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SUMMARY
Previous studies of glacial^isostatic adjustment have usually considered earth models
with a purely elastic lithosphere. A possibly signi¢cant deviation from this assumption
is the presence of a ductile crustal layer embedded in an otherwise elastic lithosphere.
Such a layer has been suggested for various continental regions on the basis of seismic
and tectonic evidence. The present study investigates the implications of a ductile
crustal layer for the interpretation of glacial^isostatic adjustment using a layered,
incompressible Maxwell viscoelastic earth model and a simpli¢ed representation of
the Fennoscandian glaciation. The relaxation-time and amplitude spectra show that,
besides the conventional buoyancy mode M0 also present in earth models with a purely
elastic lithosphere, the ductile layer supports a slowly decaying mode MC, which is
capable of modifying the deformation markedly. Thus, measures of the absolute
deformation such as the stress clearly re£ect the presence of the ductile layer. In contrast
to this are measures of the relative deformation such as the vertical displacement rate
and the rate of gravity change. To a good approximation, these rates are inversely
proportional to the relaxation time of the more quickly decaying mode M0, and are,
therefore, less a¡ected by the ductile layer. Taken together, the present study suggests
that, provided a ductile crustal layer exists, its presence should be accounted for in
interpretations of the glacial^isostatic adjustment following the Fennoscandian or
smaller glaciations.
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1 INTRODUCTION

According to mineralogical and thermodynamic considerations,
solid-state creep in crustal materials is expected to become
active at relatively low temperatures of *350 0C (e.g. De Rito
et al. 1986). The constitutive equation describing these creep
processes has been inferred from laboratory experiments, which
suggest a power-law relation between the maximum shear
stress and the strain rate (e.g.Weertman 1978). However, due to
technical restrictions, all experiments have been performed at
rather high shear stresses in the range 10^100 MPa, resulting in
relatively high strain rates of *10{8 s{1. The extrapolation
of the laboratory results to the much smaller strain rates of
*10{15 s{1 typical of geodynamic processes is uncertain and,
therefore, a linear relation between the maximum shear stress
and the strain rate cannot be excluded (e.g. Ranalli & Murphy
1987; Kohlstedt et al. 1995).
Independent of these studies, the problem of the existence

of a ductile crustal layer has also been addressed using geo-
physical results. Circumstantial evidence of the presence of

such a layer is the lack of seismicity in the lower crust found
in various tectonic provinces (e.g. Vetter & Meissner 1979;
Meissner & Strehlau 1982; Chen & Molnar 1983) and possibly
also in Fennoscandia (e.g. Slunga 1989; Arvidsson 1996) or an
increase of seismic re£ectors in the lower crust, indicating
lamination supported by ductile £ow (Meissner &Wever 1986).
Although a noticeable in£uence of a ductile crustal layer on
geodynamic processes can be expected, investigations of its
signi¢cance have so far been largely limited to long-period
processes (characteristic times of *106^108 yr) such as rifting
and plate collision (e.g. Kruse et al. 1991; Lobkovsky &
Kerchman 1991) or the evolution of sedimentary basins
(e.g. Kaufman & Royden 1994). For short-period processes
(characteristic times of *102 yr), the stress relaxation of post-
seismic events (Rydelek & Sacks 1990; Rydelek & Pollitz 1994)
or the isostatic adjustment in response to mining activity
(Klein et al. 1997) have been used to infer the rheology of the
lower crust. In contrast to these examples are glacial^isostatic
adjustment processes in response to the Pleistocene glaciations
(characteristic times of *104^106 yr), where investigations
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into the implications of a ductile crustal layer are largely
lacking. An exception is the study by Wu (1997), who investi-
gated the in£uence of a ductile layer within the lithosphere on
the stress ¢eld in eastern Canada.
The objective of the present paper is to quantify the

implications of a ductile crustal layer for the interpretation of
observations of glacial^isostatic adjustment. Similar to Wu
(1997), we restrict our study to linear creep processes and use
the theory developed for an incompressible Maxwell visco-
elastic half-space subjected to surface loading; in contrast to
him, we base our results on an analytical solution and assume
a smaller viscosity in the ductile crustal layer than in the
upper mantle (Section 2). Upon comparing the responses of
earth models with or without a ductile layer in the spectral
domain (Section 3), we consider as an important example the
Pleistocene Fennoscandian glaciations and predict the various
signatures of the readjustment process following the last
deglaciation for the two earth models in the spatial domain
(Section 4). Our study concludes with a brief summary of the
main results obtained (Section 5).

2 THEORETICAL MODEL

The ¢eld theory used in this study describes the quasi-static
response of a homogeneously layered, incompressible Maxwell
viscoelastic half-space subjected to surface loading. Upon
Laplace transformation with respect to time, t, we obtain a
second-order di¡erential system (eq.A1). Using cylindrical
coordinates, (r, r, z), where r is the radial distance from the
load axis, r the azimuth and z the depth, and assuming axi-
symmetric loading, the dependence on r vanishes. Finally,
taking the Hankel transform with respect to r, the math-
ematical formulation of the problem can be recast into a ¢rst-
order di¡erential matrix system that, for each homogeneous
layer, takes the form

d
dz

~Y(k, z, s)~A(k, s)~Y(k, z, s) . (1)

In this equation, ~Y(k, z, s) is the Laplace- and Hankel-
transformed solution vector containing the transformed dis-
placement and stress components, A(k, s) is a 4|4 matrix
whose components characterize the viscoelastic properties
of the particular layer, k is the Hankel wavenumber and s is
the inverse Laplace time. Upon application of appropriate
boundary, interface and regularity conditions, the solution to
eq. (1) can be expressed in analytic form.
Assuming a Heaviside loading event, H(t), and taking the

inverse Laplace transform, physical insight can be gained
from a discussion of the solution functions in the spectral
(k, z, t) domain. Considering, in particular, the zeroth-order
Hankel transform of the (downward) vertical displacement,
W [0](k, z, t), the ¢rst-order Hankel transform of the (outward)
horizontal displacement, U [1](k, z, t), and the zeroth-order
Hankel transform of the load pressure, Q[0](k)H(t), we de¢ne
normalized displacements according to

W (k, z, t)5~oUM g
W [0](k, z, t)

Q[0](k)
, (2)

U(k, z, t)5~oUM g
U [1](k, z, t)
Q[0](k)

, (3)

with g the gravity and oUM the upper mantle density. Note that,
since W [0]/Q[0]~1/(oUMg) applies to a £uid half-space with
density oUM, the displacements have been normalized such
that W (k, 0, t)~1 applies to this case. For the homogeneously
layered, incompressible Maxwell viscoelastic half-space con-
sidered, the explicit expressions for W (k, z, t) and U(k, z, t)
take the forms

W (k, z, t)~WE(k, z)z
XM
m~1

WV
m (k, z) [1{e{t=qm(k)] , (4)

U(k, z, t)~UE(k, z)z
XM
m~1

UV
m (k, z) [1{e{t=qm(k)] , (5)

where WE(k, z) and UE(k, z) are the elastic amplitudes for
displacement, WV

m (k, z) and UV
m (k, z) are the viscous ampli-

tudes for displacement, qm(k) is the relaxation time and t > 0 is
assumed. The corresponding £uid amplitudes are de¢ned by

WF(k, z)5~WE(k, z)z
XM
m~1

WV
m (k, z) , (6)

UF(k, z)5~UE(k, z)z
XM
m~1

UV
m (k, z) . (7)

Comparing eqs (4) and (5) with eqs (6) and (7), respectively, we
notice that WE(k, z) and UE(k, z) are the initial displacements
for t?0 and WF(k, z) and UF(k, z) the ¢nal displacements for
t??. The transition from the elastic response to the £uid
response is described by a series of exponential functions. Their
total number,M, and the individual amplitudes and relaxation
times de¢ne the set of eigenfunctions and eigenvalues of the
di¡erential system and are related to the particular layering
considered (Tromp & Mitrovica 1999a; Appendix A).
The calculation of the response in the spatial (r, z, t) domain

for arbitrary loads requires multiplication with the Hankel-
transformed load pressure, inverse Hankel transformation and
convolution in time with the loading history (for details see
Wolf 1985 and Breuer & Wolf 1995).
In this study, we use the four-layer earth model VC,

consisting of an elastic upper crust, a viscoelastic lower crust
simulating a ductile crustal layer, an elastic mantle lithosphere
and a viscoelastic substratum simulating the upper mantle
(Table 1). The viscosity of the lower crust, gLC~1017 Pa s, and
its thickness, hLC~10 km, are based on estimates by Meissner
& Strehlau (1982), Kaufman & Royden (1994) and others. The
values chosen for the density, o, and the shear modulus, k, of
the individual layers and for the viscosity of the upper mantle,

Table 1. Parameter values of the earth models used.

o (kg m{3) k (GPa) g (Pa s) h (km)

Earth model VC
Upper crust 2900 64:0 ? 35
Lower crust 2900 64:0 1:0|1017 10
Mantle lithosphere 3380 64:0 ? 65
Upper mantle 3380 145:0 1:0|1021 ?

Earth model EC
Crust 2900 64:0 ? 45
Mantle lithosphere 3380 64:0 ? 65
Upper mantle 3380 145:0 1:0|1021 ?
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gUM, are similar to standard values used in the literature. For
comparison, we also consider the three-layer earth model EC,
in which the ductile crustal layer is absent and, therefore, the
lithosphere is purely elastic (Table 1).

3 COMPUTATIONAL RESULTS: SPECTRAL
DOMAIN

We begin with a discussion of the solution vector in the spectral
domain and consider in particular the vertical and horizontal
surface displacements for a Heaviside loading event. Fig. 1
shows spectra of the relaxation times, the elastic amplitudes,
the viscous amplitudes and the £uid amplitudes for earth
models VC and EC. For convenient comparison with the
solutions available for spherical earth models, the normalized
Hankel wavenumber, n5~ka, where a is the earth radius, is
used. Besides the exponential contributions to the displace-
ment calculated according to eqs (4) and (5), the (physical)
viscous modes associated with the characteristic features of the

viscoelastic strati¢cation are distinguished. Before we discuss
the viscous modes more closely, it is necessary to explain
their classi¢cation. This is based on the Lagrangian of the
momentum equation (e.g. Backus & Gilbert 1967; Peltier 1976;
Tromp & Mitrovica 1999b), which leads to expressions of the
shear-potential density, M(z), and the gravitational-potential
density, R(z) (Appendix A). In the following, we discriminate
between buoyancymodes, which show signi¢cant magnitude in
M(z) and R(z), and viscoelastic modes, which show signi¢cant
magnitude only in M(z).
Fig. 2 shows the potential densities of the viscous modes for

earth models VC and EC and for the wavenumbers n~2, 20
and 200 as functions of depth. We divide the viscous modes
into two groups. For both earth models, the ¢rst group
(modes M0 and L0) is associated with the boundary between
the lithosphere and the mantle (z~110 km). The second group
(modes MC, LC, L11 and L12) appears only for earth model
VC and is associated with the boundaries at the top (z~35 km)
and base (z~45 km) of the lower crust.

Figure 1. (a), (b) Relaxation times, (c), (d) normalized vertical surface amplitudes and (e), (f) normalized horizontal surface amplitudes as functions
of normalized wavenumber. The calculations apply to earth model VC (left) and earth model EC (right). The surface amplitudes are normalized
according to eqs (2) and (3) and the wavenumber according to n5~ka, where a is the earth's radius. The symbolsM0,MC, L0, LC and L11,2 denote the
viscous modes; the symbols E and F denote the elastic and £uid amplitudes, respectively.
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Starting with the ¢rst group, mode M0 is found to be con-
¢ned mainly to the upper mantle, where, for n~2, 20,M(z) and
R(z) have similar magnitudes but opposite signs. This classi¢es
M0 as a buoyancy mode (e.g. Wu & Peltier 1982; Wolf 1985).
For mode L0, M(z) has smaller magnitude in the mantle than
in the lithosphere and is strongly focused on the boundary

between the lithosphere and the mantle. In contrast to this is
the behaviour of R(z), which is generally small in magnitude.
This indicates that mode L0 is hardly a¡ected by buoyancy and
is therefore a viscoelastic mode. For n~200,R(z) is almost zero
for modes M0 and L0, and M(z) is focused on the boundary
between the lithosphere and the mantle. This suggests that

Figure 2. Shear- and gravitational-potential densities, M and R, of the viscous modes M0, L0, MC, LC, L11 and L12 for earth model VC (left) and
earth model EC (right) and for the normalized wavenumbers 2, 20 and 200 as a function of depth. The potential densities are normalized with respect
to the absolute maximum outside the ductile crustal layer, whose value is given at the top of each graph.
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mode M0 no longer be classi¢ed as a buoyancy mode. It is
interesting to note at this point that, if R(z) vanishes identically
for a particular viscous mode, the contributions of M(z) must
cancel each other for this mode according to eqs (A2), (A6)
and (A7).
In the second group of modes, M(z) for mode MC is con-

¢ned mainly to the lower crust, whereas R(z) for this mode has
similar magnitude in the mantle as for modeM0. This classi¢es
mode MC as an additional buoyancy mode. The behaviour of
M(z) for mode LC is comparable to that for mode L0, butM(z)
is now con¢ned to the upper crust. With R(z) nearly vanishing
for all wavenumbers, this classi¢es mode LC as a further
viscoelastic mode. The potential densities for modes L11 and
L12 may not be con¢ned to the lower crust, and for n~2, L12
shows the characterstics of a buoyancy mode. However, the
magnitudes of the potential densities are usually much smaller
than those for the other modes. Only for n~200 does the
magnitude ofM(z) for mode L11 become more signi¢cant, and
the depth dependence is similar to that for mode LC.
When studying the relaxation-time spectra (Figs 1a and b),

we identify the modes M0 and L0 of the ¢rst group for
both earth models. More interesting is the second group,
in particular mode MC, for which the relaxation times for
low wavenumbers are extremely long despite its association
with the lower crust, whose Maxwell time, gLC/kLC, is < 1 yr
(Fig. 1a). The relaxation times of the pair of modes L11 and L12
appearing for earth model VC are close to the Maxwell time of
the lower crust.
The signi¢cance of mode MC for glacial^isostatic adjust-

ment processes can be understood from a discussion of the
amplitude spectra for vertical displacement (Figs 1c and d).
Particularly instructive is the consideration of the £uid ampli-
tude for low wavenumbers. For earth model EC, it is simply
the sum of the elastic amplitude and the viscous amplitude
associated with the buoyancy mode M0 supported by the upper
mantle with density oUM. Quite di¡erent is earth model VC, for
which the £uid amplitude for low wavenumbers is also con-
trolled by the buoyancy mode MC. This mode is supported by
the lower crust with the smaller density oLC, resulting in an
ampli¢cation of the £uid amplitude by a factor oUM/oLC. The
long relaxation times of mode MC for small wavenumbers are
related to the small relative thickness of the lower crust at these
wavenumbers, which limits the lateral displacement rates for
the material inside the ductile `channel' (e.g. Kruse et al. 1991).
In view of the shallow depth of the lower crust, mode MC is
even more strongly excited at high wavenumbers of n*100,
where, however, the £uid amplitude is reduced due to the
£exural rigidity of the elastic upper crust.
The main feature in the amplitude spectra for horizontal

displacement (Figs 1e and f) is the appearance of peaks in the
viscous amplitudes at wavenumbers for which an interchange
of two modes takes place (Wolf et al. 1997). However, the
contributions of the individual peaks largely cancel each other
in view of the similar relaxation times of the modes near these
wavenumbers. For both earth models, the elastic amplitudes
are almost negligible. The behaviour of the viscous amplitudes
for n?0 represents a simple pole, which is suppressed by the
double root of the Hankel kernel J1(kr)k for k~n/a?0 when
transformed back into the spatial domain.
Further insight into the signi¢cance of the viscoelastic lower

crust and the implication of modes M0 and MC can be gained
by studying the time dependence of the vertical displacement

for a Heaviside loading event. This is shown in Fig. 3 for earth
models VC and EC at the surface (z~0) and at the top of the
mantle lithosphere (z~45 km).
For both earth models and for n~2 and n~20, the vertical

surface displacement is initially controlled by mode M0.
However, for earth model VC, the long relaxation times
associated with mode MC result in an additional adjustment,
with the vertical surface displacement increasing from a value
of 1 to the value oUM/oLC between 106 and 108 yr after the
onset of the loading. For both earth models and for n~2
and n~20, the mantle lithosphere initially follows the surface
displacement, but for earth model VC, mode MC again
becomes important after *106 yr. In contrast to the surface,
the amplitudes of modes M0 andMC are now of opposite sign,
such that the top of the mantle lithosphere returns to its initial
position in the £uid limit. This is a consequence of the rebound
of the mantle lithosphere and the upper mantle. For n~200,
the relaxation times of modes M0 and MC in earth model VC
are very similar. However, as a consequence of the £exural
rigidity of the elastic upper crust in earth model VC, the
normalized vertical surface displacement reaches only a value
of *0.05 in the £uid limit, whereas, due to the decoupling
of the upper crust from the mantle lithosphere, the vertical
displacement at the top of the mantle lithosphere still vanishes
in this limit. In contrast to this is the behaviour of earth
model EC for n~200. Now, the mantle lithosphere is coupled
to the upper crust and, therefore, follows the surface. In
view of the larger £exural rigidity of the purely elastic litho-
sphere, the displacements are, however, further reduced and
the normalized vertical surface displacement only reaches a
value of *0.01.

4 COMPUTATIONAL RESULTS: SPATIAL
DOMAIN

We now compare the responses of earth models VC and EC in
the spatial domain. As an example, we consider the Pleistocene
Fennoscandian glaciations, which are simulated using an axi-
symmetric load model. In particular, we assume a sequence of
10 glaciations, where each has a duration of 100 kyr with a
linear increase in load volume lasting 90 kyr and a linear
decrease lasting 10 kyr. The load cross-section is taken as
parabolic and the axial load thickness for the glacial maxima,
hL, is assumed to be 2200 m, corresponding to an axial load
pressure of *20 MPa. Except for the last glaciation, the
load radius, rL, is kept ¢xed at 1000 km. During the last
deglaciation, the load volume is reduced in ¢ve steps, where the
radius and thickness are varied such that h2L/rL~constant
applies (Fig. 4). The present time (PT) is assumed to corre-
spond to t~0, the end of deglaciation (EOD) is taken at
t~{8 kyr and the last glacial maximum (LGM) at t~{18 kyr.
We begin by studying the consequences of a viscoelastic

lower crust for the change of deformation. Considering the rate
of vertical displacement at the PT ¢rst, we notice that its value
is only slightly a¡ected by the presence of the viscoelastic lower
crust (Fig. 5a). This is because the contribution of a mode to
the rate of change is inversely proportional to the relaxation
time of the mode and is thus much smaller for mode MC than
for mode M0 at the dominant wavenumbers around n~20 in
the load spectrum near the LGM. The rather large di¡erence
between the horizontal displacement rates at the PT for
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earth models VC and EC (Fig. 5b) is related to the more com-
plicated spectra of the horizontal amplitudes (Figs 1e and f).
Unfortunately, the usefulness of this quantity for inferring a
ductile layer is restricted by its similarly strong sensitivity to
lateral heterogeneities (Gasperini et al. 1990).
Next, we consider the gravity signatures associated with

the deformation at the PT. For the free-air gravity anomaly
(referred to a ¢xed spatial point, Fig. 6a), we ¢nd that the
presence of a viscoelastic lower crust in earth model VC causes
a smaller e¡ect than expected from the enhanced vertical
surface displacement after 10 glaciations (Fig. 3). This is
because, for earth model VC, the cumulative forcing of the
10 glaciations simultaneously produces a reduced vertical
displacement of the denser mantle lithosphere (Fig. 3), which
partially compensates for the additional surface contribution.
The relaxation of the additional vertical displacement in earth
model VC after the LGM proceeds on the long timescale of
modeMC and is, therefore, very small at the PT. In consequence

Figure 3. Normalized vertical displacement as a function of time after emplacement of a Heaviside load for the normalized wave numbers (a), (b) 2,
(c), (d) 20 and (e), (f) 200 at the surface (solid) and the base of the crust (dashed). The calculations apply to earth model VC (left) and earth model EC
(right). The symbols qM0 and qMC denote the relaxation times of modes M0 and MC.

Figure 4. Decrease of load thickness and load radius according to
h2L/rL~constant for a linear reduction of load volume during the last
deglaciation (dashed) and discretization of load thickness and load
radius used (solid). The abbreviations LGM, EOD and PT denote last
glacial maximum, end of deglaciation and present time, respectively.
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of this, the rate of gravity change (referred to a ¢xed material
point) is only slightly a¡ected by mode MC (Fig. 6b) and the
di¡erence between earth models EC and VC is similar to that
found for the vertical displacement rate (Fig. 5a).
A further observable associated with the deformation is the

stress. A convenient measure of its deviation from the hydro-
static stress belonging to the unperturbed initial state is
the maximum shear stress de¢ned by tSS5~(tmax{tmin)/2,
where tmax and tmin are the maximum and minimum principal
stresses, respectively. At the LGM, the partition into two
distinct elastic layers in earth model VC is clearly re£ected by
tSS (Fig. 7a). In the upper crust, the stress ¢eld is typical of
a £exed elastic layer superimposed on a £uid substratum
(e.g. Klemann & Wolf 1998). The distribution is thus nearly
symmetric with respect to the median plane of the upper crust,
with pairs of maxima located near the load margin. In the
mantle lithosphere, the symmetry is similar but the maxima
are smaller. The intervening lower crust is characterized by a
hydrostatic stress ¢eld. We note that such a decoupling of the
elastic layers was not found by Wu (1997). The reason for this
di¡erence in behaviour is that he used a viscosity of 1022 Pa s

for the ductile layer, which is higher than the viscosity of
1021 Pa s in the mantle. The distribution of tSS in the purely
elastic lithosphere of earth model EC at the LGM shows the
pattern expected for a £exed elastic layer superimposed on a
£uid substratum (Fig. 7b). At the EOD, the symmetries are
largely destroyed for both earth models, but the decoupling
of the two elastic layers by the lower crust in earth model VC
is preserved (Figs 7c and d). At the PT, the maxima of tSS
have decreased to values of 2^3 MPa. Near the surface, the
stress distributions are similar for both earth models. However,
in view of the long relaxation time of mode MC, larger
stress values are reached near the top and base of the mantle
lithosphere in earth model VC (Figs 7e and f).
Of interest are the implications of the stress ¢eld for

seismicity. This can be quanti¢ed in terms of the incremental
fault stability margin (FSM), which is a measure of the load-
induced increase in the di¡erence between the failure stress
according to Coulomb's law and the maximum shear stress
(Johnston 1989). Thus, positive values of the incremental FSM
indicate increasing stability and negative values decreasing
stability. The important features of the evolution of the

Figure 5. (a) (Downward) vertical surface displacement rate and
(b) (outward) horizontal surface displacement rate at the PT as
functions of radial distance with respect to the load axis. The calcu-
lations apply to earth model VC (solid), earth model EC (dashed) and
an axisymmetric load model simulating 10 Fennoscandian glaciations
(see the text).

Figure 6. (a) Free-air gravity anomaly and (b) rate of gravity
change at the PT as functions of radial distance from the load
axis. The calculations apply to earth model VC (solid), earth
model EC (dashed) and an axisymmetric load model simulating 10
Fennoscandian glaciations (see the text).
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incremental FSM near the surface are (1) stabilization during
loading (Johnston 1987) and (2) destabilization after load
removal, even for locations that are initially stable (Wu &
Hasegawa 1996a,b; Johnston et al. 1998). For the load model
used in the present study, the destabilization takes place for
earth model VC*1 kyr later than for earth model EC (Figs 8a
and b). Also of interest are the load-induced stress regimes
(Figs 8c and d). Since the total stress ¢eld in Fennoscandia is
dominated by compressive tectonic stress oriented NW^SE
(e.g. GrÏnthal & Stromeyer 1992), the thrust regimes indicated
below the load at the PT enhance the tendency towards thrust
faulting. In contrast to this are the strike-slip and extension
regimes indicated near the load margin, which are at variance
with the compressive tectonic stress regime and, therefore,
not expected to support strike-slip and normal faulting,
respectively, in its presence.
This is con¢rmed by Figs 9 and 10, which show the e¡ects

caused by a linear superposition of the load-induced stress ¢eld
and a homogeneous tectonic stress ¢eld with values of *50
and *45 MPa for the maximum and minimum horizontal
principal compressive stresses, pHmin and pHmax, respectively.
To show the extreme e¡ects, the evolution of the incremental
FSM and of the stress regimes is plotted for a pro¢le oriented
NW^SE, that is, collinear to pHmax (Fig. 9), and for a pro¢le
oriented NE^SW, that is, perpendicular to pHmax (Fig. 10).
For both orientations, the extension and strike-slip regimes
associated with the load-induced stresses near the load margin
(Figs 8c and d) are now characterized by stability. Thus, only
the thrust regime below the load after the EOD is retained. The
interval of instability continues until the PT around the load

axis but ends slightly earlier than without tectonic stress near
the load margin. A comparison of Figs 9 and 10 shows that the
di¡erences arising from the orientation of the pro¢le relative to
the tectonic stress are small.
Comparing the behaviour of the two earth models in Figs 9

and 10, we ¢nd results similar to those found by Wu (1997).
Thus, for earth model VC, the space^time region of negative
incremental FSM is larger and, near the load margin, the
interval of negative incremental FSM is longer than for model
EC (Figs 9c and d and 10c and d). On the other hand, the
magnitudes of the incremental FSM are smaller for earth
model VC than for earth model EC as a result of the faster
stress relaxation near the surface for earth model VC (Figs 9a
and b and 10a and b).

5 CONCLUDING REMARKS

The main results of the present study are as follows.

(1) A comparison of the relaxation-time and amplitude
spectra of the layered Maxwell viscoelastic earth models VC
and EC shows that a viscoelastic lower crust simulating a
ductile crustal layer supports a slowly decaying mode MC,
which is capable of markedly modifying the deformation
associated with the conventional mode M0 present in both
earth models.
(2) For a simple model of the sequence of glaciations in

Fennoscandia during the Pleistocene, the results in the space^
time domain for measures of the absolute deformation such as
the free-air gravity anomaly and the stress ¢eld are expected to

Figure 7. Maximum shear stress in units of MPa as a function of radial distance and depth for the epochs considered. The calculations apply to earth
model VC (left), earth model EC (right) and an axisymmetric load model simulating 10 Fennoscandian glaciations (see the text). The black bars
indicate the extension of the load at the LGM.
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Figure 9. As for Fig. 8 but including a superimposed homogeneous tectonic stress with maximum and minimum horizontal compressive stresses of
pHmax~50 MPa and pHmin~45 MPa and a pro¢le oriented collinear to pHmax.

Figure 10. As for Fig. 8 but including a superimposed homogeneous tectonic stress with maximum and minimum horizontal compressive stresses of
pHmax~50 MPa and pHmin~45 MPa and a pro¢le oriented perpendicular to pHmax.

Figure 8. (a), (b) Incremental FSM and (c), (d) stress regimes at the surface as functions of radial distance and time with respect to the PT for a
hydrostatic initial stress. The calculations apply to earth model VC (left), earth model EC (right) and an axisymmetric load model simulating 10
Fennoscandian glaciations (see the text). The black bars indicate the extension of the load at the LGM. The numbers on the contours give the
incremental FSM in units of MPa. Light grey shades indicate thrust regimes, medium grey shades strike-slip regimes, dark grey shades extensional
regimes and white shades space^time regions of positive incremental FSM.
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re£ect the presence of a ductile crustal layer. This is con¢rmed
for the stress ¢eld. For the free-air gravity anomaly, the con-
tributions resulting from the vertical displacements at the
surface and at the top of the mantle lithosphere partially cancel
each other and therefore mask the di¡erences in deformational
behaviour between the two earth models.
(3) In contrast to this are measures of the relative

deformation such as the rates of vertical displacement and
gravity change. In good approximation, they are inversely
proportional to the relaxation times of the more quickly
decaying mode M0 and thus less a¡ected by a ductile crustal
layer.
(4) Taken together, the results suggest that, provided a

ductile crustal layer exists, its presence should be accounted for
in interpretations of the glacial^isostatic adjustment.
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APPENDIX A: CALCULATION OF THE
POTENTIAL DENSITIES

Following Tromp & Mitrovica (1999a), we de¢ne a variational
equation, J[u]5~(Lu, u)/2, by the inner product (u, v)5~�
V u . v1 d3X , where u, v [C2(V ), which is the space of twice
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continuously di¡erentiable functions on the volume V . The
symbol L is the Hermitian di¡erential operator of a homo-
geneous di¡erential equation, Lu~0, u is an eigenfunction of it
and the asterisk denotes the conjugate complex. If Lu is the
momentum equation, this form of J leads to the (physical)
Lagrangian in terms of the energy densities (e.g. Backus &
Gilbert 1967; Woodhouse 1976).
In our problem, the linear di¡erential operator, L, is de¢ned

by the Laplace-transformed momentum and constitutive
equations for a homogeneous, incompressible Maxwell visco-
elastic £uid. Indicating Laplace transformation by a tilde and
using tensor notation, it takes the form (e.g. Wolf 1985, 1991)

[L~u ]i5~{~p, j dijz~k ~ui, j jz~k ~uj, jizo g dj3 ~uj,i~0 . (A1)

Under homogeneous boundary conditions, the operator L is
self-adjoint and the displacement, ~ui, is an eigenfunction (e.g.
Tromp & Mitrovica 1999a). The ¢rst three terms of the sum
in eq. (A1) represent the viscoelastic force with ~p the material
incremental pressure, dij the Kronecker symbol and ~k5~ ~m2p
the product of the shear-relaxation function, ~m2, and an
eigenvalue, p. The last term of the sum represents the buoyancy
force with o the density and g the gravity.
Evaluating the variational equation, J[~u ], under consider-

ation of eq. (A1), we may separate contributions involving ~k
and o, respectively, by de¢ning the shear potential, Ek, and the
gravitational potential, Eo, where

EkzEo~0 (A2)

applies to each eigenfunction ~ui (Tromp & Mitrovica 1999a).
The shear and gravitational potentials take the forms

Ek~

�
V

~k ~�ij ~�ij d3X , (A3)

Eo~{
1
2

�
V

o g dj3 ~uj,i ~ui d3X , (A4)

where ~�ij5~(~uj,iz~ui, j)/2 is the strain and the asterisk has been
dropped because all quantities are real. Note that the integrand
in eq. (A3) formally agrees with the shear energy density for the
elastic case (Woodhouse 1976).
In the following, the potentials are calculated in cylindrical

coordinates (r, r, z) for the mth viscous amplitude in terms
of the displacement components UV

m and WV
m . Assuming

axisymmetric perturbations, we have

~u m5~UV
mJ1(kr) erzWV

m J0(kr) ez , (A5)

where Jn(kr) is the Bessel function of the ¢rst kind and nth
order and er and ez are unit vectors in the positive r and
z directions, respectively. Eq. (A5) represents the mth eigen-
function of eq. (A1) for a distinct wavenumber, k, in the spatial
domain. The associated eigenvalue is pm~{1/qm. The depth
distributions of the potentials are given by (e.g. Peltier 1976;
Tromp & Mitrovica 1999b)

Ek~

�?
0

M(z) dz , (A6)

Eo~

�?
0

R(z) dz , (A7)

where the potential densities, M(z) and R(z), are evaluated by
inserting eq. (A5) into eqs (A3) and (A4) and integrating over
the radial distance, r, and the azimuth, r. Because the integral
over r is not ¢nite, the expressions are normalized with respect
to 2n

�?
0 [J0(kr)]2r dr. The equations for the potential densities

of the mth eigenfunction for a distinct wavenumber then take
the forms

M(z)~~k 2[kUV
m ]

2z
1
2

L
Lz

UV
m { kWV

m

� �2( )
, (A8)

R(z)~o{gkUV
mW

V
m } . (A9)
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