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SUMMARY
Error estimates from statistical regression analysis are often obviously too small,
leading to doubts about the given equations, the statistical method itself and finally,
with resignation, to the conclusion that mathematical equations and reality never agree.
However, for magnetotelluric data we have found an almost perfect fit between observed
scattering and predicted confidence limits of regression coefficients after accounting for
a systematic error—the bias.

Different methods to compensate for bias in magnetotelluric impedance estimation
have been described using additional data from a reference station. However, sufficiently
accurate reference data are often not available. A new method has been developed that
enables bias compensation without additional data. For the new method we derive a
linear relationship between the effect of bias and an expression depending on the data
fit. From this we extrapolate the solution for the unbiased impedance. The new method
assumes a special model of uncorrelated noise as well as an approximation for the
structure of the impedance tensor. From each pair of components of the unrotated
impedance tensor corresponding to the same output channel, one of the pair can be
compensated if its magnitude is large compared to that of the other.

The method has been successfully applied in many cases. We claim that the solution
is closer to the true impedance than any solution based on the selection of events. It
gives a measure of the partitioning of noise between the electric and magnetic channels.

We applied the method to measurements from the North Anatolian Fault Zone
(Turkey) and from the Merapi volcano (Central Java) in the period range 10–2500 s.
Different instrumentation was used for the two sets of measurements, but in both cases
we used fluxgate magnetometers to measure the magnetic variations.
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1 INTRODUCTION

In regression analysis we estimate the relationship between at least two quantities and describe this relationship by regression

coefficients. Usually it is necessary to distinguish between input and output channels. The input channels are assumed to be ‘noise-

free’ while for the output we expect to have some data deviating from the estimated relationship due to Gaussian noise added to

the output data.

The coherence between measured and predicted output data (CMP) describes the data fit. In cases of uncorrelated noise, a

CMP close to unity indicates an overall agreement between the data and prediction, and hence little noise and thus a small error

in the measurements. Much smaller CMPs than unity indicate noise in the data. Standard regression analysis does not give us

information on whether the noise is in the input or the output channels. However, the distinction between the two cases is

important. If the noise is in the output channel, our estimation is correctly carried out. Confidence limits from the regression

analysis then accurately describe the uncertainty of our derived regression coefficients. However, if the noise is mainly in the input

channel, then the assumptions and therefore the subsequent estimates are wrong, in particular the estimated confidence limits. Our

estimates are then biased.

Common stacking techniques use the fact that the amount of possible bias depends on the CMP. With a CMP close to unity,

the decision on which channel will be called input or output makes no difference to the result, as we have little bias. Regression

coefficients and CMPs based on different data subsets are calculated. Only the data subsets with a CMP above a certain threshold

are used to contribute to the stacked solution.
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In the technique described here all estimates from the data subsets are used. We observe the relationship between regression

coefficients based on different data subsets and the CMPs. If there is a systematic behaviour, we have bias. If the results are

independent of the CMP, then we have evidence that our assumptions are correct, and can continue with standard regression analysis.

If bias is present, we can go one step further if we can describe the systematic behaviour of the coefficients in relation to the

CMPs. Then we are able to extrapolate a solution for a CMP equal to unity and thus we can find an optimal solution.

2 REGRESSION ANALYSIS IN MAGNETOTELLURICS

In magnetotellurics the impedance Z is estimated from the linear equations

E
x
=Z

xx
B
x
+Z

xy
B
y
, (1a)

E
y
=Z

yx
B
x
+Z

yy
B
y
, (1b)

where E and B are measured horizontal electric and magnetic field variations transformed into the frequency domain. This special

case of a regression problem with two input variables B
x

and B
y

and without a constant offset is called a bivariate problem. The

elements of the impedance tensor Z are complex and frequency-dependent. From the impedance Z one can derive apparent

resistivities and phases using

r
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and

Q
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=arg (Z

ij
) , (3)

with i, jµ{x, y}.

One critical point is the numerical estimation of the impedance tensor from measured data. While the solution from eq. (1) is

straightforward for high-quality data, it is more problematic to estimate the true impedance Z when the electric and magnetic

fields depart from the relation represented by eq. (1). For our purposes, we call these influences ‘noise’. Sources of noise are as follows.

(i) Source effects. One condition for eq. (1) to hold is that the electromagnetic source is uniform with respect to the area

examined. This assumption might fail because of manmade noise due to mechanical sources such as mains, trains, pipelines, electric

machines, transmitters, etc., or may be attributed to the natural variations of ionospheric source configuration.

(ii) Instrumental effects. Sensor noise, amplifier effects and the truncation errors of digitization.

For a more detailed description of electromagnetic noise see Szarka (1988) and Junge (1996).

To account for these factors, a large number of time windows (events) in narrow frequency bands are used to obtain

an overdetermined estimation of the impedance Z. For this step one needs to decide on how to determine the result from

the overestimated equation, which means making an assumption about the character of noise in order to get a good estimation

of the true impedance. In other words, we need a noise model.

3 THE LEAST-SQUARES SOLUTION

Classically one assumes noise-free data in the magnetic measurement and Gaussian noise in the Fourier coefficients of the electric

field. Then the best solution is obtained from minimizing the squared residuals of the electric fields with the equation (Sims et al.

1971)
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where an asterisk indicates a conjugate complex, an overbar indicates a stack over events and frequencies in one band, and a hat

indicates an estimate, with similar equations for the other components (here and in the following we will use just the equations

corresponding to the impedance component Z
xy

in order to avoid confusion).

The (squared) coherence between two complex parameters A, B is defined by

Coh2 (A, B)=
|AB*|2

(AA*)(BB*)
. (5)

The squared CMP is given by
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where the predicted field is defined by

Ep
x
=Ẑ

xx
B
x
+Ẑ

xy
B
y

(7)

and Ẑ
xx

, Ẑ
xy

are the statistically estimated impedances.

If the impedances are determined by minimization of the electric residual according to eq. (4), one can write more concisely
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The CMP gives a measure of the validity to the assumptions. While the CMP is preferably close to 1, the coherence between the

magnetic channels Coh2 (B
x
, B

y
) should be low so that one can associate a variation in the electric field with the magnetic channel

variation that causes it.

These two terms can be found in the equation describing the statistical error for each component of the impedance Z
(Schmucker 1978; Pedersen 1982):
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where d=0.05 is the significance level corresponding to a 0.95 or 95 per cent confidence limit, N is the number of complex Fourier

coefficients used, 2N−4 is the degree of freedom, F(m, n, d) is the factor of the F-distribution (see mathematical tables, e.g.

Bronstein & Semendjajew 1981) and k is 4 for the confidence limit of |Z
xy
|2 (Schmucker 1978) and 1 for the confidence limit of

Re (Z
xy

) or Im(Z
xy

) (Pedersen 1982).

In a corresponding way we can assume that all noise is in the magnetic channels. Writing eq. (1) with the admittance tensor A,

B
x
=A

xx
E
x
+A

xy
E
y
, (10a)
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gives an analogous system to eqs (4), (8) and (9),
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One can calculate the impedance components from the admittance by inversion of the tensor

Z=A−1 , (14)

or, more concisely,
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(Sims et al. 1971).

Impedances for periods above 0.1 s are rarely estimated in this way for two reasons.

(1) The magnetic measurements are less affected by noise than the electric measurements, which may be more significantly

disturbed by, for example, electrochemical effects at the buried electrodes.

(2) The electric field is polarized due to anisotropy (e.g. Eisel & Haak 1999) or a narrow lateral resistivity contrast (e.g.

Müller 1997). This leads to a value of the electric coherence close to unity in a given coordinate system, and therefore, from

eq. (13), to a large error.

Comparing eqs (4) and (15) resulting from minimizing the electric noise and the magnetic noise shows that the outcome may

not be the same. Only for noise-free data, i.e. CMPs close to 1, is the result the same.
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4 THE BIAS

Aside from other problems, one critical point in the method described above is the assumption of noise-free data in either the

electric or the magnetic data. In the equations for the estimation of Z
xy

(eqs 4 and 15), this assumption is implicit in the use of

autopower spectra. Under the assumption of noise uncorrelated with the signal,

ASBN*=0 ,

where A, Bµ{E
x
, E

y
, B

x
, B

y
}, AS is the signal in component A and AN is the noise in component A, one can write

AB*= (AS+AN) (BS*+BN*)= G ASBS* (A≠B)

ASAS*+ANAN* (A=B)H . (16)

While the estimates for the cross-power spectra are statistically distributed and yield a good approximation to the true value

(as long as the noise is not correlated amongst different channels), the estimates of the autopowers are systematically too large,

even for uncorrelated noise, because the noise is squared and therefore positive.

Many techniques have been applied to this problem.

(1) Coherency weights: from a number of events one preferentially weights those with a high CMP in order to increase the

signal-to-noise ratio (Egbert & Livelybrooks 1996). In some cases events with a low CMP are rejected (e.g. CMP>0.8; Spitzer

1987). Larsen et al. (1996) rejected events with very low as well as very high CMPs, the latter in order to avoid bias by correlated noise.

(2) Using a different approach Ritter et al. (1998a) chose effects with a high coherence between two magnetic stations.

(3) Remote reference: Goubau et al. (1978) and Gamble et al. (1979) used magnetic data from a second station in order to

avoid autopowers. Combined with robust estimations, this technique is widely used and proves its effectiveness in a comparison

of processing techniques (Jones et al. 1989).

(4) RMEV: Egbert (1997) used a so-called robust multivariate errors in variables algorithm in order to calculate correlated

and uncorrelated noise levels iteratively by using data from multiple stations.

In the technique described the impedance at a single site is estimated for different time sections separately. The dependence of the

different estimates on the coherences is then examined in order to extrapolate a value for the CMP equal to unity. Field data will

demonstrate that it works well for the observed cases.

5 BIAS SUBJECT TO PARTICULAR ASSUMPTIONS

Following Pedersen (1982) we assume that just the autopowers are biased. From Pedersen (1982) we adopt the following notation:

AB*= (AS+AN) (BS*+BN*)= G ASBS*7 (AB)= (AB)0 (A≠B)

ASAS*+ANAN*7 (AB)b= (AA)0+D(AA) (A=B)H , (17)

where (AB)0 is the unbiased cross-power, (AA)0 is the unbiased autopower, (AA)b is the biased autopower, D(AA) is the autopower

of noise, Z0
xy

is the unbiased impedance and Zb
xy

is the biased impedance. We insert this into the equation for the impedance

estimation eq. (4),
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and replace unbiased components in the numerator by the unbiased impedance,
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Multiplying eq. (1a) for the unbiased impedances by BS
y
,
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substituting for (E
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) in eq. (19) and transforming the first term in the numerator gives
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and after some algebraic manipulation (autopowers are real; therefore multiplication is commutative)
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To obtain a relation between biased and unbiased impedances, two further assumptions will be made.

Assumption 1

This assumption is justified by the typical structure of the magnetotelluric impedance tensor.

In the case of a uniform half-space, the diagonal elements of the matrix in eq. (2), r
xx
=r

yy
=0, and the off-diagonal elements,

r
xy
=r

yx
=r, are equal to the true resistivity of the half-space, while the phases Q

xy
=Q

yx
+180°=45° and both Q

xx
and Q

yy
are

undefined.

In more realistic cases, that is, those of a heterogeneous resistivity distribution, the diagonal elements are non-zero. However,

in most cases the off-diagonal components of the impedance tensor are large compared with the diagonal components.

For the numerator in eq. (22) we assume
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If the assumption is inaccurate in an arbitrary coordinate system, one might want to fulfil this condition by rotating the impedance

tensor Z. However, this would have consequences for the equations because the noise between the channels would then be

correlated after the rotation. For the impedances examined here a rotation was unnecessary.

With the approximation eq. (23) we can neglect the term in the squared brackets of eq. (22). Together with the biased magnetic

coherence Coh2b(Bx , By ) (eq. 5), we can write
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In the limit (23) the bias effect is mainly due to noise in one of the magnetic components. In contrast to an approximation by

Pedersen (1982), the relation between the biased and the unbiased impedances contains the observable biased coherence of the

magnetic field variations instead of the unknown unbiased coherency.

Assumption 2

The amount of noise in the component B
y

is still unknown. An upper limit is given by the deviation of the CMP from unity

[1−Coh2b (By , Bpy )]. However, this term is a function of noise in B
y

as well as noise in the electric components.

We define a new quantity, the average noise distribution index (ANDI a) :
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The assumption we use is
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for different events in each period band at one station. The assumption, empirically found, is certainly not true for all kinds of

data. It will be tested for several cases below, before we argue why this assumption should be valid. To give a preliminary

interpretation of the ANDI a we can use a first-order Taylor approximation derived by Pedersen (1982) for small autopowers of

the noise:
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For little relative noise,
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the ANDI a is given by

a#

D(B
y
B
y
)

B
y
B
y

D(B
y
B
y
)

(B
y
B
y
)
+
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x
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, (28)

with 0<a<1.

The ANDI a describes the ratio of relative noise in the component B
y

to the total relative noise. With this parameter we

achieve a generalization of the assumptions typically used:

(1) noise-free magnetic data, which lead to a minimization of the noise in the electric field components corresponding to a=0;

(2) noise-free electric data, which lead to a minimization of the noise in the magnetic field components corresponding to a=1.

Olsen (1998) introduced an analogues variable g relating noise in the output and input channels for the solution of a univariate

problem, the determination of the so-called C-response. He assumed g to be constant over the measurement time of 90 months, but

additionally for different sites and frequencies (in the period range 3–720 hr). From that he determined a value for a by minimizing

the misfit of the resulting C to a 1-D resistivity distribution at each station. He stated himself that the frequency-independence of

his variable is questionable, but argued that the assumption is better than assuming one measured component as error-free.

The linear equation

Inserting definition (25) into eq. (24) yields

Zb
xy
#Z0

xy
−Z0

xy
a
xyA1−Coh2b(By , Bpy )

1−Coh2b(Bx , By )
B . (29)

By defining a misfit factor qb
y

(depending on B
y
),

qb
y
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we can write
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xy
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xy
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xy
a
xy
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Eq. (31) is a linear equation for Zb
xy

in terms of qb
y
. Regression analysis enables the intercept Z0

xy
and the gradient a

xy
Z0
xy

to be

determined. It will be shown empirically that the assumptions are valid in many cases.

6 APPLICATION TO MAGNETOTELLURIC DATA FROM THE NORTH ANATOLIAN FAULT
ZONE ( TURKEY )

As a first application, we use a long-term magnetotelluric time-series measured from May 1993 to August 1995 at the North

Anatolian Fault Zone (Turkey). The measurements were carried out in the framework of the Joint Turkish–German Earthquake

Research Project (Berckhemer et al. 1991) in order to identify resistivity changes connected to tectonic activity. We used a newly

developed data logger HESLOG 08/20 (Erkul et al. 1994) and fluxgate magnetometers MAG-03MC (Bartington) for the magnetic

measurements. The analogue signal from the fluxgate magnetometer was neither compensated nor high-pass filtered. This unusual

configuration was used in order to avoid additional time-dependent signals from analogue electronic parts during the long-term

measurements. With the measurement of the large offset in B
x

and B
z
, we had diagnostic control of the system because changes

inside the instrument of about 1 per cent would have been easily detected by an anomalous change in the absolute values. A

disadvantage of this method is the inefficient use of the dynamic range of the preamplifier as well as the AD converter. Thus we

expected the magnetic measurements to be noisier than usual.

6.1 Estimation of the effect of bias

We divided these time-series into 105 independent data sets and estimated the impedances for each set. Each set contained at least

4096 values for every channel with a sampling period of 60 s. Each section was processed using a program from Egbert & Booker

(1986). While the impedances estimated for periods above 2500 s seem to be stable, the impedances below 2500 s show an excessive

scattering. This could have been incorrectly interpreted as a subterranean resistivity change.

In Fig. 1, the real and imaginary parts of the largest component Z
xy

are shown, sorted by the amplitude of Z
xy

. Additional

terms from statistical error-analysis (eq. 9) are plotted. Error bars are calculated for a 95 per cent confidence limit. A significant

number of impedances deviate from the mean value, although all of them have been estimated for data from the same site.
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Figure 1. Comparison of terms in eq. (9) for the confidence limits of Z with the 105 estimated impedance components Z
xy

for the period range

400–510 s. The sections are sorted by the amplitude of Z
xy

for comparison.

Systematic correlation can be seen between the impedances, the autopowers E
x
E
x
, B

y
B
y

and the CMP. A systematic error can be

seen in the estimation of the impedances, which should, of course, be independent of the energy of the field variations.

The correlation can be explained by biased impedance estimates. Low energy in the electric and magnetic field variations

leads to a low signal-to-noise ratio and consequently to a small CMP. However, the impedances should not be affected by this if

the noise is in the electric channels. This indicates that at least a part of the noise comes from the magnetic measurements, or in

other words, the ANDI a is larger than zero.

Fig. 2 shows Z
xy

from Fig. 1 plotted against the misfit factor from the linear equation (31). It appears that the linear relation

is a useful approximation for a wide range of coherences. The whole variety of estimates can easily be reduced to a constant

y
Figure 2. Real and imaginary parts of Z

xy
(confidence limits) from 105 data sets plotted against the misfit factor qb

y
for the period range 400–510 s.

Even impedance estimates with large qb
y
, and hence small CMPs, follow the linear relationship according to eq. (31). The arrows indicate (1) the

extrapolated impedance Z0
xy

, (2) impedance from stacked spectra with a CMP above 80 per cent, and (3) impedance from all stacked spectra. For

the real part, none of the single events reaches the value of the extrapolated impedance Z0
xy

.
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unbiased impedance and the effect of bias described by the ANDI a. Both quantities can be simply determined by regression

analysis, weighting the errors of each value. For the regression analysis we assume the impedances to be normally distributed with

respect to the regression line and the misfit factor qb
y

to be noise-free. While qb
y

contains empirical variables and therefore noise,

we argue that, because it contains the term (1–CMP), the relative error of qb
y

is small even when we have highly contaminated

data, leading to a small CMP. It is also small for a low noise level. This is confirmed by the finding that regression analysis under

the assumption of noise-free impedances led to larger standard deviations. We found no statistical significant difference between

these two different assumptions.

Fig. 2 also compares the results obtained by the extrapolation to those obtained by stacking methods. The stacked results are

within the error bounds of the estimated single results. The level depends on which events are considered. The extrapolated

impedance is larger than each single estimate and can therefore never be reached by any stacking algorithm.

6.2 Compensation for bias

Z0 yields an optimal estimation for the mean magnetotelluric impedance. To detect conductivity changes with time, we require the

unbiased impedance for each data subset. Taking just the well-estimated impedances with a CMP above, for example, 0.8 would

lead to large gaps in the time-series.

After determining the unbiased impedance and the ANDI a, we are now able to compensate each impedance value for the

bias

Zc
xyi

=
Ẑb
xyi

1− â
xy

qb
y
, (32)

where Zc
xyi

is the compensated impedance for data subset i.

To reject very poorly determined impedance estimates we use a CMP limit of 0.33. Fig. 3 shows the result of the compensation

(3) compared with two other estimation methods assuming (1) noise-free magnetic data and (2) noise-free electric data.

The impedances estimated by the compensation scheme (3) show a smaller scattering and more reliable error bars than the

estimates from minimizing the electrical variations (1). In order to examine conductivity changes one needs to ensure that a real

effect will not be unintentionally compensated. This is ensured because all 98 values have been compensated in the same way and

by only one free parameter, the empirical ANDI a.

Fig. 4 shows the estimated ANDI a for different period bands. The ANDI and therefore the relative amount of noise in the

magnetic channel B
y

increase towards shorter periods. In the period range 200–700 s they seem to reach values above unity but

not above the 95 per cent confidence limit, hence this is not statistically significant. However, a slightly greater than unity is

possible and is not in contradiction to the definition given in eq. (25), just to the approximation given by eq. (28). The biased

CMP determined for least-squares residuals is maximal and therefore overestimated compared with the true CMP. For this reason

Figure 3. Real and imaginary parts of Z
xy

impedances with a CMP above 0.33 (98 out of 105) for the period range 400–510 s estimated by three

different methods: (1) minimization of noise in the electric components (eq. 4) [Min(E)]; (2) minimization of noise in the magnetic components

(eq. 15) [Min(B)]; (3) compensation according to eq. (32) (Bias-compensated).

© 2000 RAS, GJI 142, 257–269



New method to compensate for bias in magnetotellurics 265

Figure 4. The ANDI a versus the period. The amount of noise in the magnetic component increases towards shorter periods. For long periods

the ANDI a cannot be determined properly. a>1 is possible—see discussion in the main text.

the relative noise in one component might be larger than the deviation of the biased CMP from unity, which leads to a>1. For

periods above 2500 s, the ANDI a can no longer be properly determined because it is small and therefore the bias effect is small.

Table 1 shows the half-intervals of 68 and 95 per cent of the impedance values. Even the estimates from the minimization of

the magnetic variations (2) have larger confidence limits than the compensated estimates, although the ANDI a is close to unity

(Fig. 4) and thus indicates that most of the noise is in the magnetic channels. Why did the estimates from eq. (15) work so badly?

The reason here is a strongly polarized electric field that leads—in almost any coordinate system selected—to a coherence

coh(E
x
, E

y
) close to 1 and therefore, by eq. (13), to a large error. In cases of strong noise in the electric channels the impedances

are poorly determined. Thus, the errors become small from eq. (13) because the coherence breaks down. This contradiction occurs

because the assumption of noise-free electric fields fails in these cases.

Because of the strongly polarized electric field, the Z
yx

-component was very small and therefore could not be compensated

by this method. Z
yx

and the effect of bias were small and within the statistical errors.

6.3 Confidence limits for the compensated impedances

While the confidence limits for the estimated quantities Z0 and (Z0a ) are well known from regression analysis theory, the error

estimation for the single corrected impedances Zc need to be explained. In eq. (32) we see three quantities containing errors: the

biased impedance Zb, the ANDI a and the coherence term. Because the regression analysis to estimate the ANDI a is carried out

for an error-free misfit factor qb
y
, the error in qb

y
cannot be taken into account. Its relative error is assumed to be negligible

compared to the error in the ANDI a for low CMPs. For high CMPs its absolute error (relevant here for the error estimation) is

small compared to the relative error of the biased impedance Zb . Using a first-order Taylor approximation, we write

∂Zc
xyi

∂a
xy

=
−qb

y
1−aqb

y
Zc
xyi

, (33)

and for the total error,

KDZc
xyi

Zc
xyi
K2#C Da

xy
qb
y

1−a
xy

qb
y
D2+ KDZb

xyi
Zb
xyi
K2 . (34)

Table 1. Empirical half-interval for 68 and 95 per cent of the impedance components Z
xyi

determined

by three different methods.

Min(E) Min(B) Bias compensated

Re (Z
xy

) Im (Z
xy

) Re(Z
xy

) Im (Z
xy

) Re(Z
xy

) Im (Z
xy

)

(nT km−1 ) (nT km−1 ) (nT km−1 ) (nT km−1 ) (nT km−1) (nT km−1)
DZ68 per cent 0.341 0.253 0.143 0.141 0.106 0.100

DZ95 per cent 0.475 0.354 0.371 0.546 0.250 0.251
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For a small qb
y

we can write

DZc
xy

Zc
xy

#
DZb

xy
Zb
xy

. (35)

This makes sense. The relative error of the biased impedance is at least the bivariate error of Zb
xy

. It cannot be reduced by bias

compensation because the biased impedance is multiplied by a correction factor in eq. (32). In contrast, when the misfit factor qb
y

and the ANDI a are both close to unity, the error in a is amplified by the denominator in eq. (34).

In order to compare the estimated error of the corrected impedances with the variance of the 105 estimates we define a

quantity j,

j=
2s(Zc )

D95 per cent (Zc)
, (36)

where s is the empirical variance of the 105 impedances Zc. The double 68 per cent variance corresponds approximately to a

95 per cent confidence limit in the case of the assumed normal distribution. D95 per centZ is the 95 per cent confidence limit for the

Zc according to eq. (34) We choose this definition in order to have an expected value of j=1 in the case of a well-estimated

confidence limit. Fig. 5 shows the estimates of j for different periods. The good agreement of estimated and empirically determined

errors proves the reliability of the estimation after eq. (34).

After applying the compensation method, all significant deviations from the mean disappeared in all components and for all

frequency bands. From this we concluded that no significant resistivity change occurred within the observation time of 2 yr. Thus,

the goal of establishing a method for a reliable monitoring of the electric resistivity was fulfilled (Müller 1997).

7 APPLICATION TO MAGNETOTELLURIC DATA FROM CENTRAL JAVA ( INDONESIA)

Whilst it could be argued that the outcome of the Turkish measurements was due to our special configuration for the measurement

of the magnetic field variations, the method has also been successfully applied to data obtained with different instrumentation

in different environments. In June–July 1997, magnetotelluric measurements were carried out at 10 sites on a profile crossing

Central Java in a N30°E direction (Ritter et al. 1998b). We used a sampling rate of 0.5 Hz for measurements with fluxgate

magnetometers (MAGSON) and a RAP datalogger (Steveling 1996). Because of a high noise level due to the dense population

and the corresponding dense electric power network in Central Java, impedance estimates in the period range 30–300 s were

biased. Figs 6–8 show the results for the major components Z
xy

and Z
yx

. In each case the impedances have been estimated by

four different methods:

(1) minimization of noise in the electric components by eq. (4);

(2) compensation according to eq. (32);

(3) minimization of noise in the magnetic components by eq. (15);

(4) calculation with a remote reference station after Gamble et al. (1979).

Figure 5. Relationship between the empirical variance and the estimated confidence limits. Values above 1 mean underestimated errors; values

below 1 mean overestimated errors. After applying the compensation and the error estimation eq. (34), the estimated and empirically determined

errors correspond well, except for one value for long periods, probably because of a low degree of freedom or departures from the assumption of

a homogenous source field.
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The results from the bias compensation (2) were plotted when a x2-test proved the linear relationship according to

eq. (31).

While Fig. 6 shows that the minimization methods (1) and (3) fail for impedances below 25 s (Z
xy

) and 40 s (Z
yx

), the estimates

after the bias compensation scheme (2) remain stable towards shorter periods. The results are confirmed by the estimates from the

remote reference calculation (4). However, the remote reference estimation supplies one additional reliable value for the period

15 s. As expected, the phases appear unbiased.

In contrast, the estimates from the bias compensation (2) at the station KAWR (Fig. 7) towards short periods (20 s) appear

to be even better than the outcome from the remote reference (4).

Figure 6. Comparison of impedances estimated by four different methods from the site TELO (period positions have been slightly shifted in order

to make the different error bars visible): (1) minimization of noise in the electric components by eq. (4) [min(E), triangles]; (2) compensation

according to eq. (32) (compensated, squares); (3) minimization of noise in the magnetic components by eq. (15) [min(B), asterisks]; (4) calculated

with a remote reference station after Gamble et al. (1979) (rem. ref., circles with crosses). The results from the bias compensation (2) have been

plotted when a x2-test proves the linear relationship according to eq. (31).

Figure 7. Comparison of impedances estimated by four different methods from the site KAWR. In this case the estimates from the bias

compensation scheme (2) are apparently even better than the results calculated with a remote reference (4).
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Figure 8. Comparison of impedances estimated by four different methods from the site SCHI. Again, the estimates from (2) appear to be the most

reliable results.

In Fig. 8 the apparent resistivities after (1) for the XY -component at site SCHI are strongly biased for periods below 200 s.

Because the decrease is moderate towards 30 s, it would probably not be recognized from the commonly used method of

minimization of noise in the electric field alone, and instead the resistivity structure would be interpreted as 2-D. However, the r
xy

component is close to the better determined r
yx

component, which can be seen from the outcome of the three other methods.

The impedances from the minimization of the electric noise (1) are underestimated, and those from minimization of the

magnetic noise (3) are overestimated. Results using (3) are better than those of (1), indicating a larger amount of noise in the

magnetic components. The large error bars for impedances calculated with a remote reference (4) indicate that the reference

stations are far from perfect. In all cases the phases are not affected by bias.

Out of nine long-term sites, the compensation method worked well for five stations. In three cases it could not be applied for

one component because the electric component was dominated by noise. For one site, all methods failed because of the high noise

level. The assumption for the tensor’s structure was valid in all cases. We found that the method works when the a smaller tensor

element is about 30 per cent of the corresponding larger element. We have found no cases where the assumption of a constant

relationship between the noise in electric and magnetic components failed.

The results from Java prove that the applicability of the method is more general than expected. The bias effect appeared at

shorter periods (30–300 s) than for the Turkish measurements (2500 s). This was expected because of the less efficient use of the

magnetic signal with respect to the noise for the measurements in Turkey. The behaviour of the impedances, their noise dependence

and therefore the noise model seem to be similar in both cases, for different instrumentation as well as for a different site

environment.

8 CONCLUSIONS

The ANDI a expressing the relationship between noise in one magnetic and the electric channels seems to be constant for

measurements with one instrument at one site. How can we understand this result?

(1) If we have instrumental noise from the sensors, preamplifiers or the digitization one can expect this noise to be constant

in each channel. Therefore, the relation is also constant amongst channels.

(2) If we have an external noise source with a constant transfer function different from the transfer function of the

magnetotelluric signal, the relationship of noise amongst different channels still remains constant. This is the noise model for the

two-source method of Larsen et al. (1996). They used data from a second station not contaminated by the correlated noise in

order to compensate for errors in the impedance estimates. However, in contrast to Larsen’s two-source method we assume

uncorrelated noise only. In the case of correlated noise the cross-powers in eq. (4) are also overestimated, and the derivation for

eq. (31) fails.

(3) If we have many external noise sources with different transfer functions due to different directions and distances of the

sources, the stacked power estimates might be unbiased although the single events are correlated. This kind of background noise
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might be the dominant noise source in either the electric or the magnetic channels depending on the observed period band and

therefore may explain the outcome of our observations. However, this model does not explain the systematic increase of noise in

the magnetic field towards short periods.

We assume the fluxgate magnetometers as our major noise source for the measurements in Turkey as well as in Java. Their

resolution is limited for small magnetic variations at short periods. This hypothesis is supported by the finding that the relative

amount of noise in the magnetic channels increases towards shorter periods. Thus we can explain our finding with argument (1).

One important advantage of the method is stability. Only a few values of the ANDI a differ significantly from 0 and 1.

Therefore, the assumptions of noise-free electric or magnetic signals work over a broad range of periods. However, usually we do

not know which one of these assumptions we should use. The compensation method gives more accurate results than the estimates

with the assumption of magnetic noise, even for the ANDI close to unity. An attempt to compensate the impedances with the

assumption of a constant magnetic noise level appeared to be less stable, and therefore failed.

The effect of bias may be as large as the misfit of the CMP, e.g. a CMP limit of 80 per cent allows for 20 per cent biased

impedance estimates. The amount of bias may change only continuously with period. Therefore, the biased curve is smooth. Thus,

the criterion of a smooth curve is insufficient to detect bias. In order to detect bias one should at least calculate the impedances

by both minimization methods, with the minimization of noise in either the electric or the magnetic component. If the resulting

impedances differ much the bias must be accounted for. Whereas there can be no general solution for this problem, the bias

compensation method complements methods such as the stacking algorithm or the remote reference method. It might be preferably

applied where neither the CMPs are close to unity nor (good) data from a reference station are available.
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