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S U M M A R Y
We present a method for converting the magnetotelluric (MT) impedance tensor into an appar-
ent resistivity tensor. The inclusion of anisotropic permittivity and conductivity into Maxwell’s
equations leads to a tensor expression for the propagation constant. To solve Maxwell’s equa-
tions we assume exponentially decreasing electric fields in the vertical direction, which implies
that the subsurface is regarded as homogeneous but anisotropic. This approach effectively
makes use of an anisotropic substitute model, in which contrasts and strike directions of con-
ductivity anomalies are transformed into equivalent amounts and directions of anisotropy.
We call this method propagation number analysis (PNA). Rotationally invariant parameters
calculated from the resistivity tensor are physically meaningful quantities that are directly ap-
plicable to imaging methods. Imaging results of PNA are compared with Egger’s eigenstate
analysis and LaTorraca’s singular-value decomposition method using synthetic data from 3-D
MT modelling. With PNA, we obtain a comprehensive image of the subsurface that uniquely
images structural details of the anomalies. Contrary to other methods, the results of PNA are
stable and significant under extreme 3-D conditions. Application of PNA to MT data from
the Waterberg Fault in Namibia unravels a complicated 3-D impedance and reveals a clear
correlation between the resistivity tensor and the surface geology.
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1 I N T RO D U C T I O N

The magnetotelluric (MT) impedance tensor reflects the 3-D dis-
tribution of magnetic and electric field variations within the Earth.
MT practitioners attempt to determine the electrical conductivity
structure of the subsurface by interpreting the impedance tensor as
a function of position and frequency. For practical reasons we are
often limited to 2-D modelling of the data, which means that the di-
agonal components of the impedance tensor are not considered in the
interpretation. Eggers (1982) presented an approach for analysing
impedances using an eigenstate parametrization, which uses all el-
ements of the impedance tensor. His eigenstate formulation implies
that electric and magnetic field polarizations are always orthogonal.
This, however, is not necessarily true in a complex geoelectric en-
vironment. The singular-value decomposition (SVD) introduced by
LaTorraca et al. (1986) overcomes this obstacle. Both methods re-
sult in sets of eigenvalues and eigenvectors (characteristic vectors).
Their graphical presentation shows the orientation of the electro-
magnetic field defined by the principal directions of the polarization
ellipses. Plots of the polarization ellipses thus provide geometrical
insight into the 3-D information contained in the impedance tensor.

Another approach utilizing all four elements of the impedance
tensor is the analysis of invariants. Invariant quantities are indepen-
dent of the coordinate system and are most suitable to illustrate the
internal structure of the impedance tensor. Fischer & Masero (1994)
argued that a four-element complex tensor should possess eight real

invariants. Weaver et al. (2000) identified seven independent invari-
ants. The algebraic relations between the various invariants were
also examined systematically by Szarka & Menvielle (1997). Sev-
eral authors have suggested that these tensor invariants can be pre-
sented as Mohr circles in the complex plane (Lilley 1993; Weaver
et al. 2000). Images of the invariants, for example as plots in the
horizontal plane for a certain frequency, result in seven different
views of tensor properties. Their relation to physical properties of
the subsurface is not always obvious.

Over the last few years tensor decomposition methods (Bahr
1991; Smith 1995; McNeice & Jones 2001, and references therein)
have been widely used to condition the impedance tensor for sub-
sequent 2-D interpretation. The basic idea is to decompose the
impedance tensor into a 2-D complex tensor and a frequency-
independent real distortion matrix. The complex tensor is related
to a so-called regional conductivity structure, whereas the real ma-
trix represents the galvanic response of small-scale, local hetero-
geneities. Upon decomposition, the regional tensor is generally in-
terpreted using 2-D (inversion) modelling programs. The resulting
conductivity model depends strongly on the validity of the galvanic
assumption. It is often difficult to decide, however, to what extent
small-scale and regional structures are connected by inductive cou-
pling (Lezaeta & Haak 2003).

Imaging methods provide a different approach to understanding
the conductivity distribution of the subsurface. They are based upon
a direct conversion of measured data into physically meaningful
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properties. The method described in this paper is comparable to the
presentation of an apparent resistivity tensor introduced by Caldwell
& Bibby (1998) for transient electromagnetics (TEM). Caldwell &
Bibby present invariants of the measured resistivity tensor in form
of ellipses, which was proposed earlier by Bibby (1986). In contrast
with TEM or DC geoelectric sounding methods, however, we do not
measure a resistivity tensor in MT. Upon taking the absolute values
of the impedance to derive apparent resistivities, we lose the tensor
character of our observations (see Appendix A). A direct application
of this method to MT is therefore not straightforward but requires
some considerations.

2 U S I N G P RO PA G AT I O N N U M B E R
A N A LY S I S T O O B TA I N A N A P PA R E N T
R E S I S T I V I T Y T E N S O R I N
M A G N E T O T E L L U R I C S

The method presented here was inspired by an internal report by
Reilly (1979) on anisotropy tensors in magnetotelluric interpreta-
tion, which describes a theoretical concept formulated in terms of
tensor algebra. An application to MT was demonstrated by Caldwell
et al. (1998). In this section, we develop an alternative formulation
of the problem, which should be more familiar for the MT com-
munity. Additionally, it more clearly shows the limitations of the
method.

Below, we develop a true resistivity tensor by means of a substitute
anisotropic half-space, which generates the same impedance tensor
as the observed one. The commonly used MT apparent resistivity

ρa,i j = µ0

2π f
|Zi j |2 (1)

with i , j = x , y and frequency f , is not a tensor as shown in Ap-
pendix A. As a function of rotation the apparent resistivity is there-
fore not suitable for imaging properties of the MT impedance.

In MT a second-order tensor connects the electric and magnetic
fields represented by the impedance Z or its inverse, the admittance
tensor Y :

B = µH = ŶE =
(

Yxx Ex + Yxy Ey

Yyx Ex + Yyy Ey

)
, (2)

where B is the magnetic flux density [T], H is the magnetic field
intensity [A m−1] E is the electric field intensity [V m−1] and µ is
the relative magnetic permeability of the medium [T m A−1]. This
tensor relation between electric and magnetic fields originates from
Maxwell’s equations. Assuming a harmonic time dependence pro-
portional to eiωt, the electric and magnetic fields take the following
form:

∇ × E = −iωB (3)

∇ × H = j + iωD, (4)

where D is the electric displacement [C m−2], j is the current den-
sity [A m−2] and ω is the angular frequency [Hz]. To transform
Amperè’s law (4) into a tensor relationship requires anisotropic per-
mittivity ε[F m−1] and conductivity σ [S m−1]. This means that both
parameters must be promoted from scalars to tensors. For physically
realizable materials the tensors ε̂ and σ̂ are symmetric (Negi & Saraf
1989). Using the material parameters for anisotropic media we can
rewrite Maxwell’s equations:

∇ × E = −iωµH (5)

∇ × H = σ̂E + iωε̂E. (6)

Multiplying Amperè’s law by iωµ we can combine the right-
hand side of eq. (6), thereby introducing the propagation con-
stant γ in a similar way as in the general form of the Helmholtz
equation:

−iωµ∇ × H = −iωµ(σ̂ + iωε̂)E
= −ωµ(iσ̂ − ωε̂)E
= −γ̂E. (7)

The propagation constant γ̂ is equivalent to the square of the
wavenumber multiplied by

√−1. Obviously though, γ̂ is not a con-
stant quantity. We therefore referring to γ̂ as the propagation number
analogue to the term wavenumber.

Replacing the magnetic field H with ŶE in eqs (7) and (5), we
obtain equations only dependent on the electric field E,

−iω∇ × ŶE = −γ̂E (8)

∇ × E = −iωŶ E . (9)

To solve these equations we assume an exponentially decreasing
electric field in the z direction (vertical). Formally, this is equiv-
alent to the general solution of the wave equation for a vertically
downward-propagating plane wave but neglecting the term describ-
ing the upward-propagating part. This solution implies that the sub-
surface is regarded as homogeneous but anisotropic in terms of
conductivity and permittivity. In this case all spatial derivatives in
the x and y directions are zero. Furthermore, a restriction to purely
azimuthal anisotropy is justified as in MT we have no sensitivity to
the vertical conductivity component.

Using above assumptions, Faraday’s and Amperè’s laws eqs (9)
and (7) can be written as

∇ ×

Ex

Ey

0

 =


− ∂

∂z
Ey

∂

∂z
Ex

0

 = −iω

Yxx Ex + Yxy Ey

Yyx Ex + Yyy Ey

0

 (10)

iω


− ∂

∂z
(Yyx Ex + Yyy Ey)

∂

∂z
(Yxx Ex + Yxy Ey)

0

 = −γ̂

Ex

Ey

0

 . (11)

In the following discussion, we omit the vanishing z component
of electric fields for clarity. The admittance tensor is not a function
of depth, hence ∂

∂z (Yxy Ex ) = Yxy
∂

∂z Ex , and we can substitute the
partial derivatives of Ex and Ey using the right-hand side of eq. (10),

−(iω)2

(
−Yyx (Yyx Ex + Yyy Ey) + Yyy(Yxx Ex + Yxy Ey)

Yxx (Yyx Ex + Yyy Ey) − Yxy(Yxx Ex + Yxy Ey)

)

= −γ̂

(
Ex

Ey

)
. (12)

The vector on the left-hand side of this equation can be decom-
posed into the dot product of a 2 × 2 matrix (containing combi-
nations of all entries of the admittance tensor) and an electric field
vector,

−ω2

(
YyyYxx − Yyx Yyx Yyy · (Yxy − Yyx )

Yxx · (Yyx − Yxy) YyyYxx − YxyYxy

)
·
(

Ex

Ey

)

= γ̂

(
Ex

Ey

)
. (13)
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Figure 1. Construction of an apparent resistivity ellipse: �1 and �2 define
the lengths of the major and minor axes. These quantities, along with the
rotation angles α and β are obtained by separating the apparent resistivity
tensor into symmetric and asymmetric parts (Bibby 1986).

The tensor γ takes the following form:(
γxx γxy

γyx γyy

)
= −ω2

(
YyyYxx − Yyx Yyx Yyy · (Yxy − Yyx )

Yxx · (Yyx − Yxy) YyyYxx − YxyYxy

)
. (14)

The propagation number is defined as γ̂ = −ω2µε̂+iωµσ̂. The real
part of this complex tensor is a function the permittivity ε̂, whereas
the imaginary part is dependent upon the conductivity σ̂. Thus, the

Figure 2. The impedance tensor of eq. (20) is plotted for Eggers’ method, the LaTorraca SVD and PNA. The magnetic field amplitude is always unity.
Note, that we obtain only one apparent resistivity ellipse with PNA, which is related to the electric field. ( λ, r =̂ eigenvalues; �, γ =̂ principal axis
directions).

MT apparent resistivity tensor is

�̂ = σ̂−1 = µω[Im(γ̂)]−1. (15)

The real and imaginary parts of complex tensors are also tensors.
Our newly obtained quantity �̂ is therefore a true tensor, in contrast to
the apparent resistivity matrix derived by taking the squared absolute
values of Zij (see eq. 1 and Appendix A).

In this paper, we are interested in developing a method for imag-
ing the conductivity distribution of the subsurface. We therefore
concentrate on the interpretation of the resistivity tensor as defined
in eq. (15). It should be noted, however, that the real part of γ̂ is
related to the permittivity tensor ε̂. The electrical permittivity is
typically not considered in MT applications because it is associated
with vanishing displacements currents. In spite of this, the real part
of γ̂ contains some aspects of the admittance tensor and a more
systematic inspection of ε̂ would be interesting but is beyond the
scope of this paper.

In the following, we refer to this method as propagation number
analysis (PNA). When we apply PNA, we effectively substitute the
subsurface conductivity structure by an anisotropic model. In other

Figure 3. Model of a simple 2-D conductivity contrast striking 45◦.
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words, at each frequency of the measured impedance tensor we
seek a homogeneous anisotropic subsurface that generates the same
impedance tensor. We thereby transform the contrasts and strike
directions of conductivity anomalies into their equivalent amounts
and directions of anisotropy. It is important to understand that we do
not attempt to model an anisotropic crust for the Earth with PNA.
We use anisotropy only as a tool to resolve both the conductivity
and geometry of an anomaly. However, in the presence of a truly
anisotropic subsurface we can likewise image this anisotropy in
terms of its strike.

Figure 4. The upper left-hand panel [(a), (b)] shows the first set of Eggers’ polarization ellipses (eigenvectors) at frequencies of 100 and 1 Hz. The second
set [(c), (d)] at both frequencies is displayed in the middle panel. Both sets clearly indicate the conductivity contrast. Electric and magnetic eigenvectors are
orthogonal by definition. A presentation of both electric polarization ellipses [(e), (f)] provides therefore a more comprehensive image of the subsurface. The
first set of LaTorraca’s polarization ellipses [(g), (h)] maps the conductivity contrast well. By definition the magnetic eigenvectors and the electric eigenvectors
are orthogonal, so that the second set of polarization ellipses [(i), (j)] does not provide additional information. The apparent resistivity ellipses [(k), (l)] show
a more comprehensive image of the model, as only the shape and direction of one ellipse has to be interpreted. Furthermore, the colour code gives a good
estimate of the conductivity of the subsurface.

Appendix B outlines a proof demonstrating that PNA truly recov-
ers an arbitrary horizontal anisotropy from the electric and magnetic
fields in a chosen coordinate system.

For the graphical representation of the resistivity tensor we
use ellipses following the notation of Bibby (1986). Each ten-
sor is split into its symmetric and asymmetric parts, �1 and �2,
respectively:

�1 = 1

2

[
(�11 − �22)2 + (�12 + �21)2

]1/2
(16)
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�2 = 1

2

[
(�11 + �22)2 + (�12 − �21)2

]1/2
(17)

α = 1

2
arctan

(
�12 + �21

�11 − �22

)
(18)

β = 1

2
arctan

(
�12 − �21

�11 + �22

)
. (19)

Fig. 1 shows that the principal axes of a tensor ellipse are expressed
as combinations of �1 and �2. The parameters �1 and �2 and the
angle β are rotationally invariant quantities of the resistivity tensor.
The angle α which determines the orientation of the ellipse is not
rotationally invariant and thus represents the reference (measure-
ment) coordinate system. Because the ellipses are plotted on top of
a site location map (see Fig. 13 in Section 5, for example) with the
y-axis in a northerly direction, the reference frame agrees with the
geographic coordinate system.

3 C O M PA R I S O N B E T W E E N P N A ,
E G G E R S ’ E I G E N S TAT E A N A LY S I S
A N D L AT O R R A C A S V D

Eggers’ eigenstate analysis (Eggers 1982) and LaTorraca’s singular-
value decomposition (LaTorraca et al. 1986) have both been used to
analyse the MT impedance. Both methods result in two magnetic and
two electric eigenvectors, and two eigenvalues. From these quanti-
ties, a total of four polarization ellipses can be constructed: a major
(H1) and minor (H2) magnetic and a major (E1) and minor (E2)
electric polarization ellipse. Similar to PNA, both methods use the
complete impedance tensor information and also use ellipses for
graphical presentation.

Eq. (20) shows an example impedance tensor, which Eggers intro-
duced to illustrate his polarization ellipses. Since then, this example
tensor has been frequently cited (e.g. LaTorraca et al. 1986) and we
also use it to compare the three methods in Fig. 2:

Ẑ =
(

0.097 + 0.208i1.140 + 0.957i
−0.274 − 0.457i0.297 − 0.138i

)
. (20)

Using the graphical presentation for tensors, as shown in Fig. 1,
we obtain only one ellipse for PNA. Because resistivity (or its in-
verse, conductivity) is related to the electric field, the apparent resis-
tivity ellipse is comparable to the major electric polarization ellipses
(E1) of the other two methods. To demonstrate the full potential of
PNA, we test and compare all methods with real and synthetic 3-D
data in the next sections.

4 A P P L I C AT I O N O F P N A
T O S Y N T H E T I C DATA

4.1 2-D synthetic example

We demonstrate the general behaviour of resistivity ellipses using
the model shown in Fig. 3. The model comprises two quarter spaces
of 1000 and 5�m striking at 45◦. Although the conductivity distri-
bution is 2-D, we calculated the model using the 3-D forward mod-
elling code from Mackie et al. (1993) and generated an array of
stations, evenly distributed on a grid, with a site spacing of approx-
imately 2000 m. For all models described here, we have chosen a
grid with 80 horizontal cells in each direction and 35 vertical cells.
The horizontal cell is approximately 50–100 m in the vicinity of
the conductivity contrast. The central part of the model has a depth

extent of 60 km and is underlain by a homogeneous half-space of
100 �m.

After calculation of the full 3-D impedance tensors at two dif-
ferent frequencies (100 and 1 Hz), we applied Eggers’, LaTorraca’s
and PNA methods. The results are compared in Fig. 4 in the form
of polarization and apparent resistivity ellipses. For the 2-D case,
the polarization ellipses as defined by Eggers and LaTorraca ap-
pear as thin lines, which are aligned parallel or perpendicular to the
conductivity contrast. The upper left-hand column of Fig. 4 shows
Eggers’ first set of electric and magnetic polarization ellipses at both
frequencies. The lengths of the ellipses are dependent on frequency,
but in general, the electric ellipses above the poor conductor are
perpendicular to the contrast, while they are aligned in parallel on
top of the good conductor. Magnetic and electric ellipses are orthog-
onal by definition. For the 2-D case, the second set of eigenvectors,
and therefore polarization ellipses, are perpendicular to the first one
(Figs 4c and d). The angle between major axes of the electric po-
larization ellipses provides the most useful information concerning
the structure of the anomalies. A combination of both electric el-
lipses, which is plotted on the upper right-hand side of Fig. 4, is
therefore adequate for gathering information on the dimensional-
ity and strike direction of the subsurface. This method of presen-
tation also avoids scaling difficulties that arise because the sizes
of magnetic and electric polarization ellipses depend strongly on
frequency.

LaTorraca’s polarization ellipses in Figs 4(g) and (h) appear to be
comparable to Eggers’ ellipses. Because LaTorraca’s method is not
restricted to orthogonal electric and magnetic fields, the presentation
of the first set of polarization ellipses is already an indication of
the geometry of the subsurface. In the case of a 2-D conductivity
contrast, the angle between electric and magnetic ellipses is 90◦.
We would expect to see this behaviour at all frequencies due to
the self-similarity of the model. However, at 100 Hz we observe
unstable ellipses above the conductive side of the model. This is
a numerical artefact already reported by LaTorraca et al. (1986).
The first and second set of eigenvectors are orthogonal by definition
and therefore, the ellipses in Figs 4(i) and (j) contains no additional
information.

So far we have seen that both methods can be used to image the
strike angle of a (simple) conductivity contrast, but without any in-
dication of the subsurface conductivity. The images show that the

Figure 5. 3-D model of a conductive block (1 �m) embedded in a resistive
host (1000 �m).
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Figure 6. (a) Apparent resistivity ellipses for a station array above the conductive block (see Fig. 5) at 10 Hz. The light green ellipses clearly indicate the
dimensions the block. Also a first impression of the conductivity is possible. (b) and (c) Apparent resistivity ellipses for a station array above the conductive
ring (see Fig. 7) at 10 and 0.046 Hz. The extremely elongated ellipses in red indicate the conductive frame. The blue and green ellipses represent the
resistive host material. For lower frequencies we observe a similar image. (d) and (e) Apparent resistivity ellipses for a station array above the conductive box
(see Fig. 11) at 10 Hz and 0.046 Hz. At high frequencies the brim of the box is indicated by yellow ellipses. At a frequency of 0.046 Hz elongated ellipses in
red enclose the frame, whereas more circular ellipses in red represent the conductive bottom. We can clearly distinguish that the frame has a bottom.

lengths of the ellipses appear to be dependent upon both the con-
ductivity of the subsurface as well as the site distance from the
conductivity contrast. With PNA we retrieve only one ellipse. Its
size and orientation are, similarly to the other methods, indicators
of the geometry of the conductivity distribution. However, we can
gain additional information on the conductivity of the subsurface

by colour coding the ellipses with the determinant of the resistiv-
ity tensor (P2). The bottom right-hand corner of Figs 4(k) and (l)
shows the apparent resistivity ellipses derived from PNA. Above
the poor conductor they are aligned perpendicular to the contact,
while above the good conductor they are aligned parallel to it. At
some distance from the contrast, dependent on the induction length

C© 2003 RAS, GJI, 155, 456–468
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Figure 7. 3-D model of a conductive rectangular ring (1 �m) embedded
in a resistive host (1000 �m). The walls of the conductive frame are 500 m
thick.

Figure 8. For the ring model we computed ρa and phase curves at the three
sites marked in Fig. 7. Site 2, which is above the conductive ring exhibits
phases above 90◦. At sites 1 and 3 inside and outside the ring we do not
observe such 3-D effects.

at the particular frequency for the conductivity under consideration,
we observe more circular ellipses. For PNA, circular ellipses indi-
cate a 1-D (layered or homogeneous) field distribution. Elongated
ellipses are generated close to a conductivity contrast, and generally
hint at a 2-D or 3-D field distribution.

4.2 3-D synthetic examples

Now we use the resistivity ellipses to image more complicated con-
ductivity distributions. The next model contains a conductive block
of 1 �m embedded in a resistive host of 1000 �m ( Fig. 5). The thick-
ness of the block is 3 km, while the horizontal extent is 2 km. The
anomalous block is covered by a 300 m thick layer of resistive host
material. Fig. 6(a) shows an image of the resistivity ellipses at a fre-
quency of 10 Hz. The light green and yellow ellipses clearly follow
the extensions of the conductive block. Close to all four boundaries,
we observe elongated ellipses, while more circular ones are imaged
towards the centre of the anomaly and at some distance from the
block. The colours of the ellipses reflect resistive and conductive
parts of the model.

For the next model we turn the anomalous block into a rectangular
frame of conductive material (see Fig. 7).

All other dimensions and the conductivity contrast remain the
same. Above the edges of the conductive frame we used a dense

Figure 9. Image of the conductive ring model obtained by Eggers’ electric
polarization ellipses at 10 Hz: without knowledge of the true conductivity
distribution, it is difficult to recover the conductive ring model.

Figure 10. LaTorraca‘s polarization ellipses reflect the symmetry of the
ring model. We obtain the image of a rectangular conductivity anomaly, but
it is hard to resolve the thickness of the sides of the box.

grid of 25–50 m cell length for the forward calculations. An image
of the apparent resistivity ellipses for this ring model is shown in
Fig. 6 for frequencies of 10 Hz (b) and 0.046 Hz (c). At the higher
frequency the conductive ring is imaged by extremely elongated
red ellipses, whereas green and less elongated ellipses are observed
at some distance from the conductivity contrast. PNA delivers a
very focused image of the given structure and conductivity distri-
bution. At the lower frequency the image looks quite similar, which

C© 2003 RAS, GJI, 155, 456–468
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Figure 11. 3-D model of a conductive open box with bottom (1 �m) in a
resistive host (1000 �m). The thickness of the bottom and the walls is again
500 m.

indicates that long-period data might also be effected by shallow
anomalies.

Fig. 7 shows the locations of three sites for which the apparent
resistivity and phase curves are plotted in Fig. 8. All the sites lo-
cated above or in close vicinity to the conductive ring show phase
values exceeding 90◦. Site 2 is representative of this behaviour,
which is a clear indication of a strongly 3-D field distribution. The
sounding curves at site 1 and site 3, on the other hand, indicate that
the 3-D effects are very local, concentrated directly above the ring.
Nevertheless, PNA seems to produce stable and meaningful results
even under these circumstances. Fig. 9 displays Eggers’ polariza-
tion ellipses of both electric eigenvectors at a frequency of 10 Hz.
The image is almost incomprehensible as it is impossible to recog-
nize a rectangular conductivity anomaly. In contrast, the first set of
LaTorraca’s polarization ellipses image the expected rectangular
anomaly. The general trend of the electric polarization ellipses is
similar to that of the apparent resistivity ellipses. However, the
resistivity ellipses provide a much better impression of the thick-
ness of the conductor. From the LaTorraca ellipses alone, it is hard
to conclude whether the object is a solid block or a conductive
ring.

Fig. 11 shows the model of a conductive box (open), buried in a
resistive host. All dimensions and conductivity contrasts remain the
same but now the ring is closed by a conductive bottom at a depth of
3.3 km. Figs 6(d) and (e) shows the apparent resistivity ellipses for
this model, again at frequencies of 10 and 0.046 Hz. As expected,
we observe the image of a conductive rectangular ring at higher fre-
quencies (10 Hz). At lower frequencies (greater penetration depth),
the brim of the box is imaged by elongated red ellipses but now, the
conductive bottom of the box becomes visible. It is expressed by the
red circular ellipses inside the box.

5 A P P L I C AT I O N O F P N A T O T H E M T
DATA S E T F RO M N A M I B I A

The above 3-D modelling studies illustrate both the capability of
PNA to image complicated 3-D MT data and the importance of
dense measurements in order to interpret ellipse plots. To apply
PNA to field data, we chose a set of MT data from Namibia
(Ritter et al. 2003; Weckmann et al. 2003). The data were recorded

Figure 12. Presentation of the error bounds for a resistivity ellipse. The
extremal orientations of the major axis are marked by two lines. The ticks in-
dicate the maximum and minimum elongation of the major axis with respect
to the data error.

at 60 sites with a site spacing of 500 and 2000 m across the
Waterberg Fault/Omaruru Lineament (WF/OL), a major fault zone
within the Damara Belt. In the vicinity of the WF/OL we observe
strong 3-D effects, especially at long periods: very high skew, phases
over 90◦ and three large (and one poorly determined) apparent re-
sistivity components. In conjunction with real data it is important to
show not only the resistivity ellipses but also their error margins. The
latter demonstrate how stable and reliable the obtained ellipses are,
when the transfer functions contain error bars. Developing rigorous
error propagation for PNA is quite complicated, instead we follow
a different approach: within the error bounds of each impedance
tensor element, we computed a set of 500 random impedance tensor
elements. Each individual tensor element is plotted in the complex
plane to verify that a regular distribution of impedance estimates
within their error margins is achieved. In such a map the error
bound forms a circle around the complex tensor element. Subse-
quently, PNA is applied to each impedance tensor and the length
and the angle of the major axis of the ellipse are computed. As a
next step, we determine the minimum and maximum lengths as well
as the minimum and maximum angles of the major axis. Fig. 12
shows an example of a resistivity ellipse together with its error mar-
gins. Minimum and maximum angles of the major axis are indicated
by two lines, while tick marks denote the minimum and maximum
elongation of the ellipses.

The resistivity ellipses of all sites in the Namibia data set are plot-
ted in Figs 13(a)–(c) at three different frequencies. The location of
the WF/OL is indicated in Fig. 13(b). At the highest frequency we ob-
serve elongated ellipses in the northern part of the profiles, whereas
the ellipses in the southern part are less elongated. This behaviour
is most distinct at 5.56 Hz where less elongated ellipses south of
the WF/OL are orientated almost NS. At most sites north of the
fault elongated ellipses can be observed. The orientation and shape
of the ellipses indicate that the region to the north of the WF/OL
consists of either a NNE–SSW-trending conductivity anomaly or an
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Figure 13. (a)–(c) Resistivity ellipses at three different frequencies for the MT data from Namibia. They indicate the location of the Waterberg Fault/Omaruru
Lineament by a change in shape and orientation of the resistivity ellipses. The colour code indicates a resistive subsurface at high frequencies (90.5 and
5.56 Hz) and high conductivity at low frequencies (0.011 Hz). (d)–(f) The same ellipses overlain by error bounds for the resistivity ellipses at the same
frequencies. At high frequencies where we observe vanishing data errors as the two error lines coincide. The MT impedances at low frequencies (f) have
considerable data errors, but they generate only small deviations in the orientation and shape of the resistivity ellipses.

anisotropic region with enhanced conductivity parallel to the fault.
Sites 118, 094, 128 and 088, which are marked in Fig. 13(b), are
located on a conductive ring structure (see Weckmann et al. 2003).
Their resistivity ellipses are extremely elongated and appear to fol-
low this structure, which is comparable to the 3-D modelling results
of the conductive box (see Fig. 8). At frequencies >5 Hz, the colours
of the ellipses indicate a resistive shallow crust. However, at 0.011
Hz the orientations of the ellipses remain the same, but their colours
reflect higher conductivity at greater depths. The right-hand column

of Fig. 13 shows the resistivity ellipses at the same frequencies, but
now with error margins. At the two highest frequencies both error
lines as well as the minimum and maximum elongation coincide,
indicating the vanishing error margins of the impedance estimates.
At low frequencies, we observe phases over 90◦ and one poorly de-
termined off-diagonal tensor element, which translates into larger
errors for the ellipses. This observation demonstrates that PNA is
robust and hence particularly useful for application to real data. A
more complete interpretation of the data set based on 3-D and 2-D
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anisotropic modelling and the geodynamic implications are given
in Weckmann et al. (2003) and Ritter et al. (2003).

6 D I S C U S S I O N

In order to make use of the tensor properties of the derived resistiv-
ity tensor, we choose invariants for presenting the resistivity tensor.
A review of the meaning of impedance tensor invariants is not the
goal of this work, but many papers have already dealt with their
presentation and interpretation. Weaver et al. (2000) and Szarka &
Menvielle (1997) propose the analysis of the seven invariants as a
suitable method for imaging conductivity distributions and classi-
fying distortion and dimensionality. The authors present invariants
in the form of contour maps in the surface plane for a specific fre-
quency. Weaver et al. (2000) demonstrate with synthetic data that a
3-D conductivity distribution can be imaged by invariants, although
the relation to depth is difficult. In particular, the first four of in-
variants from Weaver et al. (2000) and Szarka & Menvielle (1997)
can reproduce the geometry of the anomalies. However, the invari-
ants are independent of conductivity, in contrast to PNA, where the
conductivity of the subsurface can be assessed. In principle, the re-
sistivity tensor derived by PNA could be displayed and analysed
similarly in the form of contour plots. A major disadvantage of this
approach though is that a dense regular station array is necessary to
avoid interpolation or gridding effects. This is possible for synthetic
MT data, but is difficult to achieve with the sparse and irregular spac-
ing of real data. The presentation of the resistivity tensor in the form
of ellipses overcomes this obstacle. Because the ellipses are plotted
only at the site locations it is clearly shown where data and infor-
mation are available. Additionally, with ellipses, the information of
several aspects of the apparent resistivity tensor can be condensed
into one meaningful parameter.

Weaver et al. (2000) discuss that three of their invariants can be
compared with the galvanic distortion parameters twist and shear
(Groom & Bailey 1989). Although PNA is not regarded as a tensor
decomposition tool, we tested the influence of galvanic distortion
by multiplying the example impedance tensor (see eq. 20) with a
real distortion matrix. The distortion resulted mainly in a change of
the direction of the main axis, but not in a change of the shape of
the ellipses.

7 S U M M A RY

We have introduced propagation number analysis as a method for
deriving a resistivity tensor from the magnetotelluric impedance. For
imaging purposes, the electrical resistivity is a physically meaning-
ful parameter and the tensor characteristics allow the computation
of rotationally invariant properties. We have demonstrated the po-
tential of the method in comparison with two existing methods using
synthetic 3-D data. The modelling study and the application of PNA
to real data show that this method can produce focused images with
stable results even if the electromagnetic fields are strongly 3-D.
The method and its error estimation can easily be adapted to real
data as it does not require any prerequisites. It can be used as an
interpretation tool in combination with surface geological maps or
as a computationally inexpensive way to obtain a starting model for
a 3-D inversion.

The limitations of the method are common to similar imaging
tools. The biggest problem is the difficulty in relating the observed
images to depth. Because of the skin depth phenomena, the cor-
responding observation depths are always a function of both fre-
quency and subsurface conductivity and like all imaging methods,

PNA requires a dense station mesh so that images can be obscured
or distorted by spatial aliasing.
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A P P E N D I X A : W H E N D O E S A M AT R I X C O R R E S P O N D T O A T E N S O R ?

What are the differences between tensors and matrices? We attempt to give a concept, not a mathematically rigorous proof. Generally speaking,
a matrix corresponds to a tensor if the following two procedures lead to the same result (see Fig. A1):

(i) Establishing the tensor in a given coordinate system and subsequent transformation into a second coordinate system.
(ii) Transformation of the tensor elements into the second coordinate system and subsequent establishment of the tensor.

To apply this concept to the ρa matrix, we first rotate the impedance tensor. Subsequently, the apparent resistivity values are calculated. For
simplicity, we rotate a 2-D impedance tensor by angle θ .

Ẑ
′ =

(
cos θ sin θ

− sin θ cos θ

) (
0 Z⊥
Z‖ 0

) (
cos θ − sin θ

sin θ cos θ

)
. (A1)

The first two elements of the rotated impedance tensor are

Z ′
xx = 1

2
(Z⊥ + Z‖) sin(2θ )

Z ′
xy = 1

2
(Z⊥ − Z‖) + 1

2
(Z⊥ + Z‖) cos(2θ ).

(A2)

The elements of the apparent resistivity matrix are derived by taking the absolute values squared of the impedance tensor elements. The matrix
is then rotated similarly to eq. (A1)

ρ′
a = µ0

2π f

(
cos θ sin θ

− sin θ cos θ

) (
0 |Z⊥|2

|Z‖|2 0

) (
cos θ − sin θ

sin θ cos θ

)
(A3)

and the elements of ρa take the following form:

ρ ′
a,xx = µ0

2π f

[
1

2

(|Z⊥|2 + |Z‖|2
)

sin(2θ )

]
ρ ′

a,xy = µ0

2π f

[
1

2

(|Z⊥|2 − |Z‖|2
) + 1

2

(|Z⊥|2 + |Z‖|2
)

cos(2θ )

]
. (A4)

If ρa is a tensor, then
µ0

2π f
|Z ′

i j |2 ?= ρ ′
a,i j (A5)

with i , j = x , y. ρa,i j
′ are summation terms of absolute values squared of Z‖ or Z⊥. Hence, ρa is generally not a tensor because |a + b| ≤ |a|

+ |b|.
To decide if γ̂ is a tensor, we must rotate the admittance tensor Ŷ into a second coordinate system and then calculate γ̂. The rotated

admittance tensor assumes the following form when we consider some substitutions for sums and differences of admittance tensor entries:
S1 = Y xx + Y yy, S2 = Y xy + Y yx, D1 = Y xx − Y yy and D2 = Y xy − Y yx:

Ŷ
′ =

(
cos θ sin θ

− sin θ cos θ

) (
Yxx Yxy

Yyx Yyy

) (
cos θ − sin θ

sin θ cos θ

)

= 1

2

(
S1 + D2 cos(2θ ) + S2 sin(2θ ) D2 + S2 cos(2θ ) − D1 sin(2θ )

−D2 + S2 cos(2θ ) − D1 sin(2θ ) S1 − D1cos(2θ ) − S2 sin(2θ )

)
.

(A6)

Considering one element, e.g. γ xy, we derive an analogue to eq. (A6),

γxy(α) = 1

2
[(γxy − γyx ) + (γxy + γyx ) cos(2θ ) − (γxx − γyy) sin(2θ )]

= −ω2

2

{
[Yyy(Yxy − Yyx ) − Yxx (Yyx − Yxy)] + [Yyy(Yxy − Yyx ) + Yxx (Yyx − Yxy)] cos(2α)

− [(
YyyYxx − Y 2

yx

) − YyyYxx − Y 2
xy

]
sin(2α

)}
= −ω2

2
[D2 S1 − D2 D1 cos(2α) − D2 S2 sin(2α)]

= −ω2

2
D2[S1 − D1 cos(2α) − S2 sin(2α)]

= −ω2Yy′ y′ (α)[Yx ′ y′ (α) − Yy′x ′ (α)] = γx ′ y′ .
(A7)

q.e.d.

A P P E N D I X B : C A N P N A R E C OV E R A R B I T R A RY A N I S O T RO P Y ?

To test if the propagation number analysis properly recovers the conductivity tensor of an arbitrary horizontally anisotropic, homogeneous
medium in the chosen coordinate system, we describe the subsurface by a conductivity tensor for which principal axes are rotated by the angle
β from the geographical coordinate system (see Fig. B1).
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Figure A1. Examination of tensor properties: a quantity depending on a, b and c is defined in a coordinate system (x , y, z). It must be shown that T (a′, b′,
c′) = T ′(a, b, c).

At first we have to compute the electric and magnetic fields, which generate the admittance tensor. The wave equation for the electric fields
in the case of azimuthal anisotropy and neglecting the displacement currents has the following form:

∂2 Ex

∂z2
= iωµ0(σxx Ex + σxy Ey)

∂2 Ey

∂z2
= iωµ0(σyx Ex + σyy Ey),

(B1)

where σ xy = σ yx and Ex, Ey only depend on the depth z. To solve these equations we assume a plane-wave solution:

Ex (z) = A1e−kz Ey(z) = A2e−kz (B2)

Figure B1. Conductivity tensor in a geographic coordinate system. x̂+ and x̂− are the unit vectors of the conductivity tensor, which is rotated by β from the
geographic coordinate system.
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with the complex wavenumber k = √
iωµ0σ . For this expression we need the eigenvalue of σ . Combining eqs (B2) and (B1) we obtain

σ A1 = σxx A1 + σxy A2

σ A2 = σxy A1 + σyy A2.
(B3)

If a solution of the equation system exists, the eigenvalue σ must be

⇒ σ = σ± = 1

2

[
σxx + σyy ±

√
(σxx − σyy)2 + 4σ 2

xy

]
. (B4)

Using Vieta’s theorem we can define

σ+ + σ− = σxx + σyy ; σ+ · σ− = σxxσyy − σ 2
xy . (B5)

We can transform eq. (B3) into

A±
2

A±
1

= σ± − σxx

σxy
= σxy

σ± − σyy
= tan β (B6)

using the geometric relations of Fig. 15.
To compute the admittance tensor (2) we consider two polarizations:

(a) A+
j �= 0 and A−

j = 0

(b) A−
j �= 0 and A+

j = 0 with j = x, y.

The magnetic field is given by Faraday’s law (3),

B±
x = − k±

iω
Ey ; B±

y = k±

iω
Ex =

√
µ0σ±

iω
Ex . (B7)

Together with

Ŷ =:

√
iωµ0

iω
Ỹ =

√
µ0

iω
Ỹ (B8)

the conditional equation for Ỹxx and Ỹxy can be written as

−√
σ± A±

2 = Ỹxx A±
1 + Ỹxy A±

2 . (B9)

In consideration of eq. (B6) we have to solve the following system of equations:

−√
σ± = σxy

σ± − σxx
Ỹxx + Ỹxy . (B10)

With regard to eq. (B6) the determinant of the system is given by

σxy

σ+ − σxx
− σxy

σ− − σxx
= σ+ − σ−

σxy
. (B11)

Therefore, Ỹxx and Ỹxy become

Ỹxx = − σxy√
σ+ + √

σ−
; Ỹxy = −σyy + √

σ−σ+√
σ− + √

σ+
. (B12)

Similar considerations lead to expressions for Ỹyx and Ỹyy .

Ỹyx = σxx + √
σ−σ+√

σ− + √
σ+

; Ỹyy = σxy√
σ− + √

σ+
. (B13)

Now, the admittance tensor can be written as

Ŷ =
√

µ0/(iω)√
σ− + √

σ+

(
−σxy −(σyy + √

σ+σ−)

σxx + √
σ+σ−)σxy

)
. (B14)

This admittance tensor is used to compute the propagation number γ̂ (eq. 14).

γi j = −iωµ0σi j, with i, j = x, y. (B15)

Hence we have shown that the entries of the propagation number γ̂ contain the related components of the conductivity tensor in the geographic
coordinate system.
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