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A study on the Fourier composition of the

associated Legendre functions; suitable for

applications in ultra–high resolution

Christian Gruber

22. April 2008

Abstract

The associated Legendre functions were historically calculated as closed

power series. With the growing need for higher degrees and associated or-

ders recursive algorithms have been developed, highly efficient for numerical

processing. As ground–based gravity measurements are available that can

be combined with existing and upcoming datasets of satellite systems ultra-

high degree spherical harmonic representation and transformation of the

fields becomes a necessity. Moreover, for applications in spectral domain it

is in general desirable to process the associated Legendre function directly,

without a recursive antecessor that predefines the order of the sequence. The
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closed power series mentioned can not serve beyond certain degrees due to

alternating signs with extraordinarily large rational numbers, leading to a

considerable loss in numerical precision. The Fourier transform and recur-

sive relations between the Fourier coefficients themselves instead turn out

to be stable and widely useful.

Keywords: Fourier expansion, geopotential, ultra-high degree Legendre

functions, Spherical Harmonics
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1 Introduction

The associated Legendre functions (hereinafter: Legendre functions) and their

derivatives are of fundamental importance in various disciplines from classical to

space Geodesy, in Geophysics or Astronomy and nowadays even in Biochemistry.

Historically, they were calculated as closed power series, see Hobson (1931)[12];

Kaula (1966) [17]; Heiskanen and Moritz (1967)[11]. State of the art solutions are

the fast and precise calculation by means of highly efficient recursive algorithms,

see Holmes & Featherstone (2002) [14]; Claessens (2005) [4]. Available methods

for the calculation of the Legendre functions have limited resolution, since they

approach machine underflow in double precision arithmetic. Furthermore, derived

functionals, useful for vector field calculations require adopted recursive schemes,
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as well. Using the spectral representation of the Legendre functions, their compu-

tation is straight forward since derivation in spectral domain reduces to a simple

filter operation and is not as tedious as in time-domain.

Due to the recursive processing chain certain applications, such as product–

sums of huge data–sets cannot be established most efficiently. The reader may

consider the assembling of normal equation systems for the analysis of irregularly

distributed ground– or satellite based data. The recursive processing chain for the

computation of the respective spherical harmonic functions then always leads to

outer (tensor) products of the observational equations. If random access to each

degree/order of the spherical harmonic expansion exist, the processing of the inner

product between two corresponding Legendre functions of huge data–sets becomes

feasible and can be realized very efficiently through parallel algorithms.

The product–sums between Legendre functions have therefore already been

investigated by (Balmino 1978) [1] and (Hwang 1995) [15] but could never be used

beyond some low degrees of expansion due to well–known numerical problems.

Using the decomposition in terms of trigonometric series instead, it proves re-

liable concerning numerical issues and leads besides to a convenient 2d Fourier

expansion for the surface harmonics, that gives the possibility of fast spherical

transformation of a function on the sphere. Since in geodesy often directional

derivatives are required, the distinction of the functionals assembling the spherical
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harmonics remains albeit useful in contrast to a concise transformation or convo-

lution of a scalar function, see (Driscoll and Healey 1994 [6] and Schwartztrauber

1979 [21])

Many efforts have been made recently, see e.g. (Blais 2002 [2]; Wittwer et al.

2008 [24] and Jekeli 2006) [16] to develop stable algorithms for the computation

of ultra-high degree Legendre functions, but they could not solve the problem of

exceeding the range convention for the most common data type (double–precision,

or double). In quadrupol precision the under-/overflow problem can be deferred

but not generally solved. To overcome the trouble of numerical instabilities for

certain arguments a detailed insight to the problem is required. It can be obtained

by a distinct, frequency-wise processing and scaling of the function.

In this article will be discussed two major approaches how to calculate the har-

monic spectrum of the associated Legendre functions. Firstly, if there is a Legendre

function as an equispaced signal available in space domain it can be decomposed

by trigonometric base–functions. This can be done by either the discrete Fourier

operator, (fft) or numerical integration. Secondly, two recursive algorithms to

calculate the Legendre functions will be assessed in spectral domain. It hereby

turns out that computations to unlimited degree are feasible without use of ex-

tended precision numbers.
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2 Classification

In this paper we will use the definitions of resolution, according to Table 1. A

classification is given, depending on degree or equivalent half wavelength for the

corresponding resolution. The grading follows technical assumptions, i.e. with

emphasize on calculations. Either power series, classical recursive equations or an

inverse Fourier transform of the coefficients are considered. The power series are

based on (Hobson 1931). Classic recursion in space domain comprises ’diagonal’

computation of the sectorial function where (m = l) and further recursion to (m =

0). Forward recursion in the sequel of this manuscript means the development from

(m = 0), backward recursion starts from (m = l), where m denotes the associated

order and l is the degree of the Legendre function.

Since the computational cost for a direct expansion of the Legendre functions

into Fourier coefficients increases rapidly, only moderate resolutions (l ≤ 360)

will be addressed with a discrete Fourier transformation. For the higher degrees

(360 < l ≤ 1800) or even ultra–high (l > 1800) efficient algorithms based on

the recursive calculation of the Fourier coefficients are recommended. With these

algorithms at hand, expansions considerably larger than l = 10800 are feasible,

leading to global resolutions below 1 arcmin × 1 arcmin.

The lowest degrees are computable in double precision by forward and back-

ward recursion as well as the power series, despite their instability, (in double

9
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Degree Resolution (λ/2) Attribute Spatial Spectral

l ≤ 30 6◦ ≡ 667km low ps, fr, br fr, br

l ≤ 360 0.5◦ ≡ 55km moderate br fr∗, br

l ≤ 1800 6′ ≡ 11km high br fr∗, br

l ≤ 2700 4′ ≡ 7km ultra–high br∗ fr∗, br∗

l > 2700 < 4′ ultra–high ———– fr∗, br∗

Table 1: Classification of Legendre functions in view of their resolutions and usage

within Spherical Harmonics. Resolution complies to half wavelenghts, ps denotes

power series, fr, br are forward and backward recursion, ∗ indicates modifications

to the standard algorithm are necessary, see also text for further explanation.

precision) Concerning moderate resolution space to frequency domain transfor-

mation can still be efficiently applied. For the higher resolutions, computation

times increase rapidly; moreover modifications to the recursive formulas become

necessary, (see Holmes & Featherstone 2006).

On the other hand, it is possible to apply the recursions directly to the Fourier

coefficients of the Legendre functions. Forward recursion then reduces effectively

to single precision if the under-/overflow is anticipated. A possible extention to

gain double precision will be presented in the corresponding section about recursive

algorithms for the Fourier coefficients of the Legendre funcions.

Backward recursion in spectral domain is capable to maintain double numbers
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throughout all degrees/orders. But it requires special effort to compute the initial

values originating from a binomial series and propagation of an adequate scaling

factor.

3 The power series

The direct calculation of the Legendre functions stems from a power series

Plm(x) =
∞∑
j

aj
lmxj. (1)

Hobson (1931) and Kaula (1966) give the solution of the Legendre diffential equa-

tion

Plm(x) = (1− x2)m/2

[ l−m
2

]∑
t=0

T t
lmxl−m−2t; (2)

where [.]− entier operator, x = sin φ and a recursive procedure for the constants

T t
lm = −(l −m− 2t + 1)(l −m− 2t + 2)

2t(2l − 2t + 1)
T t−1

lm (3)

with an initial value

T 0
lm =

(2l)!

2ll!(l −m)!
. (4)

The constants T t
lm then enable the calculation of any Legendre function indepen-

dent from its recursive antecessor. For certain applications, e.g. the computation

of normal equation systems, this can offer advantages over recursive computations.
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The coefficients T t
lm are rational numbers emerging from equations with facto-

rials or by eliminating them, from product series. Extremely large almost equal

values with alternating signs occur, making it impossible to calculate any results in

double numbers beyond some low degrees (l ≥ 30). To understand this, consider

a number with 16 valid decimals and an exponent of 1017. There exists no number

in the same precision with an alternating sign that could be added, s.th. the result

gives 1 (or is of dimension 100) because the last valid decimal already represents

101. Addition/ subtraction of numbers with different orders of magnitude has

therefore to be strictly avoided but recursive manipulations of same order can be

applied frequently.

In Table 2 the first terms of the Legendre functions Plm of degree l and order m

are given as harmonic polynomials.

The power series from Tab. 2 can now be decomposed by trigonometric theo-

rems into Table 3. Introducing the corresponding Fourier series, it can be quickly

assessed that to a certain degree l exclusively even or uneven frequencies k = l−2p

are required

F(A) ⇐⇒ Plm(sin φ) =
l∑

p=0

Almp · ei kφ. (5)

Moreover, since the complex (conjugate) constants Almp always take either an

imaginary or real value (phase shift), the inverse Fourier transform can be evalu-
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P 0
0 = 1

P 0
1 = sin φ

P 1
1 = cos φ

P 0
2 = 3/2 sin2 φ− 1/2

P 1
2 = 3 cos φ sin φ

P 2
2 = 3 cos2 φ

P 0
3 = 5/2 sin3 φ− 3/2 sin φ

P 1
3 = 15/2 cos φ sin2 φ− 3/2 cos φ

P 2
3 = 15 cos2 φ sin φ

P 3
3 = 15 cos3 φ

P 0
4 = 35/8 sin4 φ− 15/4 sin2 φ + 3/8

P 1
4 = 35/2 cos φ sin3 φ− 15/2 cos φ sin φ

P 2
4 = 105/2 cos2 φ sin2 φ− 15/2 cos2 φ

P 3
4 = 105 cos3 φ sin φ

P 4
4 = 105 cos4 φ

Table 2: Associated Legendre functions as power series

ated by real (8-Byte) coefficients ak
lm, most suitable for computations and storage,

P̄lm(sin φ) = re

{∑

k

(2− δ0
k) · eikφ · ak

lm · i(l−m)mod 2

}
, k = (l mod 2) . . . l, (2). (6)
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where the overbar denotes normalization of the Legendre functions,

Nlm =

√
(2− δ0

m)(2l + 1)
(l −m)!

(l + m)!
, . (7)

such that

P̄lm = Nlm Plm. (8)

P 0
0 = 1

P 0
2 = 1/4 − 3/4 cos(2φ)

P 1
2 = 0 + 3/2 sin(2φ)

P 2
2 = 3/2 + 3/2 cos(2φ)

P 0
3 = 3/8 sin φ− 5/8 sin(3φ)

P 1
3 = 3/8 cos φ− 15/8 cos(3φ)

P 2
3 = 15/4 sin φ + 15/4 sin(3φ)

P 3
3 = 45/4 cos φ + 15/4 cos(3φ)

P 0
4 = 9/64 − 20/64 cos(2φ) + 35/64 cos(4φ)

P 1
4 = 0 + 10/16 sin(2φ)− 35/16 sin(4φ)

P 2
4 = 45/16 − 60/16 cos(2φ)− 105/16 cos(4φ)

P 3
4 = 0 + 210/8 sin(2φ) + 105/8 sin(4φ)

P 4
4 = 315/8 + 420/8 cos(2φ) + 420/8 cos(4φ)

Table 3: The associated Legendre functions in the Fourier–base

It can be clearly seen how the trigonometric decomposition follows a certain
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scheme, defining frequencies and phases. The phase depends on whether degree

and order are even or odd. The following four cases can be distinguished, see

Tab. 4.

`\m even odd

even (I )

P 0
0

P0
2 P2

2

P0
4 P2

4 P4
4

P 0
6 P 2

6 P 4
6 P 6

6

P1
2

P1
4 P3

4

P 1
6 P 3

6 P 5
6

(II)

odd (III)

P 0
1

P0
3 P2

3

P0
5 P2

5 P 4
5

P 1
1

P1
3 P3

3

P1
5 P3

5 P5
5

(IV)

Table 4: Classification of Legendre functions by parity, degree and order

If all frequencies are known, a Fourier analysis to estimate the coefficients, can be

applied. The general Fourier series of a periodic function f(x + p) = f(x), with

period p is given as

f(x) =
a0

2
+

∞∑

k=1

[
ak cos

(
2πkx

p

)
+ bk sin

(
2πkx

p

)]
. (9)
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Taking the result of Tab. 4 into account, symmetric functions with respect to

x = 0 arrise.

Symmetrical case f(−x) = f(x)

ak =
4

p

p/2∫

0

f(x) cos

(
2πkx

p

)
· dx; bk = 0, k = 0, 1, 2, . . . (10)

Anti–symmetrical case f(−x) = −f(x)

bk =
4

p

p/2∫

0

f(x) sin

(
2πkx

p

)
· dx; ak = 0, k = 0, 1, 2, . . . (11)

Eq.(10) can be used whenever degree and order of the Legendre functions are

in parity, i.e. (l − m) even, and Eq. (11) in the case (l − m) odd. Consider

l = 4,m = 0, k = 0, 2, 4 and a period p = π

a0 =
4

π

π/2∫

0

(
T 0

40 sin4 φ + T 1
40 sin2 φ + T 2

40

) · dφ = 2 · 9/64 (12)

a1 =
4

π

π/2∫

0

(
T 0

40 sin4 φ + T 1
40 sin2 φ

)
cos 2φ · dφ = −20/64 (13)

a2 =
4

π

π/2∫

0

T 0
40 sin4 φ cos 4φ · dφ = 35/64, (14)

and for l = 4, m = 1 and k = 0, 2, 4 analoguously Eq. (11).

The constant a0 is obviously doubled compared to the results in Tab. 3; this

is compensated by introducing complex notation

Ak =





a0

2
k = 0

1
2
(ak − ibk) k > 0

1
2
(a−k + ib−k) k < 0

(15)
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The decomposition is then well defined and the constants T t
lm can be converted

into Fourier coefficients by multiplication with the integrals of the powers of the

trigonometric functions. Yet there is no true advantage in this, since the alternat-

ing series to determine the coefficients of the power series are still being used. The

usually introduced full–normalization, Eq. (7) can be incorporated into calcula-

tions but does not improve numerical stability, substantially. Different approaches

will be therefore discussed in order to provide fast and reliable calculation of the

Fourier coefficients for different applications.

In (Brovelli und Sansò 1990) [3] it is indicated, that the Inclination functions for

inclination I = π/2 represent the Fourier coefficients of the Legendre functions. A

possible choice would be therefore the recursive calculation of Inclination functions

for I = π/2, but this will almost certainly lead to instabilities for higher degrees,

see Gooding and Wagner (2008) [8] for a detailed discussion. The following fruitfull

methods will be proposed instead:

• time ⇒ frequency

- Discrete numerical Integration of the Legendre functions

- Applying the fft operator to the Legendre functions

• frequency ⇒ frequency

- Application of a direct recursion to the Fourier coefficients starting with

17
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(m = 0) and disregarding divergent components in the course of the recur-

sion

- Application of a direct recursion to the Fourier coefficients starting from

(m = l).

Since the discrete numerical integration can be applied very simple it will be

introduced first. The corresponding concept based on the use of an fft operator

will be discussed subsequently. The processing by recursive algorithms applied

directly to the Fourier coefficients follows in chapter 6.

Fig. 1 illustrates the processing of the Fourier coefficients, that will be discussed

in the following sections.

4 Fourier Analysis by discrete numerical inte-

gration

In this approach equispaced Legendre function values of a specific P̄lm(t) are trans-

formed into their respective Fourier spectrum. To calculate the function values

standard recursive formulas are applied, cf. Holmes and Featherstone (2006),

Koop and Stelpstra (1989) [18]. By minimizing the norm of the residuals in a least

squares sense, ‖P̄lm(t)−∑
k

ak
lmeikφ‖L2 with empirical values P̄lm(t) and parameters

18
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Figure 1: Different processing chains to obtain Fourier coefficients for the associ-

ated Legendre functions

ak
lm ∈ R, ti = sin φi, and 0 ≤ φ ≤ π/2, one can generally apply

ak
lm = (BT B)−1BT P

m

l (ti). (16)

19
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The Jakobi matrix B of the form (I) according to Tab. 4, for l = 6

B =




cos 6φi cos 4φi cos 2φi 1

...
...

...
...




[N×K]

, i = 1, . . . , N. (17)

where N is the total number of samples for the function and K spans a subspace

according to all possible frequencies k = (l mod 2), . . . , l, step 2. It is intended

to find C = (BT B)−1, where

C−1 =
(
BT B

)
=




(cos 6φ, cos 6φ) (cos 4φ, cos 6φ) (cos 2φ, cos 6φ) (1, cos 6φ)

(cos 4φ, cos 4φ) (cos 2φ, cos 4φ) (1, cos 4φ)

(cos 2φ, cos 2φ) (1, cos 2φ)

symm. N




.

(18)

The matrix C will be diagonally dominant occupied, due to the orthogonality

relations in Eq. (19). These can be listed for (0 ≤ φ < 2π)

N−1∑
i=0

cos kφi cos hφi =





0 k 6= h

N/2 k = h 6= 0

N k = h = 0

N−1∑
i=0

sin kφi sin hφi =





0 k 6= h

N/2 k = h 6= 0

0 k = h = 0

N−1∑
i=0

cos kφi sin hφi = 0 ∀ k, h.

(19)

with the number of samples N and an equi spaced sampling interval.
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Comparing these results to the analytical counterpart of the matrix BT B,

corresponding to the products in Eq. (18) where the scalar product in the sense

of a metric ρ : M × M → R, with u, v ∈ M is given as

ρ(u, v) =
2

p

b∫

a

u(x)v(x)dx, p = b− a := π (20)

leads for the trigonometric functions to ρ(u, v) = δv
u, the Kronecker function.

Integrating according to Eq. (20), over x := φ ∈ [0, π/2], one obtains for the

given example analytically (a), whereas for the equispaced, discrete sampling in

Eq. (18), (b)

C−1 =




1
2

0 0 0

1
2

0 0

1
2

0

symm. 1




, C−1 =




N+1
2

0 +1 0

N+1
2

0 +1

N+1
2

0

symm. N




. (21)

(a) (b)

By multiplying B with a diagonal matrix

B′ = d ·B, d =




1/
√

2

1

1

1/
√

2




, (22)

or equivalently by dividing the first and last row

B′
1,j = B1,j/

√
2, B′

N,j = BN,j/
√

2 where i, j = 1, . . . , N (23)
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and using a determined system, i.e. delimiting the number of samples to N = l / 2 + 1 ,

the matrix C−1 takes a diagonal shape and results in the inverse

C−1 = B′T B′ =




N − 1 0

N−1
2

N−1
2

symm. N − 1




⇐⇒ C = 2/l·




1 0

2

2

symm. 1




.

(24)

The right hand side of the system must be eqally adopted. One obtains with

ak
lm = CBT DP̄m

l (ti), D = dT d. (25)

a set of k coefficients ak
lm according to Eq. (16). The product CBT D can be also

written as 4/l · B′′ if the first & last row as well as first and last columns are

modified, accordingly

B′
1,j = B1,j/2, B′

N,j = BN,j/2

B′′
i,1 = B′

i,1/2, B′′
i,N = B′

i,N/2. (26)

For the odd orders there is no (dc) frequency. The matrix for the case (II), with

l = 6, m = 1, 3, 5, φ ∈ [0, π/2] will take the form

C−1 =




(sin 6φ, sin 6φ) (sin 4φ, sin 6φ) (sin 2φ, sin 6φ)

(sin 4φ, sin 4φ) (sin 2φ, sin 4φ)

symm. (sin 2φ, sin 2φ)




=




N
2

0

N
2

symm. N
2




.

(27)
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Again using a minimum of samples N = l/2 only then yields

C−1 =




N+1
2

0

N+1
2

symm. N+1
2




= 4/(l + 2) · I (28)

and can be effectively applied as a scalar to BT in Eq. (16)

ak
lm = 4/(l + 2) ·BT P̄m

l (ti) (29)

For the odd degrees and even orders, case (III) l = 7, m = 2, 4, 6, φ ∈ [0, π/2],

k = 1, 3, 5, . . . , l

C−1 =




(sin 7φ, sin 7φ) (sin 5φ, sin 7φ) (sin 3φ, sin 7φ) (sin φ, sin 7φ)

(sin 5φ, sin 5φ) (sin 3φ, sin 5φ) (sin φ, sin 5φ)

(sin 3φ, sin 3φ) (sin φ, sin 3φ)

symm. (sin φ, sin φ)




(30)

with N = (l + 1)/2 + 1 we obtain a chessboard structure in the off diagonals

C−1 =




N
2

−1
2

1
2

−1
2

N
2

−1
2

1
2

N
2

−1
2

symm. N
2




. (31)

Dividing the last row in matrix B by
√

2 erases the off diagonal elements and leads

to C = 4/(l + 1)· I. Adopting also the right hand side further results in

ak
lm = 4/(l + 1) ·B′′P̄m

l (ti) (32)
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with modified last row and column

B′
N,j = BN,j/

√
2, B′′

i,N = B′
i,N/

√
2, where i, j = 1, . . . , N (33)

The forth case (IV), with l = 7, m = 1, 3, 5, 7, φ ∈ [0, π/2]

C−1 =




(cos 7φ, cos 7φ) (cos 5φ, cos 7φ) (cos 3φ, cos 7φ) (cos φ, cos 7φ)

(cos 5φ, cos 5φ) (cos 3φ, cos 5φ) (cos φ, cos 5φ)

(cos 3φ, cos 3φ) (cos φ, cos 3φ)

symm. (cos φ, cos φ)




(34)

is analoguous to case (III), with

C−1 =




N+1
2

1
2

1
2

1
2

N+1
2

1
2

1
2

N+1
2

1
2

symm. N+1
2




. (35)

Changing first row and column in B then leads to C = 4/(l + 3)· I and therefore

ak
lm = 4/(l + 3) ·B′′P̄m

l (ti), k = 1, 3, 5, . . . , l (36)

where

B′
1,j = B1,j/

√
2 and B′′

i,1 = B′
i,1/
√

2. (37)

In Tab. 5 the corresponding cases (I-IV) are listed

24

Scientific Technical Report STR 11/04 
DOI: 10.2312/GFZ.b103-11041

Deutsches GeoForschungsZentrum GFZ



case range sampling ∆φ N base function

I 0 ≤ φ ≤ π/2 π/l l/2+1 cosinus

II 0 < φ < π/2 π/(l + 2) l/2 sinus

III 0 ≤ φ ≤ π/2 π/(l + 1) (l + 1)/2 + 1 sinus

IV 0 ≤ φ ≤ π/2 π/(l + 1) (l + 1)/2 + 1 cosinus

Table 5: Definition of the determining sampling for the decomposition of the

Legendre functions.

The presented method is suitable for the simultaneous calculation of all coef-

ficients of the associated orders m to a certain degree l, since beside the function

values at the right hand side nothing changes for different orders. Since for every

degree a matrix vector operation over l2/4 elements has to be calculated, a total

count of O(l3/4) is necessary for all respective orders. Using at this point the fast

Fourier fft operator instead, only (l log l) operations for each order are required,

in total thus O(l2 log l) per degree. Since the number of samples for use of the fft

method has to be doubled there is no gain in moderate resolutions.
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5 The fast Fourier–operator applied to the asso-

ciated Legendre functions

In analogy to the previous method the computation of the Fourier coefficients from

equispaced Legendre function samples can be achieved by fast Fourier transforma-

tion, fft. The integral, with t = sin φ, t ∈ [−1; 1] is given by

Almk =
1

π

π/2∫

−π/2

e−ikφP̄lm(t)dφ. (38)

The discrete case with equispaced samples is then

Almk ≡ 1

N

N−1∑

k=0

e−i2πkn/N P̄m
l (tn), n = 0, . . . , N − 1 (39)

where a real input signal will produce a complex (periodical) spectrum

A−k = AN−k = A∗
k, (40)

such that it is sufficient to store only coefficients with positive indexes. The fol-

lowing symmetry properties can be used to keep the number of required samples

of Legendre functions low and get the most efficient scheme to compute the coef-

ficients for this application,

1. the Legendre functions are periodic on [0 : π],

2. the Legendre functions of even order are symmetric to π/2 and of odd order

anti-symmetric to π/2.
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A real input signal can be cut in two halves and assigned both as a real and

imaginary signal to the fft operator. The complex result can then be assembled

in an inverse manner. The use of this efficient fft method for the Legendre

functions, sampled between φ = [0 : π/2] with the step size

∆φ =





π/lmax lmax : even

π/(lmax + 1) lmax : odd

(41)

is demonstrated as follows:

i assemble the signal, with N = [lmax/2] + 1

α = (−1)m

β = (−1)l

γ = α · β

pj = P̄lm(tj), j = 0, . . . , N(1 .quadrant)

p2N−k = α · pk, k = 1, . . . , N − 1(2 .quadrant)

p2N+j = β · pj, (3 .quadrant)

p4N−k = γ · pk, (4 .quadrant)

(42)

ii decompose two halves into complex values

hn = p2n + ip2n+1, n = 0, . . . , 2N − 1

iii apply the fft–operator

Hn = F [hn]
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iv add the last value (due to periodicity)

H2N = H1

v merge the real and imaginary solution, see Numerical recipies (1992) [20] for

further details

ak
lm =

1

2
(Hn + H∗

M/2−n)− i

2

(
Hn −H∗

M/2−n

)
ei2πn/M

where M = 4 · [lmax/2], n = 0, 1, . . . , M/2

vi save only those constants ak
lm, where k =





0, 2, . . . , l l : even

1, 3, . . . , l l : odd

For the calculation of all coefficients up to degree/order l = 1080 by fft, in

total

L =
1080∑

l=1

4l2 log 2l ≈ 1.2 × 1010 (43)

operations are required, whereas in the case of the numerical integration l4/16 ≈

8.5× 10
10

.

6 Recursive computation of the Fourier coeffi-

cients to unlimited degree

Other than in the previous section, where explicit, discrete Legendre function

values have been transformed from time to Fourier domain, in this section the
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recursive processing of the coefficients themselves will be discussed. Dilts (1985) [5]

describes such recursive relations between the constants with regard to degree–

wise recursion and elaborates an algorithm purely in integer arithmetics. His

numerical calculation extends until degree l = 14 and no normalization has been

applied. Elovitz et al. (1989) [7] have therefore included a normalization and

extend computations with spherical harmonic coefficients up to degree l = 250.

From today’s view the conclusion that processing of spherical harmonic models by

Fourier coefficients for the Legendre functions would be too costly compared to

a standard quadrature method is not sustainable any longer, since the spherical

harmonic model coefficients can be aggregated into lumped harmonics and then

applied to a 2d fft operator to generate high resolution global data grids within

best performance.

Considering the order–wise recursion based on the associated Legendre differ-

ential equation, Heiskanen and Moritz (1967) [11]

−Pm+1
l (sin φ) + (l + m)(l −m + 1)Pm−1

l (sin φ) = 2
∂

∂φ
Pm

l (sin φ), (44)

it is straight forward to plug in Fourier coefficients from Tab. 3, since the trigono-

metric base functions cancel on both sides and the number of coefficients belonging

to a certain degree does not change during recursion. If we wish the ak
l,m introduced

in Eq. (6) to be fully normalized coefficients, we first “denormalize” by Eq. (7) in
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order to fulfill Eq. (44),

−ak
l,m+1/Nl,m+1 + (l + m)(l −m + 1) · ak

l,m−1/Nl,m−1 = βl−m · 2k · ak
l,m/Nl,m,

(45)

with an auxiliary

βl−m =





−1 for (l −m even)

1 for (l −m odd).

(46)

The equation can be solved as an initial value problem with (m = 0). For this

purpose further auxiliaries will be computed, following from the decomposition of

the factorials in Eq. (7) into product series

jm = 1 + δ0
m

dl,m =
√

(l + m)(l −m + 1)

el,m =
√

(l −m)(l + m + 1). (47)

Normalization can then be considered implicit within recursions. The constants

ak
lm to a certain degree l can be computed reversely according to the following

scheme,

ak
l,m+1 =

√
jm · βl · k · ak

l,m (m = 0)

ak
l,m+1 =

(
βl−m · k · ak

l,m + dl,m · ak
l,m−1

)
/elm (l > m > 0)

(48)

starting with ak
l0 for the Legendre polynomial, determined in a direct manner. We
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follow a direct trigonometric expansion, see Hoffsommer and Potters (1960) [13]

Pl(sin φ) =
l∑

k=0

pk · pl−k · sin(l − 2k)φ (49)

thence for the coefficients, including normalization

ak
l0 =

√
2l + 1 · pk · pl−k. (50)

The constants pj can be obtained by

pj+1 = (1− 1/(2j)) · pj, p0 = 1. (51)

The recursive scheme in Eq. (48) is suitable for simultaneous computations of all

frequencies k belonging to the next associated order of a certain degree l. Unfor-

tunately the process becomes instable for higher degrees (l > 30) due to earlier

described numerical problems. Hofsommer and Potters (ibid) therefore suggested

to introduce a second boundary to the differential equation (44) in order to sta-

bilize calculations. This can be done successfully and leads to a stable solution

but the equations cannot be solved in a recursive manner. In order to understand

the principles and extend this idea later on we first consider the equivalent of Eq.
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(48), for l = 4, newly expressed as a matrix operation, N · x = 0




∗| −1 0 0 0

∗| ∗ −1 0 0

0| ∗ ∗ −1 0

0| 0 ∗ ∗ −1




·




ak
`,0

−−−

ak
`,1

ak
`,2

ak
`,3

ak
`,4




=




0

0

0

0




, (52)

and a rank defect of 1. The ∗ serve as placeholders for individual numbers accord-

ing to the recursion. Swapping the first column to the right-hand-side then gives

a solvable (determined) system




−1 0 0 0

∗ −1 0 0

∗ ∗ −1 0

0 ∗ ∗ −1




·




ak
`,1

ak
`,2

ak
`,3

ak
`,4




= −ak
`,0 ·




∗

∗

0

0




. (53)

It can be shown, how instabilities evolve with the system if the inversion is carried

out by respective Gauss-matrices. To avoid them the introduction of a second

constraint to the right-hand-side will result in an overdetermined system that is
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capable to deliver stable results,




−1 0 0

∗ −1 0

∗ ∗ −1

0 ∗ ∗




·




ak
`,1

ak
`,2

ak
`,3




=




−ak
`,0 · ∗

−ak
`,0 · ∗

0

+ak
`,4




. (54)

The solution of a full inverse is now required, resulting in substantially higher

numerical workload. Specifically, to each frequency k a solution has to be found

for (m = 2, . . . , l − 1) unknown coefficients by a matrix inversion. Moreover the

last value as second constraint in Eq. (53) has to be introduced and thus stable

calculated as well. However, since this value approaches zero it can in practice be

set to zero for most cases, without the need to calculate it; the other cases, will be

discussed in the next section. A combined solution between forward recursion until

the anticipated instability and an additional estimation for a few “enhancement

coefficients” replacing and/or completing deficient orders will be introduced in the

section for proposed calculation schemes.

Beforehand, recursive relations can also be reversed and thus the initial value

replaced by the final one. This approach turns out to provide numerically stable

results to the ultra–high degree and can be used efficiently. The processing steps

are briefly outlined in the following. From Eq. (2) the final value P̄ll(sin φ) is
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obtained by

P̄ll(sin φ) = Nll · T 0
ll · cosl φ, (55)

where the coefficients T 0
ll are calculated from

T 0
ll = (2l − 1) · T 0

l−1,l−1 (56)

with an initiale value T 0
11 = 1. The normalization from Eq. (7) becomes

Nll =

√
(4l + 2)

Πl
n=1n(l + n)

(57)

and can be included in the recursion in Eq. (56) to obtain fully normalized coeffi-

cients,

T̄ 0
ll = (2l − 1) · T̄ 0

l−1,l−1 ·
(

Πl−1
n=1n(l − 1 + n)

Πl
n=1n(l + n)

· 2l + 1

2l − 1

) 1
2

= (2l − 1) · T̄ 0
l−1,l−1 ·

(
Πl−1

n=1(l − 1 + n)/(l + n)

2l2
· 2l + 1

2l − 1

) 1
2

= (2l − 1) · T̄ 0
l−1,l−1 ·

(
1

2l(2l − 1)
· 2l + 1

2l − 1

) 1
2

=

(
2l + 1

2l

) 1
2

T̄ 0
l−1,l−1. (58)

The initial value is T̄ 0
11 =

√
3. To obtain the Fourier constants we need further

to decompose the power series of the cosine function into a trigonometric series,

accordingly

cosj y =

j∑

k=0

c̄k cos ky = 2(−l+1)

l∑

k=0,2

1

(1 + δ0
k)




l

[
l−k
2

]


 cos ky, (59)
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where [. . . ] denotes the entier operator. Thus the coefficients c̄k can be generated

from the binomial series



l

[
l−k
2

]


 =

l!(
l − [

l−k
2

])
!
[

l−k
2

]
!
, (60)

Note that due to the factorials again numerical under–/overflow is imminent but

can be circumvented by appropriate choice of a calculation scheme, see the subse-

quent section on backward recursion. The Fourier coefficient for the order (m = l)

then become

ak
ll = c̄kT̄

0
ll , k = 0, . . . , l ∨ (l − k)mod 2 = 0, (61)

and the reversed solution of Eq. (48), derived from Eq. (45) yields,

ak
l,l−1 = −2 k · ak

ll /
√

2l (1 6 m = l)

ak
l,m−1 =

(
elm ak

l,m+1 − βl−m · 2 k · ak
lm/dlm

)
/
√

jm−1 (1 6 m < l).

(62)

This method computes stable for l ≤ 1023 using double numbers. An underflow

occurs for higher degrees in the starting values ak
ll. The reason is found in the

constant 2(−l+1) in Eq. (59), having strongest impact on the frequenies for k = l

that approach roughly 10
−300

, thus becoming close to the limiting boundary of the

ieee standards for double numbers. Using
√

2−l+1 instead, which is effectively

an upscale, the maximum degree can be elevated to l = 2048 and in each recursive

step m, it has to be again downscaled by
√

2−m. For the ultra–high degrees beyond,
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either a frequency depended scaling is advisory or the extension of the used data

type to 16 Bytes. The corresponding range of the data type considerably extends

if 128-bit numbers (Extnd) are used, Tab. 6

Name: Single Double Extnd

kind: 4 8 16

digits: 24 53 113

radix: 2 2 2

minexponent: -125 -1021 -16381

maxexponent: 128 1024 16384

precision: 6 15 33

range: 37 307 4931

epsilon: 1.192E-07 2.220E-16 1.926E-34

huge: 3.403E+38 1.798+308 1.190+4932

tiny: 1.175E-38 2.225-308 3.362-4932

Table 6: Floating point numbers according to IEEE, digits are the number

of bits in the mantisse, exponent gives the range of the binary exponent, e.g.

21023 ' 9 × 10307.

Usage of the extnd type enables the stable calculation of the Fourier constants

for the Legendre functions up to at least degree/order 16.000 without any scal-

ing but is of course adjunctive to large memory and computational requirements,
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cf. Wittwer et al. (2007) [24] for a study on extended–range arithmetic and its

strong impact on performance. Jekeli et al. (2008) [16] gives the upper bound

for Legendre functions calculated in time domain by use of the extnd type to

L = 23599.

Since a frequency–wise scaling is in principle not complicated and leads to

stable results throughout the use of the double data type, it will be introduced

in the next section.

7 Two calculation schemes for the associated Leg-

endre functions

In this section forward and backward calculation is introduced that can both

supply spectral coefficients for the Legendre functions to unlimited degree with

double data. In the case of the forward recursion 7 significant digits are reached

before failure of the algorithm is anticipated and computations will be stopped. An

efficient correction based on the boundary value proposal from the previous section

then will enhance the solution, without ever getting close to under-/overflow of the

calculated coefficients. The backward recursion is numerically capable to unlimited

degree but requires frequency depended scaling to circumvent underflow and a

stable, pre–calculated value for the binomial seed in Eq. (60).
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Since the Fourier coefficient series in each frequency asymptotically converges

with increasing order towards zero, the numerical instabilities can be anticipated

during recursive processing. In Eq. (48) it can be steadily evaluated in each pro-

cessing step whether amplitudes belonging to a respective frequency continuously

decrease

|ak
l,m+1| < |ak

lm| (63)

and recursion interrupted, if not. By setting the remaining values to zero only a

small omission error is introduced. Fig. 2 shows the occurrence of the instability

with higher orders and high frequencies at some single/double changeover level.
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Figure 2: Left panel: when coefficient power fails to decrease during forward

order-wise processing, recursion is stopped and the respective double solution

after manipulation, right panel. The amplitude series belong to the frequencies

k = {1000, 984, 940, 848, 558} for l = 1000 from left to right.
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Neglecting the higher frequencies for higher orders of the Legendre functions has

the same impact as if these functions were calculated to single precision only.

Pm
` ⇐⇒ F(A)





Ak
`m for|ak

`m| > 10−7

0 for|ak
`m| < 10−7.

(64)

Applying such spectral truncated Legendre functions within a spherical harmonic

synthesis to coefficients of physical data in Earth sciences, e.g. the gravity po-

tential field has very low impact due to attenuation of the model coefficients with

increasing resolution. Following Kaula’s rule of thumb for the average coefficient

per degree σl = 10−5 · l−2 the calculation e.g. of geoid heights N computed from

a geopotential model, using single precision Legendre functions would result in an

error per degree

σN,l = R · 10−7 · 10−5 · l−2[m] (65)

where R = 6378km, and accumulates to

σN,c = 6, 378/3 · 10−7[m]. (66)

keeping in mind that instabilities commence at l ≥ 30. This cumulative error is

stil far below the precision of available global gravitational models. Concerning

data synthesis it is therefore meaningless whether to use the full spectrum of the

associated Legendre functions or just a truncated approximation. An advantage

of the truncation scheme is that it is by far the fastest method to compute ultra–

high degree Legendre functions on a grid since no initial seeds are required, no
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scaling of the frequencies by additional exponents has to be applied and besides

the total number of effective coefficients to be computed in each step decreases

gradually with the increasing number of excluded frequencies after failing the test

of convergence in Eq. (63).

Nevertheless, and in order to recover inputs from the inverse orthogonal trans-

form this truncation might not be acceptable and is therefore to be enhanced in

the following section.

7.1 Enhancement of the forward solution

Recalling the solutions ak
lm belonging to a certain degree l and frequency k, ∀

(m = 2, . . . , l − 1) are based on the solution of a tridiagonal system where

the first and last equations (m = 0 ∨ m = l) have to be reduced as boundary

values, an enormous computational task would have to be solved for each frequency,

respectively. Fortunately, the number of unknown coefficients of orders m can

be substantially reduced from mu, denoting a valid coefficient shortly before the

suspension in Eq. (63) to md some 10th of values after this break, just far enough

to assume the remaining coefficients to have already asymptotically approached

algrebraical zero.

Now, for each frequency k, a system according to Eq. (53) is to be established,

estimating correction values for the coefficients ak
lm, where (mu ≤ m ≤ md). In
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Fig 3 the error-belt that has to be corrected by additional, enhanced estimates is

shown. It is important to notice, that the system matrix in the following remains

equal throughout all frequencies, except from the diagonal elements that can be

updated by a factor. What remains to be done is to subtract the previous, already

computed coefficients ak
l,m, where (m < mu) that will remain uncorrected, from the

right-hand-side, as it was done in Eq. (53). The final value ak
l,md+1 then completes

the shortened tridiagonal system with two boundaries,



−1 0 0 · · · 0

∗ −1 0 0

∗ ∗ −1 0

0
. . . . . . . . . 0

... −1

∗ ∗

0 0 0 0 ∗




·




ak
l,mu

ak
l,mu+1

...

ak
l,md




= −




∗ −1 0 · · · 0

∗ ∗ − 0

0 ∗ ∗ . . . 0

...
. . . . . . −1

0 0 0 ∗ ∗




·




ak
l,0

ak
l,1

...

ak
l,mu−1




+




0

0

...

ak
l,md+1




, (67)

where it is either set to numerical zero or, in case of approaching algebraically

relevant values, e.g. if (md + 1 = l) it can be calculated as described in the next

section about the starting seeds for (m = l). The multiplications thus effectively
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reduce to

N[:,mu...md] ·




ak
l,mu

ak
l,mu+1

...

ak
l,md




= −N[:,0...mu−1] ·




ak
l,0

ak
l,1

...

ak
l,mu−1




+




0

0

...

ak
l,md+1




. (68)

Due to the tridiagonal structure in Eq.(52), the reduction term on the right-hand-

side simplifies to two scalar entries at the indexes mu − 1 and mu

−N[:,0...mu−1] ·




ak
l,0

ak
l,1

...

ak
l,mu−1




= N [mu − 1 . . . mu, 0 . . . mu − 1] ·




ak
l,0

ak
l,1

...

ak
l,mu−1




(69)

and can thus be processed even for ultra-high degrees very efficiently.

7.2 Backward recursion

This approach avoids the enhancement step since no instabilities occur compared to

the forward processing, but requires initial values and book–keeping of additional

integer exponents.

Thus for the purpose of the calculating either initial values in (m = l) for back-

ward recursion or providing non–zero final values to enhance the forward recur-

sion as discussed in the previous section we will introduce a general computational
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Figure 3: Left panel: error belt (red) in the vicinity of algorithm cut-off before

and after correction (right panel) by additional estimates for each frequency k and

those respective orders of interest (inside the belt).

scheme, that can provide results to unlimited degree l. The scheme has to fulfill

the following requirements:

• manipulate (absolute) numbers < 2−1021

• maintain consistency when exceeding under-/overflow values

The first requirement can be met by separating an additional scaling parameter

from the result. This parameter can then be used in the course of computations

of the Fourier coefficients for the Legendre functions, scaling thus intermediate

results always inside the suitable numerical range that is represented by double

numbers. The second requirement demands special attention during the processing
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of the product sums in the binomial equations, i.e. to avoid that multiplications

cannot be committed in under-/overflow domain.

Recalling Eq. (59) and changing the term 2−l+1 to 2−l to obtain compliance

with Eq. (6) s.th. all coefficients have to be doubled except when k = 0. We can

then write

ak
ll = 2−l




l

f


 , f =

[
l − k

2

]
. (70)

The binomial formula is now converted into a division and a product sequence

2−l




l

f


 =

Πl
l−f+1

2l · Πf
1

= Π

(
l − f + 1

2l/f
, . . . ,

l

f2l/f

)
, (71)

whence before calculating the product we expand Eq. (71) into a series of rational

numbers

2−l




l

f


 = (l − f + 1)/2l/f · (l − f + 2)/(2 · 2l/f ) · . . . · (72)

(l − 1)/((f − 1) · 2l/f ) · l/(f · 2l/f ).

Instead of multiplying then sequentially, we can alternately combine the rationals

from both sides,

(l − f + 1)/2l/f · l/(f · 2l/f ) · (l − f + 2)/(2 · 2l/f ) · (l − 1)/((f − 1) · 2l/f ) · . . . ·(73)

and continue to do so recursively as long as the exponent of the first term remains

below a threshold, i.e. the order of magnitude does not drop below e.g. 2−700.
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The resulting sequence then cannot be shortened any further by using double

numbers. As an example, consider the binomial sequence for (l = m = 8046), k =

7046) after several multiplications from both sides, it becomes

a7046
8046,8046 = 25.6761235136699× 10−207 first term

× 13.0972864271867× 10−207

× 9.02613352518573× 10−207

× 7.09475992352919× 10−207

× 6.03558284701099× 10−207

× 5.43316669809149× 10−207

× 5.11866122428050× 10−207

× 70.8558172718808× 10−105

× 224.030023870168× 10−054

× 95.5221219093371× 10−015.

At this point the scaling factor is drawn from the remaining 9 numbers,

Lg(i) = [log ai/ log 2] = −{684, 684, 685, 685, 685, 685, 343, 172, 43}; i = 2, . . . , 10

where [. . .] is again the entier operator, and applies as reduction 2

10P
i=2

Lg(i)
= 2−4666

that has to be registered separately.

The reduced (stored) value without the scaling is,

a∗kll = a1 · Π10
i=2

(
ai · 2−Lg(i)

)
= 2.1219974676090× 10−207 (74)
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and its true value, ak
ll = a∗kll × 2−4666 but of no practical relevance since al-

gebraically zero. During the recursion the mantissa has then to be periodically

updated by the appropriate re–scaling (2x > 2−1021 > 2−4666) as soon as alge-

braically relevant values (> 2−53) are approached. In Fig. (4) it is shown how

each frequency starts from its reduced value, unwinds from 2−700 towards 0 dur-

ing recursive processing and becomes several times re–scaled until the registered

exponent has vanished. After the external exponent is cleared, valid coefficients

in double remain.

Figure 4: Frequencies for 0 6 m 6 l = 18.000 with additional external exponents.

Whenever algebraically relevant coefficients during the recursion are approached,

the mantissa is reset as long as an external exponent is still registered.
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8 Comparison of results

An important test of plausibility follows the ideas of Wagner (1983) [23]. It pro-

vides the overall errors in the coefficients and therefore the stability during recur-

sion. The test is a general invariance for all degrees and has been coined by the

authors Gooding and Wagner (2008) the relative deficit (R.D) meaning in fact an

absolute numerical deficit. It was initially discovered in the framework of incli-

nation functions. Adoption due the symmetry for the Legendre function results

in

R.D = 1−
{∑

m,k

(
2− δ0

k (1− l mod 2)
) (

ak
lm

)2

}
/(2l + 1), (75)

and should assert in Tab. 7 to machine precision, cf. epsilon from Tab. 6.

Fig. 5 compares the presented spectral methods to originally computed Legendre

functions by standard recursive algorithms, each in the co-latitude range between

(0◦ ≤ θ ≤ 180◦). The Fourier coefficients have been used in Eq. (6). Underflow

errors can be observed during conventional recursive processing in time–domain,

starting at (θ = 20◦) as well as (θ = 160◦). The synthesis of Legendre functions

from their Fourier coefficients instead proofs stable and reliable up to the very

high degree over the entire definition range.

Two distinct analytical formulations will be used in conclusion to affirm our

concept. Firstly, the Legendre function of a certain order (Legendre polynomial,
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0 6 m 6 l 1016R.D Run t(s)

30 -4 0.00

360 60 0.08

1.080 153 0.28

2.160 155 0.75

5.400 42 3.23

7.200 227 9.41

10.800 443 10.8

21.600 325 43.2

36.000 414 125

43.200 546 180

54.000 486 281

64.800 -346 457

81.000 722 638

108.000 868 1159

Table 7: Validation of coefficients via the general invariance. As a rule of thumb

10−16R.D. ∼ 2
√

l can be observed. Runtime for relative performance.

m = 0) from a direct formula can be used to compare with the result after initial

computation of the sectorial solution by Eq.(61) and recursive backward processing
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Figure 5: Comparison between spectrally composed Legendre functions vs. classi-

cal recursive computation, in terms of the order-wise sum for each degree, respec-

tively. The underflow error from computation in data domain gradually increases

with higher degrees, eventually spreading over all latitudes.

thru all associated orders, Tab 8.

A second test compares order–wise recursive processing to the direct solution

for a certain frequency (k = 1), see Gooding and Wagner (2008). Neglecting their

sign–convention and supplying normalization to their Eq. (28a) and Eq. (28b)

yields for our purpose
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Degree Resolution λ/2 σp =
√

[εε]
n2−n

5.400 2
′

(3700m) 3.1d-13

7.200 1.5
′

(2500m) 3.8d-13

10.800 1
′

(1800m) 5.5d-13

21.600 30
′′

(900m) 1.3d-12

36.000 18
′′

(555m) 2.1d-12

43.200 15
′′

(460m) 2.6d-12

54.000 12
′′

(370m) 3.1d-12

64.800 10
′′

(310m) 3.0d-12

81.000 8
′′

(247m) 4.3d-12

108.000 6
′′

(185m) 6.2d-12

Table 8: Final test after synthesis of Legendre functions from Fourier coefficients:

comparison to each degree and (m = 0) in the sample-range (0◦ 6 θ 6 180◦) after

backward recursion from (m = l) with the initial values calculated by a closed

analytic expression, Eq. (49). Resolution in equivalent half-wavelength (length on

the Earth surface). σp ist the standard deviation for the single Legendre function

sample after synthesis from the coefficients. The test shows good correspondence

even for the highest resolution.
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(l + m even) (76)

ak=1
`m

(π

2

)
=

m(l + m)!(l − 1)!
√

(2− 0m)(2l + 1)

22l−1

√∏l+m
l−m+1(l + 1)[1/2(l −m)]![1/2(l + m)]! {[1/2(l − 1)]!}2

(l + m odd) (77)

ak=1
`m

(π

2

)
=

√
(2− 0m)(2l + 1)(l + m)!(l − 1)!

22l−1

√∏l+m
l−m+1[1/2(l −m− 1)]![1/2(l + m− 1)]![1/2(l − 1)]![1/2(l + 1)]!

.

Both expressions can be computed by decomposing the factorials into product –

loops with special attention to overflow. Fig. 6 shows the result of the comparison

for this selected frequency in both equations at the degree l = 100.001. The result

shows good correspondence throughout all recursive orders.

9 Conclusions on the use of the Fourier–base for

the Legendre functions

In order to obtain stable Legendre functions in time domain, a frequency wise

consideration of numerical under-/overflow is presented in this article. It is shown

that 4 basic methods to calculate the Fourier coefficients of the Legendre functions

can be applied. They can be distinguished in the transformation from time to

frequency domain or by direct recursions about the Fourier coefficients themselves.

Usage of the primary method is for moderate resolutions sufficient, but for higher

resolutions the direct recursions applied to the Fourier coefficients are the method
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x 10
4Order − m

l=100001

 

(l+m odd)
(l+m even)

Figure 6: Error difference between recursive results for k = 1 belonging to l =

100001, 0 6 m 6 l, compared to the direct, analytical solution via the factorial

Eq. (70) and Eq. (71).

of choice. Forward recursion delivers the fastest solutions to single precision that

can be enhanced by least squares estimates for deficient orders in each frequency,

respectively. No numerical problems occur, no re–scaling is required. Backward

recursion performs reliable in ultra-high degrees as well, but in order to stable

compute the recursions, additional, external exponents have to be introduced and

applied in the course of computations if double precision arithmetic is applied. A

decay in precision of merely (10−162
√

l) can be observed for the Legendre functions

after re-transformation into time-domain.
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Derivation of the Legendre functions can be conveniently applied in spectral

domain. When using non-singular expressions, see Petrovskaya (2006) [19] full

gravity gradients can be realized. After transformation of the spherical harmonic

model coefficients into lumped Harmonics highly efficient global model synthesis

can be achieved by 2d-fft, see Sneeuw and Bun (1996) [22] and Gruber (2010)

[10]. The product–sums of spherical Harmonics for unevenly distributed data

analysis on a sphere can be processed efficiently by direct scalar products between

the trigonometric base functions, Gruber (2008) [9]

10 Acknowledgement

Prof. Nico Sneeuw of Universität Stuttgart is acknowledged for hints on literature.

The author is greatful to the Hegemann Stiftung, Technical University of Berlin

for financial support as well as to the Academy of Sciences of the Czech Republic

for their commitment. Prof. Dieter Lelgemann of Technische Universität Berlin

is much obliged for encouragement and support. Many thanks also to the fruitful

comments of reviewers aiming on improving the manuscript.

53

Scientific Technical Report STR 11/04 
DOI: 10.2312/GFZ.b103-11041

Deutsches GeoForschungsZentrum GFZ



References

[1] G BALMINO. On the product of legendre functions as encountered in geo-

dynamics. Studia Geodphysica et Geodetica, 22:107–117, 1978.

[2] J A R BLAIS and D A PROVINS. Spherical harmonic analysis and synthesis

for global multiresolution appplications. Journal of Geodesy, Springer-Verlag,

76:29–35, 2002.
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