponds to the
expression in Eq. 2.24 for the average .

The statistical model in Eq. 2.29 using the truncated
wrapped normal distribution in Eq. 2.26 is stated as

JT (φ, λ, δ|µ, ν, σ2, τ2, r, α, β, a, b) =

Nw,T (φ, λ|µ, ν, σ2, τ2, r)B(δ|α, β, a, b), (2.29)
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and is the basis for the mixture model and the EM algo-
rithm in the next subsection. For brevity and readability, the
subscript T is dropped in the following and the usage of the
truncated distribution is implied in all instances.

2.2.2 Identification of nodal plane clusters
with the EM algorithm

The EM algorithm iteratively computes the maximum-
likelihood estimates in the presence of incomplete data, i.e.
some latent variables which are only indirectly detectable in
the observations (Dempster et al., 1977). Each iteration of
the EM-algorithm consists of two steps: (1) Expectation-step
- Estimation of the expected value of the likelihood for the
current estimate of the parameters of the statistical model,
given the observations. (2) Maximization-step - Calculation
of parameters maximizing the likelihood. The iteration pro-
cess is repeated until the results converge.

The joint distribution J describes one component of a mix-
ture model, and ideally represents one cluster within the data.
Since a population of clusters is present in the data, the pa-
rameters of the components that describe the clusters are the
latent variables. Using EM, the parameters of the compo-
nents can be estimated, by simultaneously maximizing their
likelihood iteratively.

The kth component in a mixture of K components is de-
scribed by Jk which is weighted by wk. For all K weights
holds

K∑
k=1

wk = 1, (2.30)

and the data are described by the full mixture model

MJ =
K∑
k=1

wkJk. (2.31)

Two typical problems of EM are (1) its inability to handle
noise, i.e. scattered data not belonging to any cluster, and
(2) the number of components must be known a priori.

For our purpose, the noise data problem is solved by desig-
nating a PDF specifically for the noise in the data. We assume
”noisy data” to have a wrapped uniform distribution, which
is a special case of both distributions Nw (σ, τ → ∞) and B
(α = β = 1) and thus of J (Eq. 2.32). A wrapped uniform
distribution implies that events are caused by random tec-
tonic forces, i.e. not only the random stress term in Eq. 2.2
is variable but the remaining three as well, most notably the
tectonic and earthquake related stress terms. Therefore this
component of the mixture model contrasts with the data rep-
resented by the other components, where the random stress
term is the only variable one. We investigate the properties
of the identified clusters in terms of the Kagan angle (section
3.2 and 4).

We handle the second problem of EM, the a priori knowl-
edge of the component number, by running EM with param-
eters controlling the component number at each iteration. To
summarize the purpose of these control parameters:

• Check for overlap between components and merge compo-
nents, if a threshold is reached (→ p).

• Check for the size of componets and remove those falling
below a threshold (→ q).

With the control parameters, the extended EM algorithm
consists of three steps:

1. The expectation step is performed by calculating Eq.
2.31.

2. The calculated components are checked for their overlap
and weight and finally

3. in the maximization step the parameters of the compo-
nents are updated.

The algorithm is repeated until the model converges or a max-
imum number of iterations is reached (e.g. 100 is sufficient
since in most cases the model converges relatively fast).

At initialization, EM requires parameters set a priori. For
N events, there are 2N nodal planes and considering a special
component for noise, K = 2N + 1 components in total are
initialized, i.e. we assume each nodal plane as a component
a priori. It is sufficient to use a representative subset for
larger data sets with > 2, 500 events, as the information gain
per event decreases with each additional event in the catalog.
The initial values of the kth component Jk are either based
on basic assumptions or are estimated from the underlying
data and thus reduce user interference to a minimum.

1. The strike and rake of the kth nodal plane angle triple are
used as the means in the strike-rake plane, µk = φk and
νk = λk).

2. Both variances of strike and rake are set to the same value
based on a distance estimate from the minimum spanning
tree of the data. See section 2.2.2.1. The variance should
sufficiently cover a wider neighborhood around the center
of each initial component.

3. No correlation between strike and rake is assumed, rk = 0.

4. The initial component along the dip is modeled using a
beta distribution kernel after Chen (1999). The mean of
the kernel is δk. The variance (or bandwidth in terms
of (Chen, 1999)), as for the strike and rake, is based on
the distance estimate of the minimum spanning tree. See
section 2.2.2.1

5. The SoF index is based on the rake and dip, SoFIk =
sinλk sin 2δk
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a) b)

w = 0.5

w = 0.15

c) w = 0.35

Figure 2.6: Sketch of the application of component merging and removal. a) In the first iteration of EM, all components have identical
shape and their centroid is at the nodal plane coordinate (components shown by centroids only). The merging of two components
requires a distance metric (gray lines) as criterion, which is the Jensen-Shannon distance. However, in order to merge two components
according to control parameter p, not all Jensen-Shannon distances between all pairs are required. It is sufficient to use only a set of
those component pairs which connect all component (directly and indirectly). This subset of pairs is found by Kruskal’s algorithm (b)
and represents those pairs connceting all componets with the shortest distance (minimum spanning tree). Next (c), all components with
distances below p are merged into one new component (colored ellipses, red lines show distances larger than p). After the component
merging, the weights, standing for the size of a component, are checked (w < qK−1). The number of merged components here is
K = 3, and with e.g. q = 0.5, the blue component is removed from the mixture (because 0.15 < 0.5/3). In the subsequent iterations,
the step involving Kruskal’s algorithm becomes redundant and can be skipped (see text for explanation). This implies for subsequent
iterations that only steps shown an (a) and (c) are performed.

6. The weight is the mean weight, wk = K−1.

The cluster designated for the noise (with index k = K) is
initialized as a uniform distribution.

JK = Nw(φ, λ|0, 0,∞,∞, 0)B(δ|1, 1,−1, 91)

=
1

4π2

23π

45
(2.32)

Like the other distributions, the weight is at initiation the
average weight wK = K−1.

Due to the large number of components at initialization
(K = 2N + 1), it is very likely that neighboring components
have a large overlap. The overlap - or similarity - of two
components, represented by their PDF A and B with weights
wA and wB , respectively, is measured by the Jensen-Shannon
distance (Österreicher and Vajda, 2003)

dJS =

[
− 1

wA + wB

∫
wAA log2A+ wBB log2Bdθ

−
∫ (

wAA+ wBB

wA + wB

)
log2

(
wAA+ wBB

wA + wB

)
dθ

] 1
2

.

(2.33)

The Jensen-Shannon distance is in the range between zero
(identity of components) and one (completely dissimilar).

When two or more components have an overlap larger then
a given threshold, they are merged into one component. The
threshold of the Jensen-Shannon distance at which two com-
ponents are merged is set by the control parameter p. Since
p is not known, EM is performed for a set of thresholds p
within range 0 < p < 1.

Some components show little overlap with other compo-
nents, but contain few events or only one. These remote mi-
nor components are undesired as they keep the total number
of identified clusters high while containing little information.
Therefore, components with weights below qK−1i are removed
from the mixture. The value K−1i is the average component
weight in the ith iteration. The weights are determined after
components have been merged (Fig. 2.6c) in each iteration.
The control parameter q is in the range 0 ≤ q ≤ 1. With
q = 0, no constraint is applied on the weights and with q = 1
total weight uniformity is implied. As with p, q is not known
a priori and EM is run for a set of different values.

The overlap check and the weight check are at no instance
applied to the designated noise component. It can thus be
neither removed from the mixture model nor merged into
another component. Consequently, no component can be
merged into the noise component. If this special component is
removed, another component (or several) following the model
in Eq. 2.29 will cover the noisy data, which may in turn
lead to overfitting. The only parameter controlling the noise
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component is its weight, which is updated together with the
weights of the other components at each iteration.

2.2.2.1 Application of the minimum spanning tree

The number of distances calculated in the first iteration is
N(2N − 1). Because the Jensen-Shannon distance has no an-
alytic expression, Eq. 2.33 is evaluated numerically. However,
during the first iteration most distances are not required to
merge components (Fig. 2.6a). Since all components share
the same variances and weights during the first iteration,
the Jensen-Shannon distance correlates with the angular eu-
clidean distance between the means of the components (Fig.
2.7). The computationally much simpler euclidean distance is
then used in Kruskal’s algorithm (Kruskal , 1956) to identify
those 2N − 1 component pairs for which the Jensen-Shannon
distances are then calculated (Fig. 2.6b).

This reduction of calculations of the Jensen-Shannon dis-
tance is based on the triangle inequality:

dJS(A,C) ≤ dJS(A,B) + dJS(B,C). (2.34)

If components A and C are not directly connected, then they
are connected via component B (or for the general case, any
number of components). Kruskal’s algorithm ensures that
all components are connected by the minimum sum of all
distances, where for each component pair only one distance
is given.

The (squared) angular Euclidean distance between two
nodal planes is given by

d2k,l =
(
eiφk − eiφl

)2
+
(
eiλk − eiλl

)2
+
(
eiδk − eiδl

)2
(2.35)

Given the extension of the nodal plane space, it holds

0 ≤ dk,l ≤
3

2
π (2.36)

In subsequent iterations it is not possible to reduce the num-
ber calculations of the Jensen-Shannon distance, because
both weights and variances vary and the correlation between
the Jensen-Shannon and euclidean distance is not guaranteed
anymore. Therefore the minimum spanning tree cannot be
based on the Euclidean distance and must be based on the
Jensen-Shannon distance, making the minimum spanning tree
redundant because no computional advantage is achieved and
all possible Jensen-Shannon distances are required due to the
uniqueness of all componenets after the first iteration.

As stated in the list of initial condition, the distances given
by minimum spanning tree provide an estimate of the initial
variance for both the wrapped normal distribution and the
beta distribution. The initial value is derived from the 95 %
quantile of the empirical cumulative distribution function of
the distances given by the minimum spanning tree.
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Figure 2.7: Jensen-Shannon distance (Eq. 2.33) versus angular
euclidean distance (Eq. 2.35). The Jensen-Shannon distance is
based on the pairs of the component probability densities, while
the angular euclidean distance is based on the separation means
of those components. a) Due to the uniform bandwidth (variance)
and weights resulting in similarly shaped components during the
first iteration the Jensen-Shannon distance correlates highly with
the angular euclidean distance. This fact can be used to use the
computionally much simpler angular euclidean distance and apply
it with Kruskal’s algorithm to significantly reduce the final number
of Jensen-Shannon distances during the first iteration. In subse-
quent iterations (b, second iteration) the correlation between the
two metrics disappears due to the adaption of the components to
the data resulting in heterogenuously shaped components.
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2.2.3 Optimal parameters for controlling
distribution merging and removal

Once the mixture models for different p and q have been cal-
culated, an analysis based on information theory (Shannon,
1948) is applied to select the mixture model that describes
the clusters of nodal planes. In the previous section we intro-
duced the Jensen-Shannon distance, which is the square root
of the Jensen-Shannon divergence for two distributions. The
general form of the Jensen-Shannon divergence is (Lin, 1991)

DJS = H

(∑
k

wkPk

)
−
∑
k

wkH(Pk), (2.37)

where wk are weights with
∑
k wk = 1. The probability dis-

tribution Pk has information entropy H(Pk) (where H is the
greek capital letter ”eta”), which in case of a continuous dis-
tribution P is defined as (Shannon, 1948)

H(P ) = −
∫
P (x) logb P (x)dx (2.38)

specifically for the distributions of FMS angles (Eq. 2.29)

H(J ) = −
∫
J (θ) logb J (θ)dθ, (2.39)

where the base b of the logarithm determines the range of the
Jensen-Shannon divergence. An illustrating example for the
Jensen-Shannon divergence is shown in Fig. 2.8.

If the number of distributions in Eq. 2.37 is equal to base
b of the entropy, then the range of the Jensen-Shannon diver-
gence is between 0 and 1. As for the Jensen-Shannon distance
in Eq. 2.33, if DJS = 0, then all distributions are identical,
and if DJS = 1 all distributions are fully dissimilar.

The Jensen-Shannon divergence is used to rank the mixture
models according to the following criteria:

1. Orthogonality: If the slip vector of one nodal plane is the
normal vector of the other plane (and vice versa), then the
components representing these planes should behave in the
same way (i.e. consistency with Eq. 2.9).

2. Goodness of fit: The mixture model should fit the observed
data well.

3. Distinctiveness: Within a mixture model, the individual
distributions should be as distinct as possible from each
other. In other words, the components should be well sep-
arated, show little overlap, and easily distinguishable.

The basis for the first criterion is a change of variable. Here,
the variables of a component of mixture model MJ are substi-
tuted by the variables of the other nodal plane. The mixture
model with substituted variables is labeled MS

J . The change
of variables for a probability density function is

P (φ2, λ2, δ2) = P (φ1, λ1, δ1)| det J| (2.40)

−10 −5 0 5 10

t

area of DJS
N (t,µ = 1,σ = 1)
N (t,µ = 0,σ = 3)

Figure 2.8: The Jensen-Shannon divergence measures the sim-
ilarity between two distributions. The figure shows two normal
distributions (blue, green). The Jensen-Shannon divergence cor-
responds to the yellow area. Note, how the yellow graph reaches
zero where the two distributions intersect, while it increases where
the two distributions differ more. It reaches its maximum where
the two distributions are most different.

Assuming that the variables are changed from one nodal plane
representation to the other nodal plane representation, the
following relation holds (see appendix A.4 for derivation):

J S(φ2, λ2, δ2) = J (φ1, λ1, δ1)
sin δ2
sin δ1

(2.41)

The definition can also be expressed the other way around by
exchanging the subscripts.

For the second criterion, it is necessary to represent the
data in terms of probabilities of a non-parametric distribu-
tion. We use a kernel density estimator (KDE) (Rosenblatt ,
1956; Parzen, 1962) similar to the distribution J , with a ker-
nel based on a wrapped bivariate normal distribution and
a kernel for the beta distribution (Chen, 1999)with a band-
width based on a constant variance for strike and rake, and
a beta distribution specific bandwidth for the dip (see ap-
pendix A.5). The wrapping range is limited to {−1, 0, 1} due
to the selected small variance σ2

KDE with respect to the whole
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data range. The choice of the bandwidth is a common prob-
lem encountered with kernel density estimates (e.g. Park and
Marron, 1990). If a constant variance is used in all entropy
estimates, the KDE entropies will correlate with the variance,
thus keeping the entropies proportional to each other for dif-
ferent variances.

We compare the mixture model with changed variables to
the KDE as well, i.e. joining the first and second criterion.
This additional constraint allows for the calculation of the
divergence in one step. From Eq. 2.37, the divergence of the
mixture model MJ , the mixture model with changed vari-
ables MS

J , and the KDE h is measured by

DM
JS =H

(
1

3

(
MJ +MS

J + h
))

− 1

3

[
H(MJ ) +H(MS

J ) +H(h)
]
,

(2.42)

with (2.43)

MJ =
K∑
k=1

wkNw(φ1, λ1|µk, νk, σ2
k, τ

2
k , rk)B(δ1|αk, βk)

(2.44)

MS
J =

K∑
k=1

wkNw(φ2, λ2|µk, νk, σ2
k, τ

2
k , rk)B(δ2|αk, βk)

sin δ2
sin δ1

(2.45)

h =
1

2N

2N∑
i=1

Nw(φ1, λ1|φi, λi, σ2
KDE)B(δ1|αi, βi)

(2.46)

where the logarithms of the entropies H(·) have base b =
3, and the divergence is in the range [0, 1]. According to
the first two criteria, maximum similarity between the two
mixture models and the KDE is desired, i.e. DM

JS needs to be
minimized.

For the third criterion, we compute the Jensen-Shannon
divergence of all components of mixture model MJ , DC

JS . If
all components are independent from each other, the Jensen-
Shannon divergence reaches its maximum. Since the compo-
nent describing the noise always overlaps with any other com-
ponent, it would reduce DC

JS and subsequently its resolving
power. Therefore, the noise component (with index k = K)
is excluded from the calculation of the divergence,

DC
JS = H

(
K−1∑
k=1

wk
1− wK

Jk

)
−
K−1∑
k=1

wk
1− wK

H(Jk), (2.47)

where the logarithm of the entropies has base b = K− 1, and
the divergence is in the range [0, 1].

The mixture models associated with two divergences are
ranked for all p and q by the following expression:

QJS(p, q) = DM
JS(p, q)D

C
JS(p,q) (2.48)

The minimum rank jointly minimizes DM
JS and maximizes

DC
JS , therefore the mixture model with smallest QJS best

fulfills the three criteria outlined above simultaneously.

2.2.4 Subpopulations of nodal plane clusters
with identical SoF

With the best mixture model Mopt
J , we identify cluster sub-

populations that form pairs of nodal planes according to Eq.
2.9. The subpopulations are identified by comparing each
component to the component with changed variables (Eq.
2.41), as introduced in the previous section. The probabil-
ities of clusters representing a nodal plane pair are very likely
to correlate, while all other combinations are expected to be
uncorrelated. The correlation between the probabilities of
two distributions JA(θ) and JB(θ) is measured by the con-
gruence coefficient (Tucker , 1951)

rc =

2N∑
i

JA(θi)JB(θi)√√√√ 2N∑
i

JA(θi)2
2N∑
i

JB(θi)2

(2.49)

Since the probabilities are non-negative, the range of rc is
between zero and one.

The threshold for the congruence coefficients at which two
clusters form a nodal plane pair is determined by a change
point analysis. We apply a change point analysis similar to
the autoregressive likelihood estimation for automated phase
picking (Pisarenko et al., 1987; Kushnir et al., 1990). While
the phase picking routine is based on a mixture of normal
distributions, the distribution of the congruence coefficients
is assumed to have arisen under a mixture of two beta distri-
butions, with one distribution for uncorrelated and correlated
congruence coefficients, respectively.

The expected number of components of the mixture model
Mopt
J is low, and may be insufficient for a change point anal-

ysis to provide reliable results. Thus, we determine the con-
gruence coefficients by bootstrapping (Efron, 1979) the com-
ponent probabilities to obtain a sufficiently large sample of
congruence coefficients. Bootstrapping not only increases the
sample size for the change point analysis, but also includes
the uncertainties of the congruence coefficients.

The change point analysis is based on Akaike’s information
criterion (AIC) (Akaike, 1974)

AIC = 2k − 2 lnL (2.50)

where k is the number of free parameters and L is the like-
lihood of the statistical model, i.e. the mixture of beta dis-
tributions. The AIC is used to identify the best mixture of
beta distributions. This is identical to identifying the pre-
ferred threshold, because the beta distributions are separated
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at that threshold and otherwise independent from each other.
The log-likelihood in Eq. 2.50 for a mixture of two beta dis-
tributions (Eq. 2.17) is

lnL =
T∑
i=1

lnB(rci|αl, βl, 0, 1) +

Nr∑
i=T+1

lnB(rci|αu, βu, 0, 1)

(2.51)

where Nr is the total number of congruence coefficients, T is
the number of coefficients less than or equal the threshold,
and αl, βl and αu, βu are the four shape parameters (there-
fore k = 4) estimated from the congruence coefficients below
(first sum, subscripts with l) and above (second sum, sub-
scripts with u) the threshold congruence coefficient, respec-
tively. The AIC is determined for each congruence coefficient
set as the threshold and the preferred threshold is identified
where the AIC reaches a minimum.

All cluster combinations with congruence coefficients larger
than the threshold are considered to form nodal plane pairs.
Some clusters can be connected to more than one cluster,
particularly in the case of strike-slip events, where one clus-
ter will be generally connected to two others. This behavior
for strike-slip events is caused by the additional strike ambi-
guity of subvertically dipping events. Up to four strike-slip
clusters can form a subpopulation, while for reverse and nor-
mal faulting the size of the subpopulation is two.
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Chapter 3

ACE & Stress

3.1 Application of ACE to stress me-
chanics

In the following section we show how to incorporate the re-
sults of ACE into applications. As examples, we provide the
Kagan angle distribution and stress tensor inversion.

The normalized weight for the ith nodal plane angle triple
of a subpopulation with L components from a mixture model
with in total K components is given by

vi =

L∑
l=1

wlJl(φi, λi, δi)

K∑
k=1

wkJk(φi, λi, δi)

(3.1)

This normalized weight is the basis any further application.

3.2 Kagan angle distribution

Since ACE uses FMS, the final mixture model can be di-
rectly used to apply weights to the so-called Kagan angle.
The Kagan angle is the smallest angle to rotate one FMS
into another. It is determined by finding the rotation quater-
nion between two FMS that results in the smallest angle (Ka-
gan, 2007). The distribution of this angle follows a rotational
Cauchy distribution under the assumption of purely randomly
distributed distortions (i.e. faults) in a constant stress field
with random variations (Eq. 2.2).

In section 2.2.1, we introduced the definitions of the com-
ponents of the mixture model. While we assume the joint
probability distribution in Eq. 2.29 for all components, we
use the special case of a uniform distribution of the angles
to represent the FMS noise (i.e. those events not forming
clusters) at all instances. In terms of the Kagan angle Φ, a
uniform distribution of the angle triple (φ, λ, δ) implies a pure
random distribution of double couple sources Kagan (1992).
The equation of the rotational distribution for randomly dis-
tributed double couple orientations is given in Kagan (1992,
Eq. (6) therein).

The rotational distributions have no general analytic repre-
sentation, except for purely randomly distributed FMS (Ka-
gan, 1992, 2007). To generate other rotational distributions
we follow the procedure outlined by Kagan (1992). We focus
here on the comparison between the rotations of the FMS
data and some rotational distributions. Following Kagan
(1992, 2013), we consider pure random DC (double couple)
rotation distribution, the rotational Cauchy distribution and
the rotational Fisher-Bingham distribution for comparison.
The Fisher-Bingham distribution (Kent , 1982) is a general-
ization of the von Mises-Fisher distribution used in Kagan
(1992, 2007) and is not limited to an isotropic distribution
of normal/slip vectors, i.e. same variances for strike and dip.
Kent (1982) defines the Fisher-Bingham distribution as

FB(x|κ, β,Γ) ∝ eκγ
T
1 ·x+β[(γT2 ·x)

2−(γT3 ·x)
2] (3.2)

with 0 ≤ β < κ

2
and Γ = (γ1,γ2,γ3)

with x being the n̂, d̂, or b̂ axes; concentration parameter
κ (analogue to an inverse variance), shape factor β and the
orthogonal matrix Γ with vectors γ̂1 (mean axis), γ̂2 (major
axis of shape ellipse) and γ̂3 (minor axis of shape ellipse). For
brevity we left the normalization constant of the distribution
out, see Kent (1982) for a detailed description. For β =
0 the Fisher-Bingham distribution becomes the von Mises-
Fisher distribution. Its rotational counterpart is denoted by
FBr(Φ|κ, β) and for κ = β = 0 it becomes the random DC
distribution.

To obtain samples for FB(x|κ, β,Γ) we use acceptance-
rejection sampling (von Neumann, 1951) by accepting a sam-
ple of the Fisher-Bingham distribution for the slip, normal
and null vectors (Eq. 3.2) if all three are accepted simultane-
ously. The matrices Γ for each of the three vectors are defined
such to represent the orthogonality of the three vectors.

The rotational distributions for the different FMS subpop-
ulations are estimated by taking the probabilities of the mix-
ture model for each angle triple in a subpopulation as weights.
We denote the rotational angle between the FMS given by ith
and jth angle triple as ϕij . The weight for the rotation angle
ϕij is the product of the ith and jth weight from Eq. 3.1.
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With N angle triples and neglecting rotations between same
angle triples, a total of N(N − 1) rotations exist. The em-
pirical weighted cumulative distribution function in terms of
the rotational angle Φ is

F (Φ) =

∑N
i,j=1 vivjI(ϕij ≤ Φ)∑N

i,j=1 vivj
with i 6= j, (3.3)

where I(x) is an indicator function that is one if condition x
is true and zero otherwise. The range of the rotation angle is
0◦ ≤ Φ ≤ 120◦ (Kagan, 1992).

3.3 Stress Tensor Inversion

Since ACE’s theoretical basis is related to stress tensor inver-
sion, the cluster results can be used as a priori information for
a stress tensor inversion. The a priori information comes as a
definition for FMS subpopulations. Within each subpopula-
tion, e.g. for thrust faulting at a continental plate interface,
the stress state can be assumed to be more consistent than for
the overall data set. ACE’s subpopulations can be seen as a
way to treat a FMS catalog not as uniform data set for stress
inversion, but as a polyphase data set (Célérier et al., 2012,
sec. 7.4 and references therein), i.e. a data set divided into
consistent subsets, and stress is inverted from each subset to
arrive at a more substantial picture of the stress state.

We use the least squares (LSQ) approach introduced by
Michael (1984), nonetheless ACE’s a priori information can
be implemented in any other stress inversion technique.
Micheal’s method is defined by the following relation:

s = At (3.4)

s is a vector containing N unit slip vectors and matrix A is
based on N normal vectors and t is the reduced stress tensor
in vector notation. Two fundamental assumptions are present
in Eq. 3.4: The Wallace-Bott hypothesis holds and the slip
magnitude is uniform in all directions and unknown (implied
by using the unit slip vectors). The difference of the reduced
(or deviatoric) stress tensor to the stress tensor in Eq. 2.1
is the absence of an isotropic stress component (pressure p).
The deviatoric stress tensor σdev is defined by

σdev = σ − pI (3.5)

where I is the identity matrix and pressure p is

p =
tr(σ)

3
=
σ11 + σ22 + σ33

3
, (3.6)

thus follows σdev33 = σdev11 + σdev22 , i.e. the deviatoric stress
tensor has five independent components only. For convenience

the stress tensor is expressed in Voigt notation

t =


t1
t2
t3
t4
t5

 =


σdev11

σdev22

σdev12

σdev13

σdev23

 =


σ11 − p
σ22 − p
σ12
σ13
σ23

 (3.7)

The matrix Ai is based on the normal vector ni (subscript i
dropped in the following equation) and follows from Eq. 2.5

A =


n1 − n31 + n1n

2
3 −n2n21 + n2n

2
3 −n3n21 − n3 + n33

n2 − 2n2n
2
1 n1 − 2n1n

2
2 −2n1n2n3

n3 − 2n3n
2
1 −2n1n2n3 n1 − 2n1n

2
3

−n1n22 + n1n
2
3 n2 − n32 + n2n

2
3 −n22n3 − n3 + n33

−2n1n2n3 n3 − 2n3n
2
2 n2 − 2n2n

3
3


T

(3.8)
Inverting for t results in

t = (ATA)−1AT s (3.9)

This is the general solution of the overdetermined LSQ prob-
lem. Weighted LSQ introduces the weight matrix W

t = (ATWA)−1ATWs (3.10)

with weights based on Eq. 3.1

W =


v1 0 · · · 0
0 v2 · · · 0
...

...
. . .

...
0 0 · · · vN

 (3.11)

If clusters are determined for larger regions it is reasonable
to invert for a set of tensors that are linearly dependent in
space (Hardebeck and Michael , 2006, modified from Eq. 14)

ta = (ATWA + ε2DTD)−1ATWs (3.12)

where D expresses the linear dependency of the neighboring
tensors and ε is the dependency strength and ta is the vector
of all stress tensors.

ta =


t1
t2
...

tn

 (3.13)

Calculation of the stress tensors according to Eq. 3.10
and 3.12 are performed with the armadillo library for C++
(Sanderson and Curtin, 2016).

17

STR 17/01. GFZ German Research Centre for Geosciences. 
DOI: 10.2312/GFZb103-17012



Chapter 4

Examples

We present three examples of ACE for Northern Chile, the
Nazca plate and Kyūshū (Japan). The examples show the
best mixture models from ACE for the regions. A comparison
of STI with and without ACE based weights are shown as well
as the distribution of Kagan angles.

All results of ACE we present here are given as probabil-
ities as defined in Eq. 3.1. In the figures showing the prob-
abilities of the Style-of-Faulting, we use a color code similar
to the World Stress Map, based on the HSV (hue, satura-
tion, [brightness] value) color space. The hue represents the
SoF, and brightness represents the probability of the given
SoF (Fig. 4.1). While only one color hue is assigned for all
events in a component, the brightness shows the probabil-
ity of each nodal plane to be in that particular component. If
several subpopulations of a similar (or even identical) SoF are
present, colors are separated by saturation, i.e. one subpopu-
lation appears generally lighter/darker than the other. When
the hypocenter associated with a FMS is plotted, the color
hue, saturation and lightness value are based on the average
of both nodal planes. In case we cannot clearly differentiate
between left- and right-lateral strike-slip, green is used.

4.1 Northern Chile

We apply ACE to focal mechanism data from the GCMT
catalog (Dziewonski et al., 1981; Ekström et al., 2012) from
1976 - 2016 for northern Chile. This catalog contains 848
events, resulting in 1696 nodal planes. For northern Chile
five clusters in three subpopulations have been identified, two
clusters for normal and reverse faulting, respectively, and one
cluster for unclassified SoF (Fig. 4.3a).

The reverse faulting clusters are associated with the plate
interface of the colliding South American and Nazca plates,
while the normal faulting clusters relate to deeper events in
the downgoing slab (Fig. 4.3b,d). The unclassified events are
mostly near the surface and are associated with thrusting in
the Andes.

Several major events occurred in the region and their cor-
responding focal mechanisms (Fig. 4.3c) are in the centers of
each identified cluster, respectively.

The distributions of the Kagan angle Φ for the Chilean
FMS are shown in Fig. 4.2. The empirical cumulative prob-
ability distributions (ECDF) are calculated by Eq. 3.3 for
each subpopulation in Fig. 4.3. Reverse faulting FMS (cyan
curve) show high similarity between themselves as appr. 80
% of the FMS differ by a rotational angle of less than 30◦.
The normal faulting FMS (red curve) are more diverse and
show larger rotational angles (nearly twice as much as for in-
terface FMS), indicating a more complex stress field for these
events which are also at larger depths compared to the re-
verse events. The remaining unclassified events (gray curve
) are nearly completely randomly distributed, as their ro-
tational distribution is similar to a purely random distribu-
tion of FMS (black curve). The three empirical distributions
are fitted to rotational Fisher-Bingham distributions (FBr,
dashed curves), parameters are given in Fig. 4.2. All empir-
ical distributions are well described by the rotational Fisher-
Bingham distribution.

Fig. 4.2 shows also the rotation angle distribution for un-
weighted data (light gray line). The empirical distribution is
derived similarly to Kagan (1992). We consider all events in
the region with a focal depth shallower than 100 km. Only ro-
tations of FMS with a hypocentral distance of less than 50 km
are taken into account. The resulting distribution indicates
similarity for most shallow events in Northern Chile. This
coincides with the empirical distribution of the interface sub-
population which is mostly at shallow depths (Fig. 4.3d). In
agreement with Kagan (1992); Kagan and Jackson (2015) the
unweighted distribution is well described a rotational Cauchy
distribution (Fig. 4.2, dotted line).

Furthermore, the concentration parameter κ of the rota-
tional Fisher-Bingham distribution correlates inversely with
the variances of the wrapped normal distribution, i.e. the ex-
tent of the nodal plane clusters in Fig. 4.3a corresponds to
the steepness of the ECDF in Fig. 4.2.

We conducted two stress tensor inversions, one, conven-
tional inversion, using all events in the catalog of Northern
Chile with an event depth of maximum 50 km. These shallow
reverse faulting events are associated with interface activity.
The second inversion uses the probabilities of the cluster sub-
populations for reverse faulting as weights according to Eq.
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Figure 4.1: Color palette based on the rake to indicate the
Style-of-Faulting of nodal plane clusters. The three SoF end mem-
bers are also shown (for strike-slip both left- and right-lateral are
shown). The rake hue corresponds to the hue of the HSL col-
orspace, with the end members assigned the colors chartreuse (left-
lateral strike-slip), cyan (reverse), violet (right-lateral strike-slip)
and red (normal). The color brightness corresponds to the prob-
ability of a nodal plane/event belonging to a certain cluster. The
noise cluster has full brightness (i.e. white) and data in that range
are unclassified. These color definitions are used in the subsequent
figures.

3.1. These events are also associated mostly with interface ac-
tivity. Fig. 4.4a shows the results of the conventional stress
tensor inversion, i.e. all events are equally weighted. The plot
in Fig. 4.4 shows the distribution of 20,000 bootstrapped re-
sults using a kernel density estimator with a von Mises-Fisher
distribution (concentration κ = 2500). The orientations of
the principal stresses are shown in a lower hemispheric plot.
While the minimum stress S3 (cyan) is well located and nearly
vertical, the horizontal stresses S1 (magenta) and S2 (yel-
low) are less well constrained. Uncertainties are estimated
by bootstrapping following Michael (1987) by selecting ran-
domly events and randomly setting one nodal plane is rupture
plane and one as auxiliary plane.

The inversion results based on ACE are shown in 4.4b.
While principal stress orientations are comparable to the con-
ventional solution in Fig. 4.4, uncertainties are significantly
reduced. Uncertainties are estimated with same procedure as
for the conventional inversion.

Based on the motion direction of the Nazca plate, the clus-
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Figure 4.2: Cumulative distribution functions of the rotation an-
gle between pairs of FMS from northern Chile. The colored solid
curves are estimated from the FMS data by using the subpop-
ulation probabilities as weights. The empirical distributions are
well described by rotational Fisher-Bingham distributions (FBr,
dashed lines, parameters are in table). The angle distribution for
unclassified FMS is nearly random since it is close to the pure ran-
dom DC distribution (thin black line). The solid light gray line
shows the rotation angle distribution for pairs of FMS shallower
than 100 km and with a hypocenters separated by less than 50
km. This unweighted distribution is best described by a rotational
Cauchy distribution (κc=0.06, dotted line).

ters for interface events are separable into a cluster consist-
ing of rupture planes (φ ≈ 0◦,δ ≈ 15◦) and auxiliary planes
(φ ≈ 180◦,δ ≈ 75◦). For the normal faulting subpopulation
no such disambiguation is feasible due to two-sided fault ac-
tivation. The lack of preferred rupture orientation has been
confirmed by aftershock analysis and directivity analysis (e.g.
Warren, 2014).

Furthermore, the event hypocenters in the Northern Chile
region identified as reverse faulting are in the upper 50 km,
a common threshold for the occurrence of reverse faulting in
that region (e.g. Händel et al., 2014) and all large magnitude
reverse events occurred in shallower depths (Fig. 4.3c).
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Figure 4.3: (left page) a) The optimal mixture model for the Northern Chile FMS data set. Two clusters for both normal and reverse
faulting are identified. Both regimes show one (more or less) circular and one elongated cluster. b) Legend of the subpopulations. The
reverse faulting clusters (cyan) are related to the interface of the colliding plates. The events in the normal faulting clusters (red) form
the subpopulation associated with the subducting slab. FMS in the white area are unclassified. c) Four example beach ball plots of
significant events in the region. The rupture plane and auxiliary planes are indicated as yellow and gray great-circles, respectively. d)
Hypocentral locations of earthquakes from the GCMT catalog in Northern Chile. Nearly all reverse faulting events occur in the upper
50 km along the coast, while most normal faulting events are deeper in the slab. Few normal faulting events are close to surface along
the shorelines. These events may be associated with the bending of the Nazca plate before being subducted. Many unclassified events
are near the surface. These events are likely related to the thrusting of the Andes due to their locations, as well as their frequently
positive rake values. Map data: ETOPO1 (Amante and Eakins, 2009).
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Figure 4.4: Results of conventional stress tensor inversion (a) and stress tensor inversion using weights based on ACE (b) for northern
Chile. For the conventional inversion we used all events from the northern Chile (region extent in Figure 4.3d) with a maximum depth
of 50 km. For the weighted inversion we used probabilities of the events belong to interface subpopulation (cyan colored in Fig. 4.3).
The plots show the principal stress axes orientations (dots) in a lower hemisphere using the Lambert azimuthal equal-area projection
(Schmidt net). Uncertainty distributions are estimated by bootstrapping (20,000 times) and are shown as a kernel density estimator
based on the von Mises-Fisher distribution (κ=2500). Stress orientations are nearly identical for both inversions, though uncertainties
are significantly reduced in the weighted inversion (b). This reduction is achieved by excluding events not associated with interface
activity. Those excluded events are more likely associated with a different local stress field (e.g. Andes thrustbelt, reactivation of faults
in the oceanic plate).
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4.2 Nazca Plate

The second example covers the focal mechanisms of the
GCMT catalog from 1976 - 2016 for the entire Nazca plate
with eastward motion, thus this example does not cover data
from the northern plate boundary due to the plate’s north-
south motion. As the previous example is a subset of this
data set, we expect similar results for normal and reverse
faulting. The bulk of the Nazca plate can be considered as
a homogeneous block moving eastwards surrounded by the
Cocos plate to the north, the Pacific plate to the west, the
Antarctic Plate to the south and the South American Plate
to the east. The catalog for this region contains 3528 events
(7056 nodal planes) and the setup for ACE is as in the pre-
vious example.

The optimal mixture model (Fig. 4.7a) shows four clusters
similar to those found for Northern Chile: two for reverse and
normal faulting, respectively. In addition, eight clusters with
rakes close to either 0◦ or ±180◦ are identified as well, indi-
cating strike-slip. In total, five subpopulations are identified:
reverse, normal, two for strike-slip (right- and left-lateral),
and one for unclassified events (Fig. 4.7a). The normal and
reverse subpopulations appear similar in shape and location
as in case of the Northern Chile data (which are a subset
here), suggesting that the stress orientations remain fairly
constant along the entire west coast of South America.

The rotation angle distributions for each event type sub-
population are shown in Fig. 4.5. The ECDF for reverse
faulting events (cyan) is comparable to the one from North-
ern Chile in Fig. 4.2, though the concentration κ is lower.
This is expected due to the much larger catalog of events
spanning a larger area. The normal faulting subpopulation
is less well described by a rotational Fisher-Bingham distri-
bution and the ECDF deviates from the model. This can
be explained by the large variety of normal faulting events
along the Nazca plate boundaries. While events to the East
are mostly associated with intraslab activity, normal faulting
events along the southern and western boundaries occur along
the mid-ocean ridges.

A similar behavior of the rotation angle distribution is ob-
served for strike-slip events (Fig. 4.5, green curve). This
strike-slip subpopulation is associated with events along the
East Pacific Rise (Fig. 4.7d, west boundary of the Nazca
Plate) and events in this region are usually left-lateral. Yet
another group in this subpopulation occurs along the Liquiñe-
Ofqui fault in Chile (Fig. 4.7d, green colored events, south-
eastern corner). This fault on the South American Plate is
subject to the continental stresses there and only indirectly
connected to the Nazca Plate. These shallow events along this
fault are right-lateral (Hauser , 1991). Therefore, this subpop-
ulation is relatively diverse, which explains the relatively low
concentration κ and the deviation from the rotational Fisher-
Bingham distribution.

On the other hand, strike-slip events along the southern
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Figure 4.5: Cumulative distribution functions of the rotation an-
gle between pairs of FMS for the Nazca Plate. The colored solid
curves are estimated from the FMS data by using the subpop-
ulation probabilities as weights. The empirical distributions are
well described by rotational Fisher-Bingham distributions (FBr,
dashed lines, parameters are in table). As for the northern Chile
FMS (which are completely included in this data set), the angle
distribution for unclassified FMS is nearly random and is very
similar to the pure random DC distribution (thin black line). The
solid light gray line shows the rotation angle distribution for pairs
of FMS shallower than 100 km and with a hypocenters separated
by less than 50 km. This unweighted distribution is best described
by a rotational Cauchy distribution (κc=0.07, dotted line).

plate boundary to the Antarctic Plate are very similar to
each other as shown by relatively small rotation angles (high
concentration). These events are all left-lateral strike-slip.
This applies also to the events further north close to the East
Pacific Rise.

The derived orientation of both strike-slip subpopulations
is in agreement with the plate boundaries and the plate move-
ment directions (Bird , 2003) (Fig. 4.7e).

The distribution of unweighted FMS (Fig. 4.5, light gray
line) is determined as for the Northern Chile example: only
events with hypocenters shallower than 100 km, and distances
between hypocenters of less than 50 km. The resulting dis-
tribution is similar to the one for Northern Chile (Fig. 4.5,
light gray line), yet less steep due to the much larger spa-
tial extent of the region and therefore less similar events are
more likely the catalog. As for Northern Chile, the rotational
Cauchy distribution fits well to empirical distribution (Fig.
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4.5, dotted gray line).
Due to the large extent of the region, we conducted stress

tensor inversion with SATSI. As for northern Chile we focus
on events associated with interface activity, i.e. with a depth
of maximum 50 km. We subdivide the region between -85◦

and -60◦ longitude into seven strips of 5◦ width between lat-
itudes -40◦ and -5◦. Zones are shown as red horizontal lines
in Fig. 4.6. We applied SATSI both conventionally with-
out weighting and with ACE based weights. The dependency
strength in Eq. 3.12 is set for both cases to ε = 0.2 in order
to minimize the trade-off between model length and variance.
Results for both inversions are shown in Fig. 4.6. For each
bin, we show the orientations of the principal stress axes in a
lower hemispheric plot (large circles). The left column shows
principal stresses for the conventional inversion and the right
column for the ACE based inversion. All results are similar
with the maximum principal stress S1 pointing westward, the
intermediate principal stress S2 pointing northward (south-
ward), and the minimum principal pointing downward and
slightly eastward (depicted by the shortest arrow).

Results of the conventional inversion tend to be more tilted
than results from the ACE based inversion. This is shown
by the flipping of the northward/southward pointing stress
axes in the ACE based inversion (Fig. 4.6, right column).
These stress axes are nearly horizontal, hence they tend to
flip from north to south for different tensor solution. This is
not the case for the conventionally derived tensors, where all
intermediate stress axes point northward.

Uncertainties are determined on the same basis as for
northern Chile by bootstrapping. Uncertainties for each ten-
sor between the conventional and ACE based inversion pro-
cedure are similar (Fig. 4.8). Individual solutions are shown
by different shades of hue, with S1 in red/purple, S2 in or-
ange/green, and S3 in green/blue. However, the scatter of the
tensor solutions themselves are larger for the conventional in-
version. This is best demonstrated by the orientation of S3:
While for the conventional analysis each tensor uncertainty
distribution is distinctively visible (Fig. 4.8a, green/blue ar-
eas), it is not the case for the ACE based inversion. Here all
uncertainty distributions are in the same location (Fig. 4.8b,
blue area). A similar behavior can also be observed for the
maximum principal stress orientation (S1, red/purple), and
intermediate stress orientations (S2, orange/green). For the
intermediate stress orientations it also visible in Fig. 4.8 that
orientations are closer to horizontal (i.e. at the edge of the
plot) for the ACE based solutions than for the conventional
inversion.
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Figure 4.6: Results of conventional stress tensor inversion (left
column) and stress tensor inversion using weights based on ACE
(right column) by using SATSI for the South American west coast.
Each tensor represents the stress in the map area next to it (areas
separated along red lines). For the conventional inversion we used
all events along the coast (region extent in map) with a maximum
depth of 50 km. This encompasses all events in blue and white.
For the ACE based inversions we used all events and the color
saturation corresponds to the weight size: the more saturated, the
larger the weight. The separation into blue and red colors is only
necessary to indicate those events with depths less than 50 km
(blue) and therefore also included in the conventional inversion
(without weighting) and depths more than 50 km (red) and hence
excluded from the conventional inversion. In case of the deeper
events we show only events that highly probable of interface type.
The stress orientation plots show principal stress orientations as
lines (S1 magenta, S2 yellow, S3 cyan). Projection is lower hemi-
spheric Lambert azimuthal equal-area. Using the lower hemisphere
only results in the flips of the S2-axes (yellow) in the right column.

23

STR 17/01. GFZ German Research Centre for Geosciences. 
DOI: 10.2312/GFZb103-17012



a)

0◦

30◦

60◦

90◦
0◦ 45◦ 90◦ 135◦ 180◦ 225◦ 270◦ 315◦ 360◦

a)

-180◦

-135◦

-90◦

-45◦

0◦

45◦

90◦

135◦

180◦
0 ◦ 30 ◦ 60 ◦ 90 ◦

a)

d)
-120◦ -110◦ -100◦ -90◦ -80◦ -70◦ -60◦

0

100

200

300d)

-40◦

-30◦

-20◦

-10◦

0
10

0
20

0
30

0

d)

1

c)

4

c)

3

c)

2

c)

2e)

4.0 5.0 6.0 7.0 8.0δ

φ

λ

δ

b)

d
ep

th
(k

m
)

longitude

la
ti

tu
d

e

depth (km)

Maule
MW=8.8
2010/02/27
06:35:14.5

1

1

1

East Pacific Rise
MW=5.9
2015/07/07
07:01:45.2

4

4

4

Chile Rise
MW=6.0
2015/01/07
03:06:47.2

3

3

3

Loreto
MW=7.5
2005/09/26
01:55:44.0

22

2

subduction
divergent

transform (left-lateral)
transform (right-lateral)

other boundary type

Loreto
MW=7.5
2005/09/26
01:55:44.0

22

2

MW

24

STR 17/01. GFZ German Research Centre for Geosciences. 
DOI: 10.2312/GFZb103-17012



Figure 4.7: (left page) a) Optimal mixture model for FMS data from the Nazca plate from 1976-2016. The twelve identified clusters
fall into four subpopulations: reverse (cyan), normal (red), strike-slip (chartreuse, violet). b) The reverse and normal faulting clusters
are similar to the clusters shown in Fig. 4.3a,b and represent interface (cyan) and intraslab (red) events. In addition, the red clusters
also include events along the mid-ocean ridges in the South and West of the Nazca Plate. Eight clusters for strike-slip are identified
falling into two subpopulations. c) Four example beach ball plots for each SoF. The rupture plane and auxiliary planes are indicated
as yellow and gray great-circles, respectively. The numbers correspond to the numbers in the strike-rake plane (a) and the map (d). d)
Map of the Nazca plate showing the hypocenters of the GCMT catalog. Nearly all events are at the plate boundaries and the colored
hypocenters of the near surface events delineate the plate boundaries as shown in (e) (Bird , 2003). Map data: ETOPO1 (Amante
and Eakins, 2009). From the plate movement and plate boundaries it is possible to infer the strike-slip type: Nearly all strike-slip
events along the Chile Rise (southern plate boundary with the Antarctic Plate) and along the southern East Pacific Rise form the
subpopulation shown in violet. Due to the eastward motion of the Nazca Plate it is reasonable to assume these events as right-lateral.
The strike-slip events shown in chartreuse are mostly along the East Pacific Rise and with left-lateral transform fault segments. A
small group of this subpopulation is also located on the South American continent along the Chilean coast (lower right corner). These
events are most likely associated with the right-lateral Liquiñe Ofqui fault.
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Figure 4.8: Same as Fig. 4.4 but for results in Fig. 4.6 (South American west coast) of SATSI based stress tensor inversion. The
different shades for each stress axis distribution represent the different tensors for each region (base colors and numbers correspond to
axes colors and numbers in Fig. 4.6). Uncertainties (shown as colored KDE) for each tensor are smaller for the ACE based inversion
compared to the conventional weighting. In addition, results on the left are more scattered, e.g. S1 orientations (black dots) show an
unsorted ”C” shaped pattern. On the hand, ACE based results show steady increase of the S1 azimuth, while the dips remain constant.
The orientation of the seven S3-axes of the ACE based inversion (right) are within the uncertainties of each individual tensor, thus
resulting in mixing the color shades in the plot. Also the S2-axes are closer to horizontal for the ACE based inversion, resulting in
distributions in the upper and lower half of the plot which explains the flip of the yellow axes in Fig. 4.6.
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Figure 4.9: Cumulative distribution functions of the rotation an-
gle between pairs of FMS from Kyūshū. The colored solid curves
are estimated from the FMS data by using the subpopulation prob-
abilities as weights. The empirical distributions are well described
by rotational Fisher-Bingham distributions (FBr, dashed lines,
parameters are in table). The angle distribution for unclassified
FMS is nearly random since it is close to the pure random DC
distribution (thin black line). The solid light gray line shows the
rotation angle distribution for pairs of FMS shallower than 100
km and with a hypocenters separated by less than 50 km. This
unweighted distribution is best described by a rotational Cauchy
distribution (κc=0.23, dotted line). The distribution of the rota-
tion angle indicates more tectonic heterogeneity compared to the
previous examples from South America (Fig. 4.2, 4.5).

4.3 Kyūshū (SW Japan)

For the third example we investigated focal mechanisms of
the NIED catalog from 1997 - 2016 for the island of Kyūshū
and surroundings in southwestern Japan. Kyūshū is located
on the Eurasian plate, west of the Philippine Plate. The
island is traversed by the Futagawa and Hinagu fault systems
from Southwest to Northeast. The April 2016 Kumamoto
earthquake sequence (main shock: MW 7.1) occurred on this
fault system (Kubo et al., 2016). The catalog contains 1741
events (3482 nodal planes).

The optimal mixture model (Fig. 4.10a) identifies eleven
clusters: one for unclassified faulting, two for reverse faulting,
and four for normal and strike-slip faulting, respectively.

The two different types of normal faulting are also spa-
tially separated (Fig. 4.10d). The subpopulation of normal

Figure 4.10: (right page) a) Optimal mixture model for FMS
data from Kyūshū (Japan) from 1997-2016. The ten identified
clusters fall into four subpopulations: reverse (cyan), two normal
(red) and strike-slip (green). The two normal fault subpopulations
show some differences: The clusters are separated by appr. 90◦

of strike, i.e. irrespective of the nodal plane, the rupture planes
are perpendicular to each other. For the subpopulation shown
in dark red the dips of both nodal plane clusters are appr. the
same, while for the subpopulation in bright red the dips differ sig-
nificantly for both clusters. The difference of dips in the clusters
is also observable for the data from South America (Fig. 4.3a,
4.7a). c) Map of hypocenter locations shows most reverse fault-
ing events along the eastern part of Kyūshū along the interface
of the Philippine Plate which is subducted from East under the
Eurasian Plate. Normal faulting FMS shown in bright red are
close to interface related events and are associated with activity
within the oceanic Philippine Plate. The normal faulting events
in dark red are located further away from the subduction zone,
relatively shallow and close to the strike-slip events. In central
Kyūshū where the 2016 Kumamoto earthquake sequence occurred
(moment tensor of main shock shown in (d)), events of normal and
strike-slip subpopulations are spatially close. Events in this region
may form a continuous transition from one SoF to another which
is also indicated by the cluster alignment in (a).

faulting events with different mean dips of its two clusters
(Fig. 4.10a, bright red) are mostly located in the slab of the
subducted Philippine plate, while the other subpopulation of
normal events is located in the crust of Kyūshū (Fig. 4.10a,
dark red).

The rotation angle distribution are less concentrated com-
pared to the results of the Nazca plate, even for reverse
faulting (Fig. 4.9, cyan line). Though all subpopulations
are well described by the rotational Fisher-Bingham distri-
bution, both continental intraplate ((Fig. 4.9, dark red) and
strike-slip (green line) events show deviations from the rota-
tional Fisher-Bingham distribution and exhibit a slight jump
at appr. 90◦. This jump is similar to the rotational Cauchy
distribution for large rotation angles, though the bump here is
smaller in size. This fact and the relatively low concentration
κ might be an indicator for a comparatively heterogeneous
setting. The unclassified events are almost purely randomly
distributed FMS.

The empirical distribution with unweighted data is deter-
mined as in the previous examples by considering only events
shallower than 100 km and a maximum distance of 50 km
between hypocenters. Similarly to the relatively low concen-
trations of the rotational Fisher-Bingham distributions, the
unweighted rotation angle distribution demonstrates a hetero-
geneous setting for Kyūshū, as nearly half of the FMS pairs
have rotation angles of more than 60◦ (Fig. 4.9, light gray
line). Irrespective of the complexity, the rotation angle distri-
bution is well described by the rotational Cauchy distribution
(Fig. 4.9, dotted gray line).
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Chapter 5

Discussion & Conclusion

We introduced ACE as a purely data driven algorithm to
identify clusters of earthquakes, solely based on a focal mech-
anism’s strike, rake, and dip. The results ACE provides are
in agreement with the general knowledge about the regions
investigated. Within a region with relatively constant stress
orientations, hypocenters are not directly required to classify
the data. Therefore, classification errors are reduced, com-
pared to classical deterministic classification schemes as pre-
sented by Garćıa et al. (2012). We also successfully demon-
strated that the clusters improve estimates of stress tensors
and can be further used for nodal plane disambiguation in
the presence of geological/tectonic data.

Few strike-slip are also shown at larger depths (> 50 km,
Fig. 4.7d, left and bottom). This misclassification can be
caused by the fact, that certain more complex rupture pro-
cesses are insufficiently represented by a FMS. Another ex-
planation can be found by the fact of an insufficient amount
of data. If a particular rupture process is represented by a
small number of events, then it is unlikely that this particular
process is assigned to its own cluster.

The automatic classification can be used for a wide range
applications in the seismology and stress communities, e.g.
for seismic hazard assessment, selection of existing ground
motion prediction equations (GMPE’s), selection of earth-
quakes to derive new GMPE’s, SoF-specifc b-value estima-
tion, selection of focal mechanism as stress indicators (World
Stress Map Project) etc.

ACE - in conjunction with geological databases - can also
be applied in rapid earthquake assessment to help identify
the rupture plane of a newly calculated FMS. In this case, an
existing FMS catalog is used as a training data set to derive a
mixture model, which is representative for a region of interest.
When a new FMS datum is available, the probability of the
SoF can be calculated, and if additional geological data is
available, the rupture plane orientation can be derived.

We showed the application of the mixture model proba-
bilities of ACE as weights for the determination of the ro-
tation angle distribution of focal mechanisms. The resulting
weighted empirical distributions are well described by rota-
tional Fisher-Bingham distributions even in tectonically com-
plex settings. This provides an additional perspective on the

distribution of FMS because the weighted distributions show
high consistency even to spatially distant events. This effec-
tively reduces the constraint of spatial closeness when con-
sidering unweighted data (Kagan, 1992; Kagan and Jackson,
2015). The investigation of the distributions of rotation angle
between FMS pairs with ACE based weights also showed the
separability of the data into rotationally consistent subsets
and a nearly purely randomly orientated FMS subset (the
noise/unclassified subpopulation). The former can be associ-
ated with large scale tectonic features (e.g. plate interface,
subducting slab). The latter subset is only ”nearly” purely
random as it is not possible to separate those events from
a consistent subpopulation (e.g. interface related) that are
only by chance similar to the subpopulation’s events. This is
the main reason why the rotation angle distributions of the
unclassified subpopulations are not completely following the
random DC rotation.

Stress tensor inversion results with ACE based weighting
of the FMS improve stress tensor uncertainties considerably.
However, this reduction in uncertainties affects the precision
of the results, not necessarily their accuracy. If only one plane
of a conjugate fault system is activated (as usually is the case
of subduction zones since subduction does not occur on con-
jugate planes), then the resulting stress tensor can be biased.
The bias affects the minimum and maximum principal stress
directions and has a maximum magnitude of half the (usu-
ally unknown) angle of internal friction in the plane of the
maximum and minimum stress orientations. If only one con-
jugate plane is activated, then the inversion will converge to
solutions identical to the PBT axes. This convergence occurs
irrespective of a priori knowledge of the rupture and auxiliary
plane orientations.

The results of ACE based stress tensor inversion with
nodal plane disambiguation are useful for rupture plane dis-
tance calculation (with magnitude-fault size relations from
e.g. Strasser et al. (2010)), an important distance metric for
ground motion prediction equations.

28

STR 17/01. GFZ German Research Centre for Geosciences. 
DOI: 10.2312/GFZb103-17012



Appendix A

Mathematical concepts

A.1 Derivation of angular deriva-
tives

A.1.1 Relations for rupture plane

The equations for the slip and normal vectors in terms of
strike (φ), rake (λ) and dip (δ) are given by

n̂ =

− sin δ sinφ
− sin δ cosφ

cos δ

 (A.1)

d̂ =

sinλ cos δ sinφ+ cosλ cosφ
sinλ cos δ cosφ− cosλ sinφ

sinλ sin δ

 (A.2)

Let d̂2 denote the slip vector of the auxiliary and n̂1 the
normal vector of the rupture plane. Since the nodal planes
are orthogonal to each other, the vectors are identical (e.g.
Stein and Wysession, 2003)

d̂2 = n̂1 or d̂1 = n̂2 (A.3)

Following the Wallace-Bott hypopthesis, the slip and normal
vectors are in the same plane as the maximum and minimum
principal stress axes. This plane’s normal vector is parallel
to both the intermediate principal stress axis and the cross
product of the slip and normal vector:

b̂ = n̂× d̂ (A.4)

=

cosλ cos δ sinφ− sinλ cosφ
cosλ cos δ cosφ+ sinλ sinφ

cosλ sin δ

 . (A.5)

With the cross product (and intermediate stress axis) fixed,
it follows

b̂ = const. (A.6)

Now, let the intermediate stress vector be defined as
b̂(λ(φ, δ), δ, φ) and

∂b̂

∂φ
= 0 (A.7)

And with Eq. A.2:

0 =− sinλ
∂λ

∂φ
cos δ sinφ− cosλ cos δ cosφ

− cosλ
∂λ

∂φ
cosφ+ sinλ sinφ (A.8)

0 =− sinλ
∂λ

∂φ
cos δ cosφ− cosλ cos δ sinφ

+ cosλ
∂λ

∂φ
sinφ+ sinλ cosφ (A.9)

Multiplying the first line with cosφ and the second with sinφ
and subtracting the second from the first equation reduces to
the relation

∂λ

∂φ
= cos δ (A.10)

The derivative with respect to δ:

∂b̂

∂δ
= 0 (A.11)

And with Eq. A.2:

0 =− sinλ
∂λ

∂δ
cos δ sinφ− cosλ sin δ sinφ

− cosλ
∂λ

∂δ
cosφ (A.12)

0 =− sinλ
∂λ

∂φ
cos δ cosφ− cosλ sin δ cosφ

+ cosλ
∂λ

∂δ
sinφ (A.13)

Again, multiplying the first line with cosφ and the second
with sinφ and subtracting the second from the first equation
reduces to the relation

cosλ
∂λ

∂δ
= 0 (A.14)

The derivatives in Eq. A.10 and A.14 are also found by setting
d̂ = const.

29

STR 17/01. GFZ German Research Centre for Geosciences. 
DOI: 10.2312/GFZb103-17012



A.2 Wrapped Normal Distribution

The bivariate normal distribution of a vector υ = (υ1, υ2):

N (υ|µ,Σ) =
1

2π
√

det Σ
exp

(
−1

2
(υ − µ)Σ−1(υ − µ)T

)
(A.15)

where µ = (µ, ν) is the mean vector and Σ the covariance
matrix:

Σ =

(
σ2 ρστ
ρστ τ2

)
, (A.16)

with σ2 and τ2 as the variances and ρ is the (population)
correlation coefficient.

The bivariate wrapped normal (WN) distribution is

Nw(φ, λ|µ, ν, σ2, τ2, r) =∑
u,v∈Z

N (φ+ 2πu, λ+ 2πv|µ, ν, σ2, τ2, r) (A.17)

The strike φ is in the range [0, 2π] and has mean µ and vari-
ance σ2. The rake λ is in the range [−π, π] with mean ν and
variance τ2. The estimators of these parameters are found by
maximum likelihood. Since the parameters of strike and rake
have similar estimators, let θ = (φ, λ) represent the data,
µ = (µ, ν) the means and σ = (σ2, τ2) the variances.

In order to address the circular property of θ, which is also
inherent in the parameters of the WN distribution, a change
of variable is performed:

Θ = eiθ. (A.18)

The mean is found by

Θ̄ =
1

N

N∑
n=1

Θn, (A.19)

and the maximum likelihood estimate of µ of the WN distri-
bution is

µ̂ = arg Θ̄. (A.20)

The quadratic length of the mean vector, given by Θ̄Θ̄
∗

(∗
denotes complex conjugate), is used to estimate the variances
of σ̂

σ̂ = − ln

(
N

N − 1

(
Θ̄Θ̄

∗ − 1

N

))
. (A.21)

For large N it is sufficient to approximate the variance by

σ̂ = − ln(Θ̄Θ̄
∗
). (A.22)

When applied within the expectation-maximization algo-
rithm, this (biased) estimator must be used as the sample
size is lost when the data are weighted according to the dis-
tribution functions.

With the mean estimated by Eq. A.19, the circular sample
correlation coefficient is calculated by

r =

N∑
n=1

sin(φn − µ̂) sin(λn − ν̂)√√√√ N∑
n=1

sin2(φn − µ̂)

√√√√ N∑
n=1

sin2(λn − ν̂)

. (A.23)

A.3 Beta Distribution

Similar to the wrapped normal distribution, the beta distribu-
tion is chosen for its wide range of shapes (other distributions
are special/limiting cases of the beta distribution), its finite
support, and the availability of simple parameter estimators.

The generalized beta distribution in an arbitrary interval
(a, b) is given by

B(x|α, β, a, b) =
(x− a)α−1(b− x)β−1

(b− a)α+β−1B(α, β)
, (A.24)

where α and β are the shape parameters. The beta function
B(·, ·) is the normalization constant and is given by

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
, (A.25)

with Γ(·) as the gamma function. When programming the
above equation, it as advisable to define it terms of its log-
arithms by using the log-gamma function (e.g. lgamma in
C/C++, gammaln in MATLAB R©are provided])/PythonTM.
As the gamma function increases to very large values even
for small arguments, summing and subtracting the logarithms
and exponentiation of the result at the end prevents arith-
metic overflow.

The beta distribution has finite support in the range of
(a, b), i.e. following the definition of Johnson et al. (1995),
and leaves out the interval limits, due to the singularities at
{0, 1} for 0 < α < 1 or 0 < β < 1. When applied to data,
i.e. the dip angle δ, the interval limits must be defined to
include all values. In case of the dip δ, the interval is set to
(−1◦, 91◦).

The estimators of the shape parameters are based on the
method of moments. Only the mean mδ and variance vδ of
the dip and their interval normalized counterparts m and v,
respectively, are required:

m =
mδ − a
b− a

mδ =
1

N

N∑
i=1

δi (A.26)

v =
vδ

(b− a)2
vδ =

1

N − 1

N∑
i=1

(δi −mδ)
2 (A.27)
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The shape parameters are found from the definitions of the
moments in terms of the shape parameters

m =
α

α+ β
v =

αβ

(α+ β)2(α+ β + 1)
, (A.28)

and solving for the shape parameters results in

α̂ = m

(
m(1−m)

v
− 1

)
(A.29)

β̂ = (1−m)

(
m(1−m)

v
− 1

)
. (A.30)

These relations hold for v < m(1 − m). In few instances,
this inequality may not hold within the EM-algorithm. In
order to avoid discarding clusters with ill-conditioned shape
parameters, we set α̂ = β̂ = 1, i.e. the dip is then described
by a uniform distribution. Note, that this overriding rule
may become obsolete again as the iterations proceed and the
distributions change.

A.4 Change of variable

The change of variables of a multivariate probability density
function from x to y is given by

P (y) = P (x)|det J|, (A.31)

where J is the Jacobian matrix. The determinant of the Ja-
cobian for the nodal plane angles is

det(J1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂φ1
∂φ2

∂φ1
∂λ2

∂φ1
∂δ2

∂λ1
∂φ2

∂λ1
∂λ2

∂λ1
∂δ2

∂δ1
∂φ2

∂δ1
∂λ2

∂δ1
∂δ2

.

∣∣∣∣∣∣∣∣∣∣∣∣∣
(A.32)

Solving d̂1 = n̂2 for φ1, λ1, and δ1 in terms of φ2, λ2, and δ2
(Eq. A.1 and A.2) gives following three equations:

φ1 = φ2 − arcsin

(
cosλ2√

1− sin2 λ2 sin2 δ2

)
(A.33)

λ1 = arcsin

(
cos δ2√

1− sin2 λ2 sin2 δ2

)
(A.34)

δ1 = arcsin

√
1− sin2 λ2 sin2 δ1 (A.35)

From equations A.33, A.34 and A.35, it can be readily seen
that

∂φ1
∂φ2

= 1,
∂λ1
∂φ2

= 0, and
∂δ1
∂φ2

= 0, (A.36)

and the determinant of the Jacobian matrix reduces to

det(J1) =
∂λ1
∂λ2

∂δ1
∂δ2
− ∂λ1
∂δ2

∂δ1
∂λ2

. (A.37)

A common denominator of these derivatives is√
1− sin2 λ2 sin2 δ2 = sin δ1, (A.38)

the right hand from Eq. A.35 is used for brevity in the fol-
lowing equations. The derivatives are

∂λ1
∂λ2

=
cos δ2 sin δ2 sinλ2

sin2 δ1

∂λ1
∂δ2

=− cosλ2

sin2 δ1
∂δ1
∂λ2

=
cosλ2 sin δ2

sin δ1

∂δ1
∂δ2

=
sinλ2 cos δ2

sin δ1

(A.39)

and the determinant becomes

det(J1) =
sin δ2

sin3 δ1

(
sin2 λ2 cos2 δ2 + cos2 λ2

)
. (A.40)

From the Pythagorean trigonometric identity follows

det(J1) =
sin δ2

sin3 δ1

(
sin2 λ2 sin2 δ2 + 1

)
, (A.41)

and finally with Eq. A.35, the determinant of the Jacobian is

det(J1) = − sin δ2
sin δ1

. (A.42)

The magnitude of the determinant is plugged into Eq. A.31
and the change of variable from a distribution given in rupture
plane angles to a distribution given in auxiliary plane angles
is given by

P (φ2, λ2, δ2) = P (φ1, λ1, δ1)
sin δ2
sin δ1

. (A.43)

A.5 Kernel Density Estimator
(KDE)

The kernel density estimator (KDE) for the nodal plane data
with variance σ2

KDE for the strike (φ) and rake (λ) strike and
rake, and bandwidth bKDE for the dip is the product of a
bivariate normal distribution with the wrapping property for
strike and rake and beta distribution for the dip. Therefore,
this KDE is the non-parametric counterpart of the mixture
model.

h(φ, λ, δ) =
1

2NσKDE

√
2π

2N∑
i=1

δαi−1i

(
π
2 − δi

)βi−1
(π2 )αi+βi−1B(αi, βi)

×

1∑
u=−1

1∑
v=−1

exp

{
− 1

2σ2
KDE

×
[
(φ− φi + 2uπ)2 + (λ− λi + 2vπ)2

]}
(A.44)

The beta distribution KDE is based on Chen (1999). We
modify the definition to apply the equation directly to the
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support interval (0, π2 ). Furthermore, we exclude the support
limits from the beta distribution as described in appendix
A.3. The parameters of the ith beta distribution, αi and βi,
for the kernel with bandwidth b (subscript KDE dropped for
brevity) in terms of dip δi are defined as:

αi =

{
ρ(δi) if δi ∈ (0, 2b)
δi
b if δi ∈

[
2b, π2

) (A.45)

βi =

{ π
2−δi
b if δi ∈

(
0, π2 − 2b

]
ρ
(
π
2 − δi

)
if δi ∈

(
π
2 − 2b, π2

) (A.46)

where

ρ(x) = 2b2 +
5

2
−
√

4b4 + 6b2 +
5

4
− x2 − x

b
(A.47)

32

STR 17/01. GFZ German Research Centre for Geosciences. 
DOI: 10.2312/GFZb103-17012



Appendix B

Acknowledgments

The authors would like to thank Moritz Ziegler, Dietrich
Stromeyer, and Konrad Schellbach for helpful discussions
on stress, mathematics and logic. Thanks to Anne Strader
for constructive comments on the manuscript. The focal
mechanism data used in this study are freely available at
http://www.globalcmt.org/ (GCMT),
http://geofon.gfz-potsdam.de/ (GEOFON),
http://earthquake.usgs.gov/earthquakes/search/

(USGS),
http://www.fnet.bosai.go.jp/event/search.php?LANG=

en (NIED),
https://wwweic.eri.u-tokyo.ac.jp/tseis/junecfm2/

index.html (JUNEC FM2)
and http://www.bo.ingv.it/RCMT/ (RCMT). Most
plots are generated with gnuplot (http://gnuplot.
sourceforge.net/), Fig. 2.3 was generated with blender
(https://www.blender.org/). Geographic maps are
generated with GMT (Wessel et al., 2013), topographic
data is based on ETOPO1 (Amante and Eakins, 2009).
Sebastian Specht acknowledges support from the DFG
research training group ”Natural Hazards and Risks
in a Changing World” (Grant No. GRK 2043/1).
The code for ACE (written in C++) is accessible at
https://github.com/AgentSmith660/ACE.

33

STR 17/01. GFZ German Research Centre for Geosciences. 
DOI: 10.2312/GFZb103-17012

http://www.globalcmt.org/
http://geofon.gfz-potsdam.de/
http://earthquake.usgs.gov/earthquakes/search/
http://www.fnet.bosai.go.jp/event/search.php?LANG=en
http://www.fnet.bosai.go.jp/event/search.php?LANG=en
https://wwweic.eri.u-tokyo.ac.jp/tseis/junecfm2/index.html
https://wwweic.eri.u-tokyo.ac.jp/tseis/junecfm2/index.html
http://www.bo.ingv.it/RCMT/
http://gnuplot.sourceforge.net/
http://gnuplot.sourceforge.net/
https://www.blender.org/
https://github.com/AgentSmith660/ACE


Bibliography

Akaike, H. (1974), A new look at the statistical model iden-
tification, IEEE Transactionson Automatic Control, 19 (6),
716–723, http://doi.org/10.1109/TAC.1974.1100705.

Amante, C., and B. W. Eakins (2009), ETOPO1 1 arc-minute
global relief model: procedures, data sources and analysis.

Bird, P. (2003), An updated digital model of plate bound-
aries, Geochemistry, Geophysics, Geosystems, 4 (3), n/a–
n/a, http://doi.org/10.1029/2001GC000252.

Bott, M. H. P. (1959), The Mechanics of Oblique Slip Fault-
ing, Geological Magazine, 96 (02), 109, http://doi.org/

10.1017/S0016756800059987.
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