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S U M M A R Y
For a spherically symmetric viscoelastic earth model, the movement of the rotation vector
due to surface and internal mass redistribution during the Pleistocene glaciation cycle has
conventionally been computed in the Laplace-transform domain. The method involves mul-
tiplication of the Laplace transforms of the second-degree surface-load and tidal-load Love
numbers with the time evolution of the surface load followed by inverse Laplace transforma-
tion into the time domain. The recently developed spectral finite-element method solves the
field equations governing glacial-isostatic adjustment (GIA) directly in the time domain and,
thus, eliminates the need of applying the Laplace-domain method. The new method offers the
possibility to model the GIA-induced rotational response of the Earth by time integration of
the linearized Liouville equation. The theory presented here derives the temporal perturbation
of the inertia tensor, required to be specified in the Liouville equation, from time variations
of the second-degree gravitational-potential coefficients by the MacCullagh’s formulae. This
extends the conventional approach based on the second-degree load Love numbers to general
3-D viscoelastic earth models. The verification of the theory of the GIA-induced rotational
response of the Earth is performed by using two alternative approaches of computing the per-
turbation of the inertia tensor: a direct numerical integration and the Laplace-domain method.
The time-domain solution of both the GIA and the induced rotational response of the Earth is
readily combined with a time-domain solution of the sea level equation with a time-varying
shoreline geometry. In a follow-up paper, we derive the theory for the case when GIA-induced
perturbations in the centrifugal force affect not only the distribution of sea water, but also
deformations and gravitational-potential perturbations of the Earth.

Key words: Earth’s rotation, glacial-isostatic adjustment, Love numbers, second-degree
geopotential coefficients, tensor spherical harmonics.

1 I N T RO D U C T I O N

Changes in climate influence the distribution of ice and water over the Earth’s surface, which, in turn influence the climate itself. Ice
accumulation or ablation followed by changes in sea level induce glacial-isostatic adjustment (GIA) of the solid Earth. Conversely, the solid-
Earth deformation influences a rise and fall of sea level. Moreover, the redistribution of ice and water and changes in the mass distribution in
the Earth’s interior are capable to induce perturbations in the rotation of the Earth, both in direction and magnitude of the rotation vector. A
wander of the rotation axis, in turn, induces variations in the centrifugal potential and, subsequently, variations in the sea level. All this means
that the determination of sea level variations coupled with polar wander due to changes in ice–water mass load is a complex geophysical and
mathematical problem.

A linear viscoelastic model has been employed to model the deformation and perturbations in stresses and gravitational potential of the
solid Earth as a function of time after a surface-mass load is applied. The associated system of linearized differential equations and boundary
condition has conventionally been solved in the Laplace-transform domain (Peltier 1974; Sabadini et al. 1982; Wu & Peltier 1982; Spada et al.
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1992; Vermeersen & Sabadini 1997). The method involves the time and spatial convolution of the surface-load Love numbers with a surface-load
function. The determination of sea level variations using a time-dependent ocean representation by the Laplace-domain method usually requires
complicated numerical implementation. This is because the computations of the spatial convolution of the surface-load Love numbers with the
applied surface load for a large number of time steps is numerically time consuming.

The forward modelling of GIA of a spherical earth’s model with 2-D and 3-D structure of mantle viscosity has recently being under
active development. The 3-D finite-element method (e.g. Gasperini & Sabadini 1989, 1990; Gasperini et al. 1990; Giunchi & Spada 2000;
Kaufmann et al. 1997; Kaufmann & Wu 1998; Kaufmann et al. 2000; Wu et al. 1998; Wu 2004; Zhong et al. 2003; Forno et al. 2005)
obtains the viscoelastic response of a linear or non-linear viscoelastic earth model with arbitrary 2-D and 3-D viscosity structure applying the
finite-element method. The perturbation approach in Cartesian geometry (Kaufmann & Wolf 1999) models the lateral variations of mantle
material parameters as small perturbations about a zeroth-order radial profile. The semi-analytical approach (D’Agostino et al. 1997) converts
the viscoelastic problem with a 3-D viscosity structure to an iterative series of viscoelastic problems with a 1-D viscosity and with an additional
coupling term in the linear momentum equation. The normal-mode theory (Tromp & Mitrovica 1999) is based on the eigenfunction-expansion
formalism for computing the response of a 3-D, self-gravitating, linear viscoelastic earth model to an arbitrary surface load. The theory makes
use of a surface-load representation theorem with the Green’s tensor expanded as a series of the eigenfunctions associated with a homogeneous
problem. The spectral finite-difference method (Martinec 1999) converts the partial differential equations for viscoelastic perturbations to a
system of simultaneous ordinary differential equations in the radial variable and solves this system by numerical integration.

The recently developed time-domain, spectral finite-element method (Martinec 2000) solves the field equations governing GIA directly
in the time domain and thus eliminates the need of applying the Laplace-domain method. The new method generalizes the initial-value
approach by Hanyk et al. (1995, 1996) by implementing the sea-level equation and modelling the redistribution of glacial melt water in
the oceans and the movement of the coastlines (Hagedoorn et al. 2003). In addition, the new method computes the rotational response of
the Earth to surface-mass loading by direct numerical time integration of the linearized Liouville equation. The method of computing the
time perturbation of the inertia tensor and the relative angular-momentum vector for a 3-D viscoelastic earth model, required to be specified
in this equation, will be the subject of this paper.

The theory of the rotational response to surface loading has been refined several times over the past two and half decades and the literature
dealing with this subject is quite extensive, for example, Nakiboglu & Lambeck (1980, 1981), Sabadini & Peltier (1981), Sabadini et al. (1982),
Wu & Peltier (1984), Spada et al. (1992), Ricard et al. (1993), Vermeersen & Sabadini (1996), Milne & Mitrovica (1998), Mitrovica & Milne
(1998), Johnston & Lambeck (1999), Vermeersen & Sabadini (1999), Nakada (2000) and Sabadini & Vermeersen (2002). The rotational
theory in all these publications is based on the solution of the linearized Liouville equation in the Laplace-transform domain and the analysis
of the normal modes of a self-gravitating, spherically symmetric earth model with a Maxwell-viscoelastic rheology. Differences exist in the
way of solving the differential equations, whether the model is compressible or incompressible, whether it is forced by a surface load or by
an internal load, or in the number of layers used to discretize the Earth. The common feature of all these solutions is that the inertia tensor
associated with the surface-mass load and the inertia tensor associated with the mass redistribution in the Earth induced by the surface load
are related by the second-degree surface-load Love number, either by multiplication in the Laplace-transform domain or by convolution in
the time domain.

In this paper, we allow that the viscoelastic properties of the Earth vary in both radial and lateral directions. For such a generalized
viscoelastic earth model, the concept of the Love numbers must be either generalized (e.g. Martinec 1992) or replaced by a concept based on
the viscoelastic field variables. We will choose the latter approach and develop a theory, which enables us to express changes in the inertia
tensor induced by a surface-mass load in terms of changes in the gravitational potential. This concept is fully compatible with the time-domain,
spectral finite-element method used for GIA modelling and can easily be coupled with it. The main objective of the paper is to present the
theory of the linearized rotational response to surface-mass loads in a transparent way.

The paper will proceed as follows. We begin by presenting the theory of the linearized response of a rotating deformable earth model to
surface-mass changes (Section 2). This is followed by the description of the method used to determine the inertia-tensor perturbations from
external gravitational-potential changes (Section 3). After this, we introduce two approximations conventionally used in GIA modelling to
compute the inertia-tensor perturbations (Section 4). We then apply the theory of spherical harmonics to represent inertia tensors in terms of
tensor spherical harmonics (Section 5). Finally, we verify the approach presented in Section 3 by a direct numerical integration (Section 6).

2 L I N E A R I Z E D R E S P O N S E O F A RO TAT I N G D E F O R M A B L E E A RT H
T O S U R FA C E - M A S S L OA D C H A N G E S

2.1 Reference and instantaneous inertia tensors

We consider the Earth as a self-gravitating deformable body, which is composed of a fluid core and a viscoelastic solid mantle. Let the Earth
be in mechanical equilibrium at the time t = 0 and rotate about its centre of mass O with the uniform angular velocity ��0 (see Fig. 1). We
will use this initial equilibrium configuration κ 0 as the reference configuration for the description of the rotational motion of the deformed
Earth. We choose a Cartesian coordinate system O(x 1, x 2, x 3) co-rotating with the Earth, such that the coordinate axes x 1, x 2, x 3 coincide
with the principal axes of inertia of the configuration κ 0. Let A, B and C (A = B < C) be the corresponding principal moments of inertia.
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Figure 1. The initial equilibrium configuration κ 0 and the instantaneous configuration κ(t).

We suppose that the axis of uniform rotation of the equilibrium configuration κ 0 coincides with the axis of the largest principal moment of
inertia, so that ��0 = �0 �e3, where �e3 is the Cartesian unit base vector in the x 3 direction. A material particle in κ 0 is assigned by its position
vector �x , measured in the uniformly rotating reference frame O(x 1, x 2, x 3). Let V be the volume of the configuration κ 0 and �0(�x) be the
volume–mass density in V . The inertia tensor of the configuration κ 0, as viewed in the co-rotating frame O(x 1, x 2, x 3), may be written as the
volume integral

C0 =
∫

V
�0(�x)[(�x · �x)I − �x ⊗ �x] dV (�x), (1)

where the dot and cross denote the scalar and dyadic product of vectors, respectively, and I is the second-order identity tensor.
Let a time- and space-dependent force be applied to the Earth at t > 0 and deform the initial configuration κ 0 into the time-dependent

instantaneous configuration κ(t). Let O(t) be the centre of mass of the configuration κ(t). We will require that the position of O(t) with respect
to the rotating frame O(x 1, x 2, x 3) does not change in time and coincides with the centre of mass O of the configuration κ 0, that is O(t) ≡ O at
any time t > 0. Let �ω(t) denote the instantaneous angular velocity of the configuration κ(t), as viewed in the rotating frame O(x 1, x 2, x 3). This
rotating frame will also be used to describe the position of particles in the configuration κ(t). By �r (�x, t), we denote the instantaneous position
of a particle in the configuration κ(t) initially located at the position �x in the configuration κ 0. Furthermore, we denote the instantaneous
volume of κ(t) by V (t) and the volume–mass density in V (t) by �(�r , t). The instantaneous inertia tensor C R(t) of the configuration κ(t), as
viewed in the rotating frame O(x 1, x 2, x 3), can be written as

C R(t) =
∫

V (t)
�(�r , t)[(�r · �r )I − �r ⊗ �r ] dV (�r , t), (2)

where the superscript R stands for ‘Response’. Taking into account the relation between the volume element dV (�r , t) of the instantaneous
volume V (t) and the volume element dV (�x) of the initial volume V (e.g. Eringen 1980),

dV (�r (�x, t), t) = J (�x, t) dV (�x), (3)

and the principle of mass conservation expressed in Lagrangian variables,

�0(�x) = J (�x, t)�(�r (�x, t), t), (4)

where J (�x, t) is the Jacobian of the transformation between the instantaneous configuration κ(t) and the initial configuration κ 0, the Eulerian
variables in C R(t) can be changed to Lagrangian variables as

C R(t) =
∫

V
�0(�x)[(�r (�x, t) · �r (�x, t))I − �r (�x, t) ⊗ �r (�x, t) ]dV (�x). (5)

2.2 Surface-mass load redistribution

We assume that the deformation of the Earth is induced by the redistribution of surface masses on the external boundary ∂V (t) of V (t) (Fig. 1).
The instantaneous inertia tensor associated with a time-varying surface-mass load is

cL (t) =
∫

∂V (t)
σ (�r , t)[(�r · �r )I − �r ⊗ �r ]d S(�r , t), (6)

where σ (�r , t), �r ∈ ∂V (t), is the surface-mass density of the load at the time t > 0, d S(�r , t) is the surface element of ∂V (t) and the superscript
L stands for ‘Load’. We will not formulate the principle of local mass conservation for σ (�r , t), similar to the principle (4) for �(�r , t), since
many factors, for example, the topography and bathymetry of the Earth, the deformation of ocean floor or time undulations of gravity field,
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influence this principle. To change Eulerian variables to Lagrangian variables in the integral on the right-hand side of eq. (6), we introduce,
in addition to the surface-mass density σ (�r , t) as a measure of mass per deformed unit area d S(�r , t), the surface-mass density σ L (�x, t) as a
measure of mass per undeformed unit area d S(�x):

σ (�r , t) d S(�r , t) = σ L (�x, t) d S(�x). (7)

Moreover, taking into account the relation between the surface element d S(�r , t) of the surface ∂V (t) and the surface element d S(�x) of the
surface ∂V (e.g. Eringen 1980),

d S(�r (�x, t), t) = J (�x, t)
√

�n(�x) · B(�x, t) · �n(�x) d S(�x), (8)

where �n(�x) is the outward unit normal with respect to ∂V, B(�x) is the Piola deformation tensor,

B(�x, t) := F−1 · (F−1)T , (9)

and F−1 is the inverse deformation tensor, the Eulerian variables in cL (t) can be changed to Lagrangian variables by

cL (t) =
∫

∂V
σ L (�x, t)[(�r (�x, t) · �r (�x, t))I − �r (�x, t) ⊗ �r (�x, t)] d S(�x).

(10)
The deformation induced by the redistribution of surface masses also causes a shift of the rotation axis from its equilibrium position

(x3 axis in Fig. 1). This, in turn, generates a perturbation of the centrifugal force causing an additional deformation of the Earth, called
the rotational deformation (Munk & MacDonald 1960, Section 5.2; Moritz & Mueller 1987, Section 3.2). This type of deformation for a
3-D viscoelastic earth will be treated separately in the follow-up paper. Here, we only consider the effect of time-varying rotation on the
redistribution of sea water.

2.3 Geometrical linearization

We now assume that the deformation of the Earth, caused by surface-mass load redistribution, is infinitesimal and described by displacement
�u(�x, t) of the particle �x from its equilibrium position. The instantaneous position �r (�x, t) of the particle �x is then given by

�r (�x, t) = �x + �u(�x, t). (11)

We will use a linearized Lagrangian description of the deformation both in the fluid core and in the viscoelastic mantle since a purely static
(zero-frequency) deformation (Dahlen 1974) is not considered here. Because of the assumption of infinitesimal deformation, �u is a small
quantity and we can apply the principle of geometrical linearization to the instantaneous inertia tensor C R(t) and express it as the sum of the
initial inertia tensor C0 and a small time-dependent increment. In view of the transformation (11), the tensor integral kernel in eq. (5) can be
linearized as

(�r (�x, t) · �r (�x, t))I − �r (�x, t) ⊗ �r (�x, t) = (�x · �x + 2�x · �u)I − �x ⊗ �x − �x ⊗ �u − �u ⊗ �x, (12)

which is correct to first order in ‖�u‖. Substituting eq. (12) into eq. (5) leads to the first-order decomposition of C R(t):

C R(t) = C0 + cR(t), (13)

where the inertia-tensor increment cR(t) can be expressed in the form

cR(t) :=
∫

V
�0(�x)

[
2
(�x · �u(�x, t)

)
I − �x ⊗ �u(�x, t) − �u(�x, t) ⊗ �x]

dV (�x). (14)

To approximate the expression for the inertia tensor cL (t), the magnitude of the surface-mass load must be specified. Because of the
isostatic principle, the induced internal mass redistribution �0‖�u‖ and the applied surface load σ L are of the same order in magnitude:

σ L = O(�0‖�u‖). (15)

This allows us to approximate cL (t) with the same accuracy as that applied in the linearization of C R(t). Substituting eq. (12) into eq. (10)
and taking into account eq. (15), the inertia tensor cL (t), correct to the first order in ‖�u‖, can be expressed as

cL (t) =
∫

∂V
σ L (�x, t)[(�x · �x)I − �x ⊗ �x ] d S(�x). (16)

In summary, we consider that the perturbations of the initial inertia tensor C 0 are associated with the surface-mass load redistribution
on the external boundary ∂V (t) and with the internal mass redistribution in V (t) induced by a time-varying surface load. The total increment
c(t) of the inertial tensor C 0 is then expressed as the sum of two constituents:

c(t) = cL (t) + cR(t). (17)
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2.4 Rigid-body translation and rotation

The deformation field �u(�x, t) resulting from solving boundary-value problems of gravito-viscoelastodynamics is determined uniquely up to
a rigid-body translation and rotation. In general, there are six rigid-body degrees of freedom of the configuration κ(t). We will now specify
them.

The position of the centre of mass O of the initial configuration κ 0, as viewed in the rotating frame O(x 1, x 2, x 3), may be written as the
volume integral

�p0 = 1

M

∫
V

�0(�x)�xdV (�x), (18)

where M is the mass of the configuration κ 0. In the instantaneous configuration κ(t), the centre of mass O(t) is located at the position

�p(t) = 1

M(t)

[ ∫
V (t)

�(�r , t)�rdV (�r , t) +
∫

∂V (t)
σ (�r , t)�rd S(�r , t)

]
, (19)

where M(t) is the mass of the configuration κ(t). Applying the principle of mass conservation (4) and introducing the surface-mass density
σ L (�x, t) of the surface load by eq. (7), the Eulerian variables in �p(t) can be changed to Lagrangian variables as

�p(t) = 1

M

[ ∫
V

�0(�x)�r (�x, t) dV (�x) +
∫

∂V
σ L (�x, t)�r (�x, t) d S(�x)

]
. (20)

Expressing the instantaneous position �r (�x, t) of the material particle �x in terms of the displacement �u(�x, t) according to eq. (11), the vector
�p(t) can be written in the form

�p(t) = �p0 + �d(t), (21)

where �d(t) displaces the origin O to the origin O(t):

�d(t) = 1

M

[ ∫
V

�0(�x)�u(�x, t) dV (�x) +
∫

∂V
σ L (�x, t)�x d S(�x)

]
. (22)

In view of the estimate (15), the second integral on the right-hand side was approximated correct to the first order in ‖�u‖. The requirement,
raised in Section 2.1, that the position of the centre of mass O(t) for all t > 0 must coincide with the position of the centre of mass O at
the time t = 0 can now be expressed as �d(t) = �0. This will ensure that there is no rigid-body translation of the configuration κ(t) with
respect to the rotating frame O(x 1, x 2, x 3). In addition, if we assume that �p0 = �0, the rotating frame O(x 1, x 2, x 3) is geocentric at for
all t.

The instantaneous angular-momentum vector �H (t) of the configuration κ(t), rotating with the instantaneous angular velocity �ω(t) about
the centre of mass O is given by (e.g. Munk & MacDonald 1960; Moritz & Mueller 1987)

�H (t) = C(t) · �ω(t) + �h(t), (23)

where the inertia tensor C(t) of the configuration κ(t) is equal to the sum of the inertia tensor C 0 of the configuration κ 0 and the inertia-tensor
increment c(t):

C(t) = C0 + c(t). (24)

The relative angular-momentum vector �h(t) is

�h(t) =
∫

V (t)
�(�r , t)[�r × �v(�r , t)] dV (�r , t) +

∫
∂V (t)

σ (�r , t)[�r × �v(�r , t)] d S(�r , t) (25)

or, changing from Eulerian to Lagrangian variables,

�h(t) =
∫

V
�0(�x)

[
�r (�x, t) × d�r (�x, t)

dt

]
dV (�x) +

∫
∂V

σ L (�x, t)

[
�r (�x, t) × d�r (�x, t)

dt

]
d S(�x). (26)

Here �v(�r (�x, t), t) := d�r (�x, t)/dt is the Eulerian velocity in the volume V (t) and on the surface ∂V (t), respectively, as measured in the rotating
frame O(x 1, x 2, x 3). Because of the assumption of mechanical equilibrium of κ 0, the position of a material particle in κ 0 does not change
with respect to the rotating frame O(x 1, x 2, x 3) and �v(�r (�x, t), t) = d�u(�x, t)/dt due to eq. (11). Taking into account eq. (15), the linearization
of eq. (26) results in

�h(t) =
∫

V
�0(�x)

[
�x × d�u(�x, t)

dt

]
dV (�x), (27)

which is correct to first order in ‖�u‖.
We may use the freedom of choosing a rigid-body rotation and constrain the field d�u(�x, t)/dt such that the relative angular-momentum

vector �h(t) is equal to a prescribed vector. If, in particular, we put �h(t) = �0, there is no rigid-body rotation of the configuration κ(t) with
respect to the rotating frame O(x 1, x 2, x 3) and the geocentric coordinate axes x 1, x 2, x 3 are called the Tisserand axes (Munk & MacDonald
1960, p. 10).
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2.5 Linearized Liouville equation

In this section, for the sake of completeness, we will give a brief overview of the Liouville equation, its linearization and a time-domain
solution to the linearized Liouville equation. A more detailed treatment of this subject can be found in Munk & MacDonald (1960) or Moritz
& Mueller (1987).

If no external torque is applied, the rotational motion of the deformed Earth is governed by the principle of angular-momentum conser-
vation, which results in the well-known Liouville equation:

d

dt
[C(t) · �ω(t) + �h(t)] + �ω(t) × [C(t) · �ω(t) + �h(t)] = �0, (28)

which applies to the rotating frame O(x 1, x 2, x 3). The instantaneous angular velocity �ω(t) can be decomposed into the uniform angular
velocity ��0 and a small perturbation �0 �m(t):

�ω(t) = ��0 + �0 �m(t). (29)

The dimensionless quantities m1 and m2 express the deviations of the instantaneous rotation axis from the equilibrium rotation axis and
the quantity m3 the variations in the rotational speed. We consider c(t), �m(t) and �h(t) as small quantities whose products will be neglected.
Substituting the decompositions (24) and (29) into eq. (28) and retaining linear terms only, we obtain the linearized Liouville equation:

m + i

σe

dm

dt
= χ − i

�0

dχ

dt
,

dm3

dt
= −dχ3

dt
, (30)

where the two coupled equations for m1 and m2 are expressed in complex notation using

m(t) := m1(t) + im2(t), χ (t) := χ1(t) + iχ2(t),

c(t) := c13(t) + ic23(t), h(t) := h1(t) + ih2(t) (31)

and χ (t) and χ 3(t) are the angular excitation functions defined by

χ (t) := 1

(C − A)�0
[�0c(t) + h(t)], (32)

χ3(t) := 1

C�0
[�0 c33(t) + h3(t)]. (33)

The linearized Liouville eq. (30) can be solved by direct time integration. Assuming �m(0) = �0, the solution at the time t > 0 is (Moritz &
Mueller 1987, Section 5.4.1)

m(t) = − σe

�0
χ (t) − iσe

(
1 + σe

�0

) ∫ t

0
χ (τ )eiσe (t−τ )dτ, (34)

m3(t) = −χ3(t), (35)

where the parameter σ e = �0(C − A)/A is the Euler wobble frequency of the rigid Earth. Inspection of eqs (31)–(35) shows that the time
evolution of the unknowns mi(t) is completely determined by the Cartesian components c13(t), c23(t) and c33(t) of the inertia-tensor increment
c(t) and by the relative angular-momentum vector �h(t).

2.6 Removal of the Chandler wobble

The wander of the rotation vector induced by a non-oscillatory long-time redistribution of the surface-mass load consists of periodic oscillations
with the Chandler-wobble frequency superimposed on long-time variations. If we require the removal of the Chandler wobbling of the rotation
vector from the rotation-response time-series m(t), we can achieve this by moving average filtering of m(t) over the Chandler-wobble period
Te according to

m(t) = 1

Te

∫ t+Te/2

t1=t−Te/2
m(t1) dt1, (36)

where Te := 2π/σ e. Substitution for m(t) from eq. (34) yields

m(t) = − σe

�0
χ (t) − iσe

(
1 + σe

�0

) 1

Te

∫ t+Te/2

t1=t−Te/2
eiσe t1

∫ t1

τ=0
χ (τ )e−iσeτ dτ dt1. (37)

If only the long-time redistribution of surface masses, for example during GIA, is considered, the angular excitation function χ (t) may be
represented, with a high degree of accuracy, by a linear change over the Chandler-wobble period,

χ (t1) = αt1 + β for t − Te/2 ≤ t1 ≤ t + Te/2, (38)

where α and β are constants. Multiplying χ (t) by e−iσet and integrating over time results in∫ t1

τ=0
χ (τ )e−iσeτ dτ = 1

σe

[
i χ (t1) + α

σe

]
e−iσe t1 − 1

σe

(
iβ + α

σe

)
. (39)
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Multiplying this again by eiσet1 , integrating over the Chandler-wobble interval and noting that∫ t+Te/2

t1=t−Te/2
eiσe t1 dt1 = 0 (40)

for σ e 	= 0, yields

1

Te

∫ t+Te/2

t1=t−Te/2
eiσe t1

∫ t1

τ=0
χ (τ )e−iσeτ dτ dt1 = 1

σe

[
i χ (t) + α

σe

]
. (41)

Finally, eq. (37) can be recast into

m(t) = χ (t) − iα

σe

(
1 + σe

�0

)
(42)

or, upon substituting for α from eq. (38),

m(t) = χ (t) − i

σe

C

A

dχ (t)

dt
. (43)

Let us estimate the size of the second term on the right-hand side for GIA-induced rotational response. For this long-term geophysical
process, the magnitude of the function χ (t) and its time derivative can be estimated by the following values (see the numerical example in
Section 6):

|χ (t)| < 3 × 10−4,
1

σe

∣∣∣∣dχ (t)

dt

∣∣∣∣ < 1 × 10−8. (44)

Consequently, the second term on the right-hand side of eq. (43) can be safely neglected, causing an error that is smaller than the error of the
spherical approximation discussed in Section 4.2. Finally,

m(t) = χ (t), (45)

where we have used the fact that the time averaging according to eq. (36) applied to a linear function yields the function itself. Inspecting the
first linearized Liouville eq. (30), eq. (45) shows that, for periods much longer than the period of the Chandler wobble, the second term on the
left-hand side and the second term on the right-hand side of the linearized Liouville eq. (30), that is, the time-derivative terms, can be dropped.
The same has recently been concluded by Vermeersen & Sabadini (1996) and Mitrovica & Milne (1998), who clarified a misunderstanding
over the removal of this term from the Liouville equation used by Wu & Peltier (1984).

3 I N E RT I A - T E N S O R P E RT U R B AT I O N S F RO M E X T E R N A L
G R AV I TAT I O N A L - P O T E N T I A L C H A N G E S

3.1 The Eulerian density increment

Time changes of the volume–mass density in the instantaneous configuration κ(t) can be described by the Eulerian increment �E of the initial
mass density (e.g. Wolf 1991; Dahlen & Tromp 1998, Section 3.2.1):

�E := �(�r , t) − �0(�x(�r , t)). (46)

This increment can be expressed in terms of the displacement �u(�x, t) by linearizing the mass-conservation law (4):

�E = −div [�0(�x)�u(�x, t)], (47)

which is correct to first order in ‖�u‖. Since, in linearized theory, it is irrelevant whether the increment �E is regarded as a function of �r or �x ,
we consider, in the following, that �E depends on the position vector �x , that is �E (�x, t).

Let us compute the inertia tensor c�(t) associated with the Eulerian density increment in the initial volume V :

c�(t) :=
∫

V
�E (�x, t)[(�x · �x)I − �x ⊗ �x ] dV (�x). (48)

To derive an alternative form of c�(t), we consider Green’s theorem for a differentiable vector �v and a differentiable tensor T in the form∫
V

(div �v)T dV =
∫

∂V
(�n · �v −)T d S −

∫
�

[(�n · �v)T]+− d� −
∫

V
(�v · grad T) dV, (49)

where �n is the outward unit vector normal to ∂V or to an internal discontinuity �, �v − denotes �v on the interior side of ∂V and the symbol [f ]+−
indicates the jump of quantity f at the discontinuity �. Considering �E in the form (47) and using Green’s theorem (49) for �v = −�0(�x)�u(�x, t)
and T = (�x · �x)I − �x ⊗ �x yields

c�(t) =
∫

�

σ�(�x, t)[(�x · �x)I − �x ⊗ �x ] d�(�x) −
∫

∂V
σ ∂V (�x, t)[(�x · �x)I − �x ⊗ �x] d S(�x)

+
∫

V
�0(�x)�u(�x, t) · grad [(�x · �x)I − �x ⊗ �x ] dV (�x), (50)
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where the surface-mass densities σ�(�x, t) and σ ∂V (�x, t) are defined by

σ�(�x, t) := [�0(�x)(�n(�x) · �u(�x, t))]+− for �x ∈ �,

σ ∂V (�x, t) := �0(�x−)
(�n(�x) · �u(�x−, t)

)
for �x ∈ ∂V (51)

and where �0(�x−) and �u(�x−, t) denote the volume–mass density and the displacement, respectively, on the interior side of ∂V . Using tensor
differential identities

�u · grad [(�x · �x)I] = 2(�x · �u)I,

�u · grad (�x ⊗ �x) = �x ⊗ �u + �u ⊗ �x (52)

and inspecting eq. (14), the last term on the right-hand side of eq. (50) is found to be equal to cR(t), and eq. (50) can be rewritten in the form

cR(t) = c�(t) − c�(t) + c∂V (t). (53)

The inertia tensors c�(t) and c∂V (t), accounting for the vertical displacement of the internal discontinuity � and the external boundary ∂V ,
respectively, are given by

c�(t) :=
∫

�

σ�(�x, t)[(�x · �x)I − �x ⊗ �x ] d�(�x), (54)

c∂V (t) :=
∫

∂V
σ ∂V (�x, t)[(�x · �x)I − �x ⊗ �x ] d S(�x). (55)

In Section 3.4, we will use the decomposition (53) to express cR(t) by the MacCullagh’s formula.

3.2 Alternative forms of inertia tensors

To determine polar motion and changes in the length of day, the Cartesian components c13(t), c23(t) and c33(t) of the inertia-tensor increment
c(t) must be specified explicitly. Inspecting eqs (16), (48), (54) and (55), we can see that the inertia tensors cL (t), c�(t), c�(t) and c∂V (t) have
the same tensor integration kernel of the form (�x · �x)I − �x ⊗ �x . The Cartesian components (1, 3), (2, 3) and (3, 3) of this tensor are

[(�x · �x)I − �x ⊗ �x]i3 =




−x1x3 i = 1,

−x2x3 i = 2,

x2
1 + x2

2 i = 3.

(56)

Introducing spherical coordinates (r , �), � := (ϑ , ϕ), and considering scalar spherical harmonics of degree 2 and orders 1 and 0, Y21(�) =
−√

15/8π sin ϑ cos ϑeiϕ and Y20(�) = √
5/16π (3 cos2 ϑ − 1), respectively, the products on the right-hand side of eq. (56) can be expressed

as

x1x3 + i x2x3 = r 2 sin ϑ cos ϑeiϕ = −2

√
2π

15
r 2Y21(�),

x2
1 + x2

2 = r 2(1 − cos2 ϑ) = 2

3
r 2

[
1 − 2

√
π

5
Y20(�)

]
. (57)

Substitution of eq. (57) into eq. (16) results in

cL (t) = 2

√
2π

15

∫
∂V

σ L (�x, t)Y21(�)r 2d S(�x), (58)

cL
33(t) = 2

3

∫
∂V

σ L (�x, t)

[
1 − 2

√
π

5
Y20(�)

]
r 2d S(�x), (59)

where cL(t) :=cL
13(t) + i cL

23(t). The inertia tensors c�(t), c∂V (t) and c�(t) can be expressed in the same forms as eqs. (58) and (59) by replacing
the surface-mass density σ L (�x, t) by σ�(�x, t), σ ∂V (�x, t) and �E (�x, t), respectively, and the surface integral over ∂V by the surface integral
over � for evaluating c�(t) or by the volume integral over V for evaluating c�(t). In view of the decomposition (53), the following linear
combinations are particularly helpful

c�(t) − c�(t) + c∂V (t) = 2

√
2π

15

[ ∫
V

�E (�x, t)Y21(�)r 2dV (�x) −
∫

�

σ�(�x, t)Y21(�)r 2d�(�x)

+
∫

∂V
σ ∂V (�x, t)Y21(�)r 2d S(�x)

]
, (60)

c�

33(t) − c�
33(t) + c∂V

33 (t) = 2

3

{ ∫
V

�E (�x, t)

[
1 − 2

√
π

5
Y20(�)

]
r 2dV (�x)

−
∫

�

σ�(�x, t)

[
1 − 2

√
π

5
Y20(�)

]
r 2d�(�x) +

∫
∂V

σ ∂V (�x, t)

[
1 − 2

√
π

5
Y20(�)

]
r 2d S(�x)

}
. (61)
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It is important to emphasize that a similar rearrangement cannot be carried out for the inertia-tensor increment cR(t), since, as eq. (14) shows,
the integration kernel of cR(t) differs from (�x · �x)I − �x ⊗ �x .

3.3 The Eulerian gravitational-potential increment

For a surface-mass induced deformation, the Eulerian increment φE of the initial gravitational potential satisfies the following boundary-value
problem (e.g. Wu & Peltier 1982):

∇2φE = 4πG �E in V − �, (62)

subject to the interface conditions on an internal discontinuity �:

[φE ]+− = 0

[�n · grad φE ]+− = −4πGσ�


 on �, (63)

and the boundary conditions on the external boundary ∂V :

[φE ]+− = 0

[�n · grad φE ]+− = 4πGσ ∂V + 4πGσ L


 on ∂V . (64)

Outside the volume V , the Eulerian density increment �E vanishes and the incremental gravitational potential is harmonic, ∇2φE = 0. The
solution to the boundary-value problem defined by eqs (62)–(64) is expressed as the sum of the gravitational potential φE,L (�x, t) of the
surface-mass load and the gravitational potential φE,R(�x, t) of internal mass redistribution induced by the surface load:

φE (�x, t) = φE,L (�x, t) + φE,R(�x, t), (65)

where the particular terms are expressed as Newton integrals:

φE,L (�x, t) = −G

∫
∂V

σ L (�x ′, t)

L
d S(�x ′), (66)

φE,R(�x, t) = −G

∫
V

�E (�x ′, t)

L
dV (�x ′) + G

∫
�

σ�(�x ′, t)

L
d�(�x ′) − G

∫
∂V

σ ∂V (�x ′, t)

L
d S(�x ′), (67)

and L is the distance between the computation point �x and an integration point �x ′,

L := ‖�x − �x ′‖. (68)

The first term in eq. (67) accounts for the volume–mass density �E in V , the second term accounts for the surface-mass density σ� due
to the normal displacement of the internal discontinuity � and the third term accounts for the surface-mass density σ ∂V due to the normal
displacement of the external boundary ∂V .

3.4 MacCullagh’s formulae

We now express the Eulerian gravitational-potential increment φE outside the volume V as a series of solid spherical harmonics. The expansion
of the reciprocal distance in terms of solid spherical harmonics can be found in Kellogg (1929, Section 5.2). For r > r ′, it holds

1

L
= 4π

r

∞∑
j=0

1

2 j + 1

(
r ′

r

) j j∑
m=− j

Y jm(�)Y ∗
jm(�′), (69)

where Yjm(�) is the scalar spherical harmonic of degree j and order m and the asterisk denotes complex conjugation. Substituting this
expansion into the Newton integrals (66) and (67), interchanging the order of summation over j and m with integration over r ′ and �′, the
gravitational-potential increment φE at a point outside the volume V can be expressed as a series of solid spherical harmonics:

φE (�x, t) =
∞∑
j=0

j∑
m=− j

(
a

r

) j+1

φE
jm(t)Y jm(�), (70)

where φE
jm(t) consists of the ‘load’ and ‘response’ gravitational-potential coefficients,

φE
jm(t) = φ

E,L
jm (t) + φ

E,R
jm (t), (71)

with

φ
E,L
jm (t) = − 4πG

(2 j + 1)a j+1

∫
∂V

σ L (�x, t)Y ∗
jm(�)r j d S(�x), (72)

φ
E,R
jm (t) = − 4πG

(2 j + 1)a j+1

[ ∫
V

�E (�x, t)Y ∗
jm(�)r j dV (�x) −

∫
�

σ�(�x, t)Y ∗
jm(�)r j d�(�x)

+
∫

∂V
σ ∂V (�x, t)Y ∗

jm(�)r j d S(�x)

]
. (73)
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Note that we have introduced the mean radius of the Earth a to normalize the potential coefficients. In particular, the second-degree
coefficients are

φ
E,L
2m (t) = −4πG

5a3

∫
∂V

σ L (�x, t)Y ∗
2m(�)r 2d S(�x), (74)

φ
E,R
2m (t) = −4πG

5a3

[ ∫
V

�E (�x, t)Y ∗
2m(�)r 2dV (�x) −

∫
�

σ�(�x, t)Y ∗
2m(�)r 2d�(�x)

+
∫

∂V
σ ∂V (�x, t)Y ∗

2m(�)r 2d S(�x)

]
. (75)

Combining eqs (58) and (60) with eqs (74) and (75) for order m = 1, we obtain

cL (t) = −
√

5

6π

a3

G

[
φ

E,L
21 (t)

]∗
, (76)

c�(t) − c�(t) + c∂V (t) = −
√

5

6π

a3

G

[
φ

E,R
21 (t)

]∗
. (77)

In view of eq. (53), the left-hand side of eq. (77) is equal to cR(t). Hence, the ‘load’ inertia tensor and the ‘response’ inertia tensor can be
expressed in the same form:

cL ,R(t) = −
√

5

6π

a3

G

[
φ

E,{L ,R}
21 (t)

]∗
. (78)

By summing them, we finally have

c(t) = −
√

5

6π

a3

G

[
φE

21(t)
]∗

. (79)

This is the first MacCullagh’s formula for the Eulerian gravitational-potential increment φE , which relates the Cartesian components c13(t)
and c23(t) of the inertia-tensor increment c(t) with the gravitational potential-increment coefficient φE

21(t).
A similar procedure for degree j = 2 and order m = 0 results in

cL
33(t) = 1

3

√
5

π

a3

G
φ

E,L
20 (t) + 2

3

∫
∂V

σ L (�x, t)r 2 d S(�x), (80)

cR
33(t) = 1

3

√
5

π

a3

G
φE

20(t) + 2

3

[ ∫
V

�E (�x, t)r 2dV (�x) −
∫

�

σ�(�x, t)r 2d�(�x) +
∫

∂V
σ ∂V (�x, t)r 2d S(�x)

]
. (81)

The integrals on the right-hand side of the last equation can be further rearranged by the following Green’s theorem:∫
V

(div �v)r 2dV =
∫

∂V
(�n · �v −)r 2d S −

∫
�

[(�n · �v)]+−r 2d� − 2
∫

V
(�x · �v) dV, (82)

where �v is a differentiable vector function. Applying this theorem to �v = −�0(�x)�u(�x, t) and considering the definitions (47) and (51) of the
volume–mass and surface-mass densities, we find∫

V
�E (�x, t)r 2 dV (�x) =

∫
�

σ�(�x, t)r 2 d�(�x) −
∫

∂V
σ ∂V (�x, t)r 2 d S(�x) + 2

∫
V

�0(�x)(�x · �u(�x, t)) dV (�x). (83)

In view of this, eq. (81) has the form

cR
33(t) = 1

3

√
5

π

a3

G
φE

20(t) + 4

3

∫
V

�0(�x)(�x · �u(�x, t))dV (�x). (84)

The integrals on the right-hand sides of eqs (80) and (84) can be expressed in terms of the trace of the inertia tensors. Applying the trace
operator to eqs (16) and (14) and the identities

Tr[(�x · �x)I − �x ⊗ �x] = 2(�x · �x),

Tr[2(�x · �u)I − �x ⊗ �u − �u ⊗ �x] = 4(�x · �u), (85)

we obtain

Tr cL (t) = 2
∫

∂V
σ L (�x, t)r 2 d S(�x), (86)

Tr cR(t) = 4
∫

V
�0(�x)(�x · �u(�x, t)) dV (�x). (87)

In view of this, eqs (80) and (84) for the ‘load’ inertia tensor and the ‘response’ inertia tensor can be expressed in the same form:

cL ,R
33 (t) = 1

3

√
5

π

a3

G
φ

E,{L ,R}
20 (t) + 1

3
Tr cL ,R(t). (88)
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By summing them, we finally have

c33(t) = 1

3

√
5

π

a3

G
φE

20(t) + 1

3
Tr c(t). (89)

This is the second MacCullagh’s formula for the Eulerian gravitational-potential increment φE , which relates the Cartesian component c33(t)
of the inertia-tensor increment c(t) with the gravitational potential-increment coefficient φE

20(t) and the trace of c(t).
The MacCullagh’s formulae are very convenient for computing the inertia-tensor increment c(t) in GIA modelling. This is because they

make use of the Eulerian gravitational-potential increment, which is a field variable computed in GIA studies.

3.5 The Eulerian centrifugal-potential increment

The sea-level response of the Earth induced by GIA loading is governed by the so-called sea-level equation (e.g. Milne & Mitrovica 1998),
which contains, among other field variables, the Eulerian gravity-potential increment �E evaluated at the Earth’s surface. The increment �E

is equal to the sum of the Eulerian gravitational-potential increment �E plus the Eulerian centrifugal-potential increment ψ E :

�E (�x, t) := φE (�x, t) + ψ E (�x, t), (90)

where ψ E defines the change of the centrifugal potential due to deformation,

ψ E := ψ(�r , t) − ψ0(�x(�r , t)). (91)

Substituting for the centrifugal potentials for the initial equilibrium configuration κ 0 and the instantaneous configuration κ(t), respectively,
according to

ψ0(�x) = −1

2

[
�2

0(�x · �x) − ( ��0 · �x)2
]
,

ψ(�r , t) = −1

2
[ω2(�r · �r ) − (�ω · �r )2] (92)

and making use of eq. (11), the increment ψ E can be expressed as a function of mi (e.g. Dahlen 1976; Moritz & Mueller 1987, Section 3.2),

ψ E = �2
0

[
m1x1x3 + m2x2x3 − m3

(
x2

1 + x2
2

)]
, (93)

which is correct to first order in ‖ �m‖. As for the Eulerian density increment �E , the increment ψ E can be regarded as a function of �x and t,
that is ψ E (�x, t). In terms of the zeroth- and second-degree spherical harmonics, eq. (93) can be rewritten as

ψ E (�x, t) =
(

r

a

)2

ψ E
00(t)Y00(�) +

(
r

a

)2 1∑
m=−1

ψ E
2m(t)Y2m(�), (94)

where

ψ E
00(t) = −2

3

√
4π �2

0a2m3(t),

ψ E
20(t) = 4

3

√
π

5
�2

0a2m3(t),

ψ E
21(t) = −

√
2π

15
�2

0a2[(m1(t) − im2(t)],

ψ E
2,−1(t) = −[

ψ E
21(t)

]∗
. (95)

4 A P P RO X I M AT I O N S U S E D I N G I A

4.1 Static-deformation approximation for a fluid core

So far, we have used the linearized Lagrangian description for the fluid core and the solid mantle. Since the GIA is a long-term process, the
effect of the fluid core on the viscoelastic response of the Earth to surface glacial loading can alternatively be viewed in terms of a static
deformation. This description results from two assumptions:

(i) the fluid core is in hydrostatic equilibrium in both the initial and the instantaneous configurations and
(ii) core fluid is inviscid. Based on these assumptions, Dahlen (1974) and Crossley & Gubbins (1975) showed that the Eulerian density

increment in the fluid core is

�E = �ν · grad�0

�ν · grad�0
�E , (96)

where �ν is the unit normal to a level surface of density �0 and gravity potential �0 in the initial configuration and �E is the Eulerian gravity
potential increment defined by eq. (90).
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The instantaneous inertia tensor of the fluid core in the configuration κ(t), as viewed in the rotating reference frame O(x 1, x 2, x 3), can
be written as

C R
core(t) =

∫
Vcore(t)

�(�r , t)[(�r · �r )I − �r ⊗ �r ] dV (�r , t), (97)

where Vcore(t) is the instantaneous volume of the core. Decomposing �(�r , t) into initial and incremental parts, that is, �(�r , t) = �0(�r ) + �E (�r , t),
and splitting the integral over the volume Vcore(t) for �0(�r ) into the integral over the volume of the core in the initial configuration, Vcore, and
the incremental volume Vcore(t) − Vcore, we have

C R
core(t) = C R

0,core + cR
core(t), (98)

where C R
0,core is the inertia tensor of the core in the initial configuration,

C R
0,core =

∫
Vcore

�0(�r )[(�r · �r )I − �r ⊗ �r ]dV (�r ), (99)

and the inertia-tensor increment cR
core(t) is

cR
core(t) =

∫
Vcore(t)

�E (�r , t)[(�r · �r )I − �r ⊗ �r ] dV (�r , t) +
∫

Vcore(t)−Vcore

�0(�r )[(�r · �r )I − �r ⊗ �r ] dV (�r , t). (100)

Let ∂Vcore and ∂Vcore(t) denote the core–mantle boundary in the initial and instantaneous configurations, respectively, and let
�n(�r ) · �u(�r , t), �r ∈ ∂Vcore, be the displacement component along the unit normal �n(�r ) with respect to ∂Vcore which takes ∂Vcore to ∂Vcore(t).
Correct to the first order in ‖�n · �u‖, the integral over the volume Vcore(t) − Vcore in eq. (100) can be expressed as an integral over the surface
∂Vcore:∫

Vcore(t)−Vcore

�0(�r )[(�r · �r )I − �r ⊗ �r ] dV (�r , t) =
∫

∂Vcore

�0(�r −)(�n(�r ) · �u(�r −, t))[(�r · �r )I − �r ⊗ �r ] d S(�r ). (101)

Moreover, since the Eulerian density increment is considered as a first-order field variable, the integral over the instantaneous volume Vcore(t)
in eq. (100) can be approximated by the integral over the initial volume: Vcore∫

Vcore(t)
�E (�r , t)[(�r · �r )I − �r ⊗ �r ] dV (�r , t) =

∫
Vcore

�E (�r , t)[(�r · �r )I − �r ⊗ �r ] dV (�r ), (102)

which is correct to the first order in ‖�n · �u‖. Finally, not permitting cavitation or overlap between the core and the mantle, that is, �n(�r )· �u(�r −, t) =
�n(�r ) · �u(�r +, t) for �r ∈ ∂Vcore, the inertia-tensor increment due to the static deformation of the fluid core is

cR
core(t) =

∫
Vcore

�E (�r , t)[(�r · �r )I − �r ⊗ �r ] dV (�r ) +
∫

∂Vcore

�0(�r−)(�n(�r ) · �u(�r +, t))[(�r · �r )I − �r ⊗ �r ] d S(�r ). (103)

4.2 Spherical approximation

Though the MacCullagh’s formulae should exclusively be used in computing the inertia-tensor increment c(t), it may be necessary to compute
the two constituents of c(t), that is, the inertia tensors cL (t) and cR(t), separately. Moreover, to compute c33(t) and to solve the linearized
Liouville equation, we also need to express the trace of c(t) and the relative angular-momentum vector �h(t) in terms of the displacement
�u(�x, t). All these expressions are simplified if the spherical approximation is applied to c(t) and �h(t).

Since the Earth’s topography deviates from the mean sphere by the order of the Earth’s flattening, we can approximate the external
boundary ∂V in cR(t) and cL (t) by this sphere. The relative error introduced by this spherical approximation is of the order of 3 × 10−3, which
results in an absolute error of the order of 1029 kg m2 in terms of the inertia tensors cR(t) and cL (t).

Moreover, a laterally heterogeneous density distribution �0(�x) in the initial configuration κ 0 requires a non-zero initial deviatoric stress
for its support. Because the deviatoric stresses within the Earth are not well known yet, they are commonly omitted in GIA modelling. In
addition, the inversion of the long-wavelength geoid (e.g. Čadek & Fleitout 2003) and the results of seismic tomography (e.g. Su et al. 1994)
combined with laboratory experiments (e.g. Karato & Wu 1993) indicate that lateral heterogeneities in the mass density do not exceed 2 per cent
of the spherically symmetric density distribution. Both these facts suggest that the laterally heterogeneous density �0(�x) in the inertia tensor
cR(t) can be replaced by a spherically symmetric density. The absolute error of this approximation is of the order of 1030 kg m2 viewed in
terms of the inertia-tensor increments.

Taken together, the two aspects of the spherical approximation considered result in the following approximate formulae:

cL (t) =
∫

∂V
σ L (�x, t)[(�x · �x)I − �x ⊗ �x ] d S(�x), (104)

cR(t) =
∫

V
�0(r )[2(�x · �u(�x, t))I − �x ⊗ �u(�x, t) − �u(�x, t) ⊗ �x ] dV (�x), (105)

�d(t) =
∫

V
�0(r )�u(�x, t)dV (�x) +

∫
∂V

σ L (�x, t)�x d S(�x), (106)
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�h(t) =
∫

V
�0(r )

[
�x × d�u(�x, t)

dt

]
dV (�x), (107)

where V is now the mean Earth’s sphere with the spherical external boundary ∂V , �0(r ) is the spherically symmetric density with a jump at
the spherical internal discontinuity � and r is the radial distance from the origin O. In spherical coordinates (r , �), the volume and surface
elements are dV (�x) = r 2drd�, d S(�x) = a2d�, d�(�x) = a2

�d�, d� = sin ϑdϑdϕ, and a and a� are the radii of ∂V and �, respectively.
The spherical approximation of the inertia tensors c�(t) and c∂V (t) can be expressed in the same form as cL (t) by replacing the surface-mass
density σ L (�x, t) by σ�(�x, t) and σ ∂V (�x, t), respectively, and the surface integral over ∂V by the surface integral over � for evaluating the
tensor c�(t). The spherical approximation of the surface-mass densities σ�(�x, t) and σ ∂V (�x, t) is

σ�(�x, t) = [�0(r )(�er · �u(�x, t))]+−, σ ∂V (�x, t) = �0(r−)(�er · �u(�x−, t)), (108)

where �er is the unit vector in the radial direction.

5 S P H E R I C A L H A R M O N I C F O R M U L AT I O N

5.1 Spherical harmonic representation of inertia tensors

Having introduced the spherical approximation, the formalism of vector and tensor spherical harmonics may be applied to the inertia tensors.
We represent the Lagrangian displacement vector �u(�x, t) in terms of vector spherical harmonic as

�u(�x, t) =
∞∑
j=0

j∑
m=− j

[
U jm(r, t)�S(−1)

jm (�) + Vjm(r, t)�S(1)
jm(�) + W jm(r, t)�S(0)

jm(�)
]
, (109)

where �S(−1)
jm (�), �S(1)

jm(�) and �S(0)
jm(�) are spheroidal and toroidal vector spherical harmonics, respectively (their definition and basic properties

are given in e.g. Martinec 2000, Appendix B). Likewise, the surface-mass distributions are represented in terms of scalar spherical harmonics
Yjm(�) as


σ L (�x, t)
σ�(�x, t)
σ ∂V (�x, t)


 =

∞∑
j=0

j∑
m=− j




σ L
jm(t)

σ�
jm(t)

σ ∂V
jm (t)


 Y jm(�). (110)

Making use of the orthonormality property of scalar spherical harmonics, the expansion coefficients are expressed in the form


σ L
jm(t)

σ�
jm(t)

σ ∂V
jm (t)


 =

∫
�s




σ L (�x, t)
σ�(�x, t)
σ ∂V (�x, t)


 Y ∗

jm(�) d�, (111)

where �s is the full solid angle. Substitution of eq. (108) into eq. (111) yields the spherical harmonic coefficients σ�
jm(t) and σ ∂V

jm (t) of the
surface-mass densities σ�(�x, t) and σ ∂V (�x, t), respectively, as

σ�
jm(t) := [�0(r )U jm(r, t)]

a+
�

a−
�

, σ ∂V
jm (t) := �0(a−)U jm(a−, t). (112)

Writing the position vector as �x = r�er and the identity tensor as I = �er ⊗ �er + �eϑ ⊗ �eϑ + �eϕ ⊗ �eϕ , where �er , �eϑ and �eϕ are the spherical
unit base vectors, the integration kernels of cL (t) and cR(t) can be expressed in the forms

σ L (�x, t)[(�x · �x)I − �x ⊗ �x ] = −a2
∞∑
j=0

j∑
m=− j

σ L
jm(t)Z(5)

jm(�), (113)

2(�x · �u(�x, t))I − �x ⊗ �u(�x, t) − �u(�x, t) ⊗ �x =

− 2r
∞∑
j=0

j∑
m=− j

[
U jm(r, t)Z(5)

jm(�) + Vjm(r, t)Z(2)
jm(�) + W jm(r, t)Z(3)

jm(�)
]
, (114)

where Z(λ)
jm (�), λ = 2, 3, 5, are the tensor spherical harmonics defined by

Z(2)
jm(�) := ∂Y jm(�)

∂ϑ
erϑ + 1

sin ϑ

∂Y jm(�)

∂ϕ
erϕ,

Z(3)
jm(�) := − 1

sin ϑ

∂Y jm(�)

∂ϕ
erϑ + ∂Y jm(�)

∂ϑ
erϕ,

Z(5)
jm(�) := −Y jm(�)

(
eϑϑ + eϕϕ

)
(115)

and e i j , i , j ∈ {r , ϑ , ϕ}, are the symmetric parts of the dyadic products of the spherical unit base vectors. More details on the tensor spherical
harmonics Z(λ)

jm (�) can be found in Martinec (2000, Appendix B). Note that the definition of Z(5)
jm (�) used here differs from that used by
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Martinec (2000) by factor j( j + 1). Straightforward, but extensive mathematical manipulations result in the analytical expressions for the
angular integrals over tensor spherical harmonics:

∫
�s

Z(2)
jm(�) d� = 6

√
2π

15
δ j2

[
1

2

(
δm,−2 −

√
2

3
δm0 + δm2

)
e11 − 1

2

(
δm,−2 +

√
2

3
δm0 + δm2

)
e22

+
√

2

3
δm0e33 − i(δm,−2 − δm2)e12 + (δm,−1 − δm1)e13 − i(δm,−1 + δm1)e23

]
,

∫
�s

Z(3)
jm(�) d� = 0,

∫
�s

Z(5)
jm(�) d� = −4

3

√
πδ j0(e11 + e22 + e33) + 1

3

∫
�0

Z(2)
jm(�) d�, (116)

where δ i j is the Kronecker delta and e i j , i , j ∈ {1, 2, 3}, are the symmetric parts of the dyadic products of the Cartesian unit base vectors.
Substituting the representations (109) and (110) into eqs (104) and (105) and using the integral relation (116), we find that

cL (t) = 4

3

√
πa4(e11 + e22 + e33)σ L

00(t)

− 2

√
2π

15
a4

2∑
m=−2

[
1

2

(
δm,−2 −

√
2

3
δm0 + δm2

)
e11 − 1

2

(
δm,−2 +

√
2

3
δm0 + δm2

)
e22

+
√

2

3
δm0e33 − i(δm,−2 − δm2)e12 + (δm,−1 − δm1)e13 − i(δm,−1 + δm1)e23

]
σ L

2m(t), (117)

cR(t) = 8

3

√
π (e11 + e22 + e33)

∫ a

r=0
�0(r )U00(r, t)r 3 dr

− 4

√
2π

15

2∑
m=−2

[
1

2

(
δm,−2 −

√
2

3
δm0 + δm2

)
e11 − 1

2

(
δm,−2 +

√
2

3
δm0 + δm2

)
e22

+
√

2

3
δm0e33 − i(δm,−2 − δm2)e12 + (δm,−1 − δm1)e13 − i(δm,−1 + δm1)e23

]

×
∫ a

r=0
�0(r )[U2m(r, t) + 3V2m(r, t)]r 3 dr. (118)

The inertia tensors c�(t) and c∂V (t) can be expressed in the same form as cL (t) by replacing the surface-mass density σ L
jm(t) by σ�

jm(t) and
σ ∂V

jm (t), respectively, and the radius a by a� in the case of c�(t).
To model polar motion, the c13(t) and c23(t) components of the inertia tensors must be expressed explicitly. For the complex variables

cL ,R(t) = cL ,R
13 (t) + i cL ,R

23 (t), eqs (117) and (118) yield

cL (t) = 2

√
2π

15
a4

[
σ L

21(t)
]
, (119)

cR(t) = 4

√
2π

15

∫ a

r=0
�0(r )[U ∗

21(r, t) + 3V ∗
21(r, t)]r 3dr. (120)

To model a change in the length of day, the Cartesian component c33 (t) of the inertia tensors must be specified. Eqs (117) and (118)
provide

cL
33(t) = 4

3

√
π

5
a4

[√
5 σ L

00(t) − σ L
20(t)

]
, (121)

cR
33(t) = 8

3

√
π

5

∫ a

r=0
�0(r )[

√
5 U00(r, t) − U20(r, t) − 3V20(r, t)]r 3dr. (122)

These equations show that, for a spherically symmetric density distribution, only the spheroidal part of displacement vector �u(�x, t)
contributes to cR(t), while the toroidal part of �u(�x, t) does not affect it.
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The trace of the inertia tensors cR(t) and cL (t) can also be deduced from eqs (117) and (118):

Tr cL (t) = 4
√

πa4σ L
00(t), (123)

Tr cR(t) = 8
√

π

∫ a

r=0
�0(r )U00(r, t)r 3dr. (124)

We can see that the trace of cR(t) vanishes if the zeroth-degree coefficient U 00(r , t) of the vertical displacement is equal to zero. This applies
when the Earth is considered to be incompressible. Since σ L

00(0) = 0 at the initial time, the trace of cL (t) vanishes if the total mass of the
surface load is conserved during glaciation cycles.

5.2 Spherical-harmonic representation of rigid-body translation and rotation

The final step in our theoretical considerations is to express the rigid-body translation vector �d(t) and the relative angular-momentum vector
�h(t) in terms of vector spherical harmonics. Both vectors will be considered in the spherical approximations (106) and (107). Representing
the displacement vector �u(�x, t) and the surface-mass density σ L (�x, t) in the forms (109) and (110), respectively, considering the definition of
the vector spherical harmonics �S(−1)

jm (�) := Y jm(�)�er and making use of the angular integral over vector spherical harmonics,

∫
�s

�S(λ)
jm(�) d� =

√
4π

3
δ j1(δλ,−1 + 2δλ,1)�em, (125)

where �em, m = ±1, 0, are the cyclic covariant base vectors (Varshalovich et al. 1989, Section 1.1.), we find that the rigid-body translation
vector �d(t) is given by

�d(t) =
√

4π

3

1∑
m=−1

�em

{ ∫ a

r=0
�0(r )[U1m(r, t) + 2V1m(r, t)]r 2dr + a3σ L

1m(t)

}
. (126)

Likewise, using the formulae for the cross products of �er with vector spherical harmonics,

�er × �S(−1)
jm (�) = 0,

�er × �S(1)
jm(�) = �S(0)

jm(�),

�er × �S(0)
jm(�) = −�S(1)

jm(�), (127)

the cross product occurring in �h(t) is

�x × d�u(�x, t)

dt
= r

∞∑
j=0

j∑
m=− j

[dVjm(r, t)

dt
�S(0)

jm(�) − dW jm(r, t)

dt
�S(1)

jm(�)
]
. (128)

Multiplying both sides by �0(r ), integrating the result over the full solid angle and making use of the angular integral (125), we find that the
relative angular-momentum vector is

�h(t) = −2

√
4π

3

1∑
m=−1

�em

∫ a

r=0
�0(r )

dW1m(r, t)

dt
r 3 dr. (129)

To obtain the Cartesian components of �h(t), we use the relationship between the cyclic covariant base vectors �em, m = ±1, 0, and the Cartesian
unit base vectors �ei , i = 1, 2, 3:

�e+1 = − 1√
2

(�e1 + i �e2

)
,

�e−1 = 1√
2

(�e1 − i �e2

)
,

�e0 = �e3.

(130)

By this, the spherical harmonic representation of the Cartesian components of �h(t) is found to be

h1(t) + i h2(t) = 2

√
8π

3

∫ a

r=0
�0(r )

dW11(r, t)

dt
r 3dr, (131)

h3(t) = −2

√
4π

3

∫ a

r=0
�0(r )

dW10(r, t)

dt
r 3dr. (132)

We can see that, for a spherically symmetric density distribution only, the toroidal part of the displacement vector �u(�x, t) contributes to �h(t),
while the spheroidal part of �u(�x, t) affects the centre-of-mass translation vector �d(t).
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6 N U M E R I C A L VA L I DAT I O N O F T H E T H E O RY

6.1 1-D case

It is useful to consider briefly the special case when not only the initial density �0(r ) but also the viscoelastic parameters vary only radially.
Then, the gravitational potential φE,L (�x, t) of the surface-mass load and the gravitational potential φE,R(�x, t) of the internal mass redistribution
induced by the surface load can be related by the load Love numbers. This relation, expressed in terms of the spherical-harmonic gravitational-
potential coefficients of angular degree j and azimuthal order m is (e.g. Wu & Peltier 1982)

φ
E,R
jm (t) = kL

j (t) ∗ φ
E,L
jm (t), (133)

where * denotes the time convolution and kL
j (t) is the surface-load Love number of angular degree j for the gravitational potential. As far as

the rotational deformation is concerned, the gravitational-potential increment φE,CF induced by centrifugal-potential perturbations, expressed
in terms of the second-degree spherical-harmonic coefficients, is given by (Munk & MacDonald 1960, Section 5.2)

φ
E,C F
2m (t) = kT

2 (t) ∗ ψ E
2m(t), (134)

where kT
2 (t) is the second-degree tidal Love number for the gravitational potential and ψ E

2m(t) are the second-degree spherical harmonics of the
centrifugal-potential increment ψ E . Eqs (133) and (134) reflect the fact that spherical symmetry of an earth model causes that surface-mass
loading and/or tidal forcing with a prescribed spherical-harmonic component of angular degree j induces a viscoelastic response characterized
by a spherical harmonic of the same angular degree j only. This effect is usually called the j-degeneracy. In addition, for a spherically symmetric
earth, both the surface-load and tidal-load Love numbers are independent of the azimuthal order m (the so-called m-degeneracy), which means
that the viscoelastic Green’s response functions for a given j are identical for all m = − j , . . . , j . A laterally heterogeneous earth model
removes both degeneracies.

The gravitational-potential coefficients for degree j = 2 and order m = 1 can be expressed in terms of the (1, 3) and (2, 3) Cartesian
components of the load inertia tensor cL (t) and the response inertia-tensor increment cR(t) by the first MacCullagh’s formula (78). Combining
this formula with eq. (133) for j = 2 and m = 1 results in

cR(t) = kL
2 (t) ∗ cL (t). (135)

Likewise, substituting eq. (134) for order m = 1 into eq. (79) and using eq. (95) for ψ E
21(t) yields the (1, 3) and (2, 3) Cartesian components

of the inertia-tensor increment due to centrifugal-potential perturbations:

cC F (t) = (C − A)
kT

2 (t)

ks
∗ m(t), (136)

where the secular Love number is defined by ks := 3G(C − A)/�2
0a5 (Munk & MacDonald 1960, Section 5.3; Moritz & Mueller 1987,

Section 3.2).
Finally, the second MacCullagh’s formula (88) combined with eq. (134) for degree j = 2 and order m = 0 yields

cR
33(t) − 1

3
Tr [cR(t)] = kL

2 (t) ∗
[

cL
33(t) − 1

3
Tr [cL (t)]

]
. (137)

A similar procedure results in the (3, 3) Cartesian component of the inertia-tensor increment due to centrifugal-potential perturbations:

cC F
33 (t) − 1

3
Tr [cC F (t)] = 4π

15
(C − A)

kT
2

ks
(t) ∗ m3(t). (138)

Eqs (135)–(137) with Tr [cR(t)] = Tr [cL (t)] = 0 have been widely used in modelling the rotational response of a spherically symmetric earth
model to surface-mass loading and centrifugal-potential perturbations (see Section 1 for references). The contribution of cCF

33 (t) to m 3(t) is
often neglected, because it is about two orders of magnitude smaller than the principal moment of inertia C.

6.2 Direct numerical integration

We now validate the first and second MacCullagh’s formulae (79) and (89) against forward computations of the inertia tensors cL (t) and cR(t)
according to formulae (119)–(122). Since these formulae assume spherical symmetry of the earth model, the calculations are carried out
using a spherically symmetric, self-gravitating, incompressible, Maxwell-viscoelastic earth model. To find the relaxation times and associated
amplitudes of all normal modes and, therefore, to carry out the numerical convolution in the case of the Laplace-domain method, applied
in the next section, we use a three-layer earth model of mass density and elastic rigidity. The mass densities of the core and mantle are
10.9869 × 103 kg m−3 and 4.4494 × 103 kg m−3, respectively. The elastic shear moduli of the mantle and lithosphere are 1.4519 × 1011 Pa
and 0.67 × 1011 Pa, respectively. This model is a simplified version of the original PREM model, yet it provides inertia-tensor perturbations
that are sufficiently realistic for the Earth. Moreover, the reader may use the simpler earth model to validate their numerical programming.

The upper-mantle viscosity is 5 × 1020 Pa s, the lower-mantle viscosity is 1 × 1022 Pa s, and the thickness of the elastic lithosphere is
100 km. The fluid core is incorporated as a boundary condition at the core–mantle boundary. The ice model used is based on the global
ICE-3G deglaciation history proposed by Tushingham & Peltier (1991). We construct a 100-kyr glaciation phase by scaling the maximum
extend of the ICE-3G with relative sea level from far-field sites (e.g. Lambeck & Chappell 2001) followed by the ICE-3G deglaciation history.
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Figure 2. Comparison of the c j,3, j = 1, 2, 3, components of the inertia-tensor increment c(t) computed by the MacCullagh’s formulae (79) and (89) (circles)
and by summing two contributions cL

j,3 and cR
j,3 (solid lines). The components cL

j,3 (dashed lines) are computed from the second-degree spherical-harmonic

coefficients of surface-mass load according to eqs (119) and (121), while the components cR
j,3 (dotted lines) are computed by the direct numerical integration

of the second-degree spherical-harmonic coefficients of the displacement field according to eqs (120) and (122). The results apply to an earth model with
a 100-km-thick elastic lithosphere, and the upper-mantle and lower-mantle viscosities of 5 × 1020 Pa s and 1 × 1022 Pa s, respectively. The inertia-tensor
increment due to the static deformation of the fluid core is computed by eq. (103).

Fig. 2 shows the Cartesian components (1, 3), (2, 3) and (3, 3) of the inertia tensors cL (t), cR(t) and c (t), respectively, as functions of
time. The components cL

j,3 and cR
j,3, j = 1, 2, 3, are first computed separately according to eqs (119)–(122), and then the sums cL

j,3 + cR
j,3

are compared with the components c j,3 computed according to the MacCullagh’s formulae (79) and (89). We can see that there is excellent
agreement between the results c j,3 obtained by the two different approaches.

6.3 Laplace-domain method

The GIA-induced rotational response of the Earth is conventionally computed in the Laplace-transform domain using the method proposed
by Wu & Peltier (1984). For the purpose of comparison, the time-domain method of computing the temporal perturbation of the inertia tensor,
presented in Section 3, is now compared with the conventional Laplace-domain method.

For an earth model consisting of uniform incompressible linear viscoelastic layers or shells, the surface-load Love number for a delta-
function load history can be written in the form

kL
j (t) = kL ,E

j δ(t) +
M∑

k=1

r L
j,kes j,k t . (139)

This equation expresses a time-dependent viscoelastic response characterized by an immediate elastic effect, described by the elastic load
Love number kL ,E

j , followed by a multiplicity of M exponentially decaying normal modes. These modes of viscous-gravitational relaxation
have negative inverse-relaxation times s j,k and amplitudes r L

j,k .
The time convolution (135) can be expressed by the definite integral

cR(t) =
∫ t

t0

kL
2 (t − τ )cL (τ ) dτ, (140)

where t0 is the time when an ice–water mass is applied on the Earth’s surface. Substituting from eq. (139) for j = 2, we find

cR(t) = kL ,E
2 cL (t) +

M∑
k=1

r L
2,kes2,k t

∫ t

t0

e−s2,k τ cL (τ ) dτ. (141)

Note that a similar procedure can be applied to eq. (137) for the (3, 3) Cartesian component of the response inertia-tensor increment.
For the viscoelastic earth model introduced in the previous section, the inverse relaxation times and amplitudes have been computed by the

matrix-propagator method (e.g. Martinec & Wolf 1998). The model is characterized by five relaxation modes associated with the jumps in the
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Figure 3. Comparison of the c j,3, j = 1, 2, 3, components of the inertia-tensor increment c(t) computed by the MacCullagh’s formulae (79) and (89) (circles)
and by summing two contributions cL

j,3 and cR
j,3 (solid lines). The components cL

j,3 are computed from the second-degree spherical harmonic of the global

ICE-3G deglaciation history according to eqs (119) and (121), while cR
j,3, j = 1, 2, 3, are computed by the numerical convolution (141). The results apply to

model considered in Fig. 2.

density and the viscoelastic parameters at the outer surface, the lithosphere-upper mantle discontinuity, the upper-lower mantle discontinuity
and the core–mantle boundary. We have found numerically that the negative inverse relaxation times of the five modes for angular degree
j = 2 are s 1 = −2.71538427 × 10−10 s−1, s 2 = −2.06179711 × 10−10 s−1, s 3 = −7.564780 × 10−12 s−1, s 4 = −5.023441 × 10−12 s−1 and
s 5 = −1.103326 × 10−12 s−1. Moreover, we have evaluated the load inertia tensor cL(t) at equally spaced time steps according to eq. (119)
applied to the ICE-3G ice model. Finally, the convolution integrals (141) for various inverse relaxation times have been computed numerically
by the trapezoidal-rule quadrature (e.g. Press et al. 1992).

Fig. 3 shows the Cartesian components (1, 3), (2, 3) and (3, 3) of the inertia tensor c(t) as a function of time. The components cR
j,3, j =

1, 2, 3, are first computed separately according to eq. (141), and then the sums cL
j,3 + cR

j,3 are compared with the components cj,3 computed
according to the MacCullagh’s formulae (79) and (89). We can see that there is excellent agreement between c j,3 obtained by the two different
approaches.

7 C O N C L U S I O N S

This paper has been motivated by two problems. First, the existing theory of the GIA-induced rotational response of the Earth is based on
modelling in the Laplace-transform domain. Since a new generation of software treats GIA in the time domain, our task has been to establish
the theory for the GIA-induced rotational response in the time domain, thus avoiding the necessary application of the Laplace-domain method.
Second, the existing theory for the GIA-induced rotational response also makes use of the m-degeneracy of the surface-load and tidal-load
Love numbers, that is, the earth model must be spherically symmetric. Recent efforts to model GIA for laterally heterogeneous earth models
have motivated us to develop the theory for the GIA-induced rotational response without applying the formalism of load Love numbers.

The theory presented in this paper satisfies both tasks. The GIA-induced rotational response of the Earth is computed in the time domain,
making use of the analytical solution of the linearized Liouville equation. The time-domain solution of both the GIA (e.g. Martinec 2000) and
the induced rotational response is easily combined with a time-domain solution of the sea level equation with time-varying shoreline geometry.
Moreover, the theory is valid for any type of Earth model, because it does not require any assumption as to how the gravitational-potential
increment, employed to generate the inertia-tensor increments, is computed. That is, φE (t) may be computed by the Laplace-domain method
for the case of spherically symmetric earth models, or by numerical software recently being developed to treat laterally heterogeneous earth
models.

The MacCullagh’s formulae derived in this paper provide a convenient, practical tool to transform gravitational-potential perturbations
into inertia-tensor variations. A subsequent application of the Liouville equation yields time variations in the Earth’s rotation parameters.
Conversely, a time-varying rotation induces perturbations of the centrifugal force and, subsequently, variations in sea level. However, the

C© 2005 RAS, GJI, 163, 443–462



Inertia-tensor perturbations 461

coupling between the Earth’s rotational variations and GIA-induced deformations through ice–water redistribution is only one part of the
connection between these two geophysical phenomena. In the follow-up paper, we will develop the theory and present numerical examples
for the second part of the coupling between variations in the Earth’s rotation and GIA, namely, the case when perturbations in the centrifugal
force additionally deform a 3-D viscoelastic earth and, as a result affects the gravitational-potential perturbations.
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