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ABSTRACT

We investigate the temporal behaviour of the axial component of the electromagnetic core-
mantle coupling torque that is associated with the poloidal part of the geomagnetic field ob-
servable at the Earth surface. For its computation, we use different models of the geomagnetic
field, expanded into spherical harmonics (Wardinski and Holme, 2006; Sabaka et al., 2004),
and the mantle conductivity. The geomagnetic field, which we have to know at the core-
mantle boundary for the associated computations, will be inferred from the field at the Earth
surface by the non-harmonic field continuation through a conducting mantle shell. The aims
of this investigation are (i) to check how sensitive is the computation of the torque with
respect to the different geomagnetic field models, (ii) to check its dependence on the spher-
ical harmonic degree n, and (iii) to determine the difference between the mechanical torque
derived from the observed length-of-day variations (atmospheric influence subtracted) and
the poloidal electromagnetic torque in dependence on the assumed conductivity. To use the
non-harmonic field continuation for the torque calculation and to obtain an insight into the
influence of the different geomagnetic field models on the EM torques are the major aspects
of this paper.

1. INTRODUCTION

The observed decadal variations of the length of day (∆LOD) are usually attributed to the
exchange of angular momentum between the fluid core and solid mantle. This has been
concluded from the observed correlations between geomagnetic variations and ∆ LOD, and
from the small effect of surface processes on this time scale (e.g. Greiner-Mai and Jochmann
(1998) show that the atmosphere can only be responsible for 14 % of decadal ∆LOD). Since
several decades, various core-mantle coupling processes have been probed to explain ∆LOD,
from which the electromagnetic (EM) coupling (e.g. Rochester, 1960; Roberts, 1972; Stix
and Roberts, 1984; Greiner-Mai, 1987, 1993; Holme, 1998a,b) is partially re-examined in
this paper. The EM torques can reach orders of magnitude, which are sufficient to explain

1



∆ LOD if the assumed mantle conductivity, respective conductance, is sufficiently high. EM
torques are produced by two processes: (i) temporal variations of the geomagnetic field
induce electric currents in the conducting part of the mantle, and (ii) currents produced in
the core leak into the mantle. The currents in the mantle produce a Lorentz force on it by
their interaction with the geomagnetic field.

To calculate the EM coupling torques, it is necessary to know the electric conductivity,
σM , of the mantle, and the geomagnetic field within it. In Section 3 we will show that the
torque computation can be reduced to an integration over the core-mantle boundary (CMB).
This means that we finally must know the geomagnetic field at the CMB. Because a non-zero
conductivity is a precondition for the existence of electric currents, we have to determine
the geomagnetic field at the CMB from its observed values at the Earth’s surface by a
solution of the induction equation of the mantle. Recently, Ballani et al. (2002) developed
an algorithm for a rigorous inversion of the mantle induction equation to obtain the poloidal
geomagnetic field at the CMB, and checked this method also for highly conducting core
shells. In this paper, we use this so-called non-harmonic downward continuation (NHDC)
instead of the perturbation method of Benton and Whaler (1983) generally used before. This
is one of the motivations to re-calculate axial EM torques. The application of the NHDC
and the formalism in its background (see Section 2 and 3) has another advantage. We do not
need in addition to the geomagnetic field at the CMB the related time derivations for the
calculation of the EM torque. The computation of the time derivatives would be associated
with additional uncertainties.

In previous investigations of the EM coupling, it has been implied that the calculated
torques are mainly determined by the low degrees n of the spherical harmonic (SH) expan-
sions of the geomagnetic field at any time and are not sensitive to the available geomagnetic
models. The existence of two new satellite supported highly resolved geomagnetic field mod-
els (Wardinski and Holme, 2006; Sabaka et al., 2004) for the period 1980 to 2000 gives us
the possibility, to investigate the dependence of the torque on the geomagnetic field models
and on the SH degree n of this models, respectively. This is the second motivation for the
investigations in this paper. A first check of this dependence was given by Stix (1982) for
the example of a field model of the year 1975 for SH expansions with summations over n

up to 1, 6, 12. Here, we will extend his investigation with respect to the poloidal part of
the axial torque to (i) check its behavior for each point of the time series between 1982 and
1998, and (ii) compute the torque for summations up to 1, 2, 3, . . . , nmax (i.e. in steps of 1).

The investigation presented here can only be considered as a first step towards a consis-
tent description of EM core-mantle coupling. In terms of a minimum effort, we use for these
investigations the axial part of the poloidal EM torque to study the effect of the conduc-
tivity assumptions (Section 4) with the NHDC of the geomagnetic field, and to study the
dependence of the torque on the considered SH degree of the geomagnetic field models to
explore the significance of the higher SH degrees for the EM torque computation.

This approach is similar in some respect to that of Paulus and Stix (1989), like splitting
of the geomagnetic field into poloidal and toroidal part and the restriction to the poloidal
part.

The assumptions about the conductivity models in Section 4 are just made for the same
pragmatical reasons. They should only ensure that one of them has a conductance which is
approximately consistent with EM coupling according to Holme (1998b).

Despite of these two major objectives, we calculate the torques necessary to produce the
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observed residuals of ∆LOD obtained after subtraction of the atmospheric contribution, and
compute the difference between this mechanical and the EM torque. This way we will check
the temporal structure of the difference as a characteristic curve of the sum of the remaining
torques to be modelled.

2. THE NON-HARMONIC FIELD CONTINUATION TO THE CMB

The electromagnetic torque, L, results from Lorentz forces on the mantle caused by the
interaction of electric currents (density j) with the magnetic field (flux B). It is defined by

L =
∫

VM

r× (j×B) dV, (1)

where VM is the volume of the conducting part of the mantle, and j × B is the density
of the Lorentz forces. A net EM torque can only be produced, if j 6= 0, i.e. a significant
mantle conductivity exists. This means that the induction equation must be solved to infer
the necessary magnetic flux in the conducting mantle volume and/or at the CMB from its
values at the Earth’s surface. Therefore, the field continuation to the CMB must in any
case be non-harmonic. In this paper, we will apply the recently developed non-harmonic
downward continuation (NHDC) of the geomagnetic field by a rigorous inversion of the
induction equation according to Ballani et al. (2002), to compute the geomagnetic field at
the CMB necessary to calculate the poloidal torque. We will outline this inversion in the
following two sections.

2.1. THE MANTLE INDUCTION EQUATION

The induction equation of the mantle is conventionally derived from Maxwell equations
(displacement currents neglected) and Ohm’s law by eliminating j and the electric field,
to reduce the involved number of fields to the magnetic flux, B. We obtain the following
vectorial form of the induction equation

curl
(

1
µ0 σM (r)

curlB
)

= − Ḃ, (2)

where µ0 is the permeability of vacuum, and σM (r) is the electrical mantle conductivity,
assumed to be dependent on the radius, r, only.

To transform the vectorial induction equation into a scalar form, we divide B in its
poloidal and toroidal parts. Because of divB = 0, B can be represented by two defining
scalar functions S(r, ϑ, ϕ, t) and T (r, ϑ, ϕ, t) (instead of three) as follows

B = Bt + Bp = curl (rT ) + curl curl (rS). (3)

By known formula of vector analysis, we can express these field parts by

Bp = − r∆S + ∇ S̃, S̃ =
∂

∂r
(rS), (4)

Bt = − r × ∇T, (5)

3



where ∆ and ∇ are the Laplacean and the Nabla operators, respectively. From eq. (5) we
can conclude that the radial component, Br, appears only in the poloidal field. Using eq. (3)
and some rules for the toroidal and poloidal fields (e.g. Krause and Rädler, 1980, Chap. 13;
Gubbins and Roberts, 1987, Sec. 3.2), we obtain two scalar induction equations

∆ S = µ0 σM (r) Ṡ, (6)

∆ T − 1
σM (r) · r

dσM (r)
dr

∂

∂r
(r T ) = µ0 σM (r) Ṫ . (7)

The poloidal field can completely be inferred from the observed part of the geomagnetic
field by inversion of eq. (6), whereas the toroidal field vanishes outside of a conductor and
therefore can only be determined with additional information. Typically this information is
extracted from core-flow models. Because the induction equations of the poloidal and the
toroidal fields are decoupled for a radially symmetric conductivity according to eqs. (6) and
(7), we do not need the toroidal field to evaluate the poloidal torque, which is the subject
of this paper. This would not be the case if we would assume a laterally heterogeneous
conductivity distribution (e. g. Holme, 2000).

The scalar function S can be expanded (for any fixed radius r) into a series of surface
spherical harmonic (SH) functions, {Pnm(cos ϑ) cos mϕ, Pnm(cos ϑ) sinmϕ}, by

S(r, ϑ, ϕ, t) =
nmax∑
n=1

n∑
m=0

[
Sc

nm(r, t) cos mϕ + Ss
nm(r, t) sinmϕ

]
Pnm(cos ϑ), (8)

where the normalization (Ferrers-Neumann)

π∫
0

[
Pnm(cos ϑ)

]2 sinϑ dϑ =
2

2n + 1
(n + m)!
(n−m)!

(9)

is used here. If the operator

Ω =
1

sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1
sin2ϑ

∂2

∂ϕ2
(10)

means the Laplacean on the sphere the eigenvalue equation

Ω

(
Pnm(cos ϑ)

{
cos mϕ

sinmϕ

})
= −n(n + 1) Pnm(cos ϑ)

{
cos mϕ

sinmϕ

}
(11)

holds. With these relations and eq. (6), we can find the induction equation for single SH
modes of S

∂2 Sc,s
nm

∂r2
+

2
r

∂ Sc,s
nm

∂r
− n(n + 1)

r2
Sc,s

nm = µ0 σM (r) Ṡc,s
nm . (12)

The boundary conditions are given by

Sc,s
nm(Rσ, t) = Φc,s

nm(t),
∂ Sc,s

nm(Rσ, t)
∂r

+
n + 1
Rσ

Sc,s
nm(Rσ, t) = 0, (13)

where Rσ is the radius of the spherical interface between the conducting and the non-
conducting part of the mantle (see fig. 1). Φc,s

nm are the boundary values derived by harmonic
continuation of the coefficients of the geomagnetic surface potential field to this boundary
at r = Rσ. The derivation is given in the Appendix.
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2.2. INVERSION OF THE INDUCTION EQUATION - AN OUTLINE

The details of the theory of the inversion method, the used numerical algorithm and the
results of some checks of the method for highly conducting shells are given in Ballani et
al. (2002) and Greiner-Mai et al. (2004). Here, we will give an outline to make it under-
standable how the method works without going too much into details.

With eqs. (12) and (13) an initial-boundary value problem can be formulated. Like for
the analogously structured well-studied problems in the inverse heat conduction theory, the
boundary values are given only on one side of the radial interval, here at r = Rσ (upper
mantle side, see fig. 1). This problem is temporally unstable towards the higher-frequency
part and, in addition, it suffers from the wide range of order of magnitudes. However,
uniqueness holds for the solution under relatively general assumptions. The geomagnetic
potential V (r, ϑ, ϕ, t) (B = −gradV , see eq. (33) in the Appendix), determined at the Earth’s
surface, can be harmonically continued to Rσ , obtaining the boundary values Φc,s

nm(t) in
eq. (13).

The initial condition can be chosen arbitrarily. But its influence on the solution is mainly
limited to the beginning of the time interval, e.g. 2-3 years are observed in our cases. In
addition, the regularization gives no real information towards the interval end. Therefore,
we reduce the time interval for the EM torque to 1982 – 1998. One possible choice for the
initial condition is that of the harmonically continued B-field for Rσ ≥ r ≥ Rc.

The solution of the downward continuation problem (12) and (13) is constructed using
the equivalent integral form which can be found after some transformations as a Volterra
integral equation. It relates the unknown time functions f(t) = Sc,s

nm(Rc, t) to the surface
data Φ(t) = Φc,s

nm(t) = Sc,s
nm(Rσ, t) by

Φ(t) = A f(t) =
∫ t

0
k(t − τ)f(τ) dτ, (14)

where the kernel k contains all the dependencies on r, Rσ, Rc, n, m, and σM (r). As the
kernel in general is not available analytically, an approximating matrix (aik) is determined,
which is related to systems of base functions that decompose the time functions f(t) and
Φ(t), respectively. Thus, the solution of the downward continuation problem comprises two
steps:

First, the determination of this matrix requires the solution of stable boundary value
problems (upward continuations): the unknown function f(t) can be presented by the basis
functions {ek(t)}, f =

∑
fkek. The upward continuation means the mapping A(ek(t)).

These calculated functions have to be decomposed by a further series of arbitrary basis
functions, {χi}, ∑

i

aikχi(t) = A(ek(t)) (15)

finally finding the matrix elements.
Second, the expansion coefficients, {fk}, of the unknown function f(t) remain as the

proper unknowns of the downward continuation problem that is now given in discrete form
as

Φi =
∑

k

aikfk, Φ =
∑

i

Φiχi, (16)
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i.e. with Φi as coefficients of the development of the geomagnetic boundary values. The
unknown coefficients {fk} are determined by a regularization of the type

min ‖ (fk) ‖β subject to ‖ (aik)(fk) − (Φi) ‖α≤ ε, (17)

which accounts especially for the error ε of the data (Φ) at Rσ while the first term searches
for optimal smoothness of the solution at Rc according to the applied norm ‖ · ‖β, here the
L2 norm.

3. THE POLOIDAL EM COUPLING TORQUE

The EM coupling torque on the mantle is defined in Section 2.1 by eq. (1). Using the Maxwell
equation curlB = µ0 j, we can completely express the torque by the magnetic flux,

L = µ−1
0

∫
VM

r× (curlB×B) dV. (18)

Rochester (1962) has shown, that the volume integral in eq. (18) can be transformed into a
surface integral over the CMB (surface Fc, radius Rc),

L = µ−1
0

∫
Fc

[
(r×B) (B · n) − (B2)

2
(r× n)

]
dF. (19)

In eq. (19), n is the surface unit vector pointing out of the volume VM , i.e. towards the
core. Conventionally, it is assumed that the departure of Fc from a sphere is so small that
n = −er approximately holds, i.e.

L = −µ−1
0

∫
Fc

(r×B) Br dF, (20)

where Br is the r component of B. Eq. (20) is exact on a sphere and a good approximation
on a surface with small ellipticity. The z component of L, which is the subject of this paper,
is then given by

Lz = −µ−1
0

∫
Fc

r Br Bϕ sinϑ dF, (21)

where r, ϑ, ϕ are the spherical coordinates.
As shown in the Appendix, Br is completely represented by the poloidal part of the

geomagnetic field. Dividing B in eq. (20) (or Bϕ in eq. (21)) in its poloidal and toroidal
parts according to eq. (3), respectively, we obtain two parts of the torque, one of which
is generated by poloidal field components only, and the other by a mixture of both field
parts. Following Stix and Roberts (1984), we denote them as poloidal and toroidal torque,
respectively.

The poloidal torque can completely be inferred from the observed part of the geomagnetic
field, whereas the toroidal torque is highly dependent of assumptions and results of core-flow
models.
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By eqs. (26) and (28) (see Appendix) the poloidal part of Lz in eq. (21), Lpz, can then
be written as

Lpz = + µ−1
0

∫
Fc

ΩS

r

∂S̃

∂ϕ
dF, (22)

where Ω is given by eq. (10) and S̃ is defined in eq. (4).
Using dF = R2

c sinϑ dϑ dϕ, the normalization condition (9) for Pnm and eq. (11), we
obtain as final expression for Lpz

Lpz =
2πR2

c

µ0

nmax∑
n=1

n∑
m=1

m n (n + 1)
2n + 1

(n + m)!
(n−m)!

[
Ss

nm

∂Sc
nm

∂r
− Sc

nm

∂Ss
nm

∂r

]
Rc

(23)

with the spherical harmonic coefficients defined in eq. (8), and determined by NHDC at the
CMB.

4. MODEL ASSUMPTIONS AND DATA

4.1 Conductivity models

The origin of a lower-mantle conductivity of sufficient magnitude has not been consistently
explained up to now. Shankland et al. (1993) inferred from laboratory experiments that
σM increases exponentially to the CMB and reaches a value of 10 Sm−1, which is too low
to produce significant EM torques. Holme (1998b) found that a conductance of the order
of magnitude of 108 S of the lowermost shell of the mantle is necessary to produce the
observed ∆LOD by EM coupling. Buffett (1992) concluded that EM core-mantle coupling
is required for the retrograde annual nutation of the Earth to be out of phase and estimated
a shell of 0.2 km at the bottom of the mantle with σM = 5 · 105 Sm−1 (a shell of 1 km
with 105 Sm−1 would have the same conductance). New laboratory experiments show that
such high conductivity values are possible at the bottom of the mantle (e. g. Dubrovinsky
et al., 2003). However, other mechanisms could also give such values, including Buffett’s et
al. (2000) sedimentation in the core mechanism, and most recently the possibility that the
post-perovsike phase might have an elevated electrical conductivity (e. g. Ono et al., 2006).

For our investigations we assume a only radially dependent parametrization of the con-
ductivity, σM , which approximates these findings. We know about the limitations due to
this assumption. However, we focus here on decadal variation of LOD, which is less affected
by the assumption of lateral homogeneous conductivity than the long-term trend (Holme,
2000). In addition, also the NHDC is based upon this assumption. Therefore, we vary σM ,
radial dependent only, in a certain range, to check the dependence of Lpz on the conductivity.
The basic geometric set up is shown in fig. (1) and the four considered conductivity models
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Figure 1: The shell model of the Earth’s used for the non-harmonic downward continuation,
with RE = 6371 km, Rσ = 5480 km and Rc = 3485 km.

of the lowermost shells are given by

model k σM (r) =


0 r > Rσ

10 ·
(

Rc

r

)5

Ω−1m−1 Rc + xk < r ≤ Rσ

1 · 105 Rc ≤ r ≤ Rc + xk

(24)

with k = 1, 2, 3, 4

x1 = 2.0 km, x2 = 1.5 km, x3 = 1.0 km, x4 = 0.5 km

Rc = 3485 km

Rσ = 5480 km

where the radii are displayed in fig. (1). The power function is according to Shankland’s et
al. (1993) results, and k is the counter for the number of the model used.

4.2 Satellite supported geomagnetic field models

The data used in this study are monthly spaced sequences of SH expansions of the ge-
omagnetic field at the Earth surface developed by Wardinski and Holme (2006), C3FM
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(nmax =15), and Sabaka et al. (2004), CM4 (nmax =13), between 1980 and 2000. Both field
models are based on different modelling approaches. The CM4 model uses a comprehensive
approach (e. g. Sabaka et al.,2002;2004), where the magnetic field is parametrized using
satellite and observational data for separate spheres, i.e. crust, ionosphere and the internal
(residual) field. In contrast, Wardinski and Holme (2006) apply a hybrid approach using
satellite field models for the epochs (Magsat and Ørsted) to constrain a field model derived
from ground-based data for the time interval 1980 – 2000.

Figure 2 (a) and (b) show for the geomagnetic field model C3FM Br and Bφ for the
year 1995 at the CMB for nmax = 8, respectively. For the comparison with the field model
CM4 in sub-figure (c) the related difference ∆Br is presented, which is in the order of 1%
of Br at the CMB. Beside the significant extrema with a dipole structure in South America
and the Indian Ocean (around ±7000 nT) differences appear with a spatial structure, which
seems to be related with the high degree and order pattern of the SH degree n = 8. The
corresponding difference ∆Bφ between both field models is shown in the sub-figure (d). The
most outstanding difference (∼ −7000 nT) is located in south Atlantic, close to the South
American coast, which is about 2 % of Bφ at the CMB. Moreover, a similar spatial structure
(stripe pattern) like that in sub-figure (c) appear, which is not so strongly pronounced. In
(e) and (f) the differences ∆Br and ∆Bφ are shown for the full set of spectral coefficients for
each of the models. The spatial pattern of the differences is similar to that of the considered
maximum spectral degree of nmax = 15 and nmax = 13, respectively. In sub-figure (e) the
differences are in the order of 15 % of Br at the CMB, whereas in sub-figure (f) values of
25 % of Bφ can be obtained. In contrast to the comparison for nmax =8 the results in sub-
figure (e) and (f) seem to be artificial and do not reflect different spatial information of the
geomagnetic models.

For a further understanding of the differences fig. 3 shows the power-spectrum (Lowes-
Mauersberger spectrum) of the secular variation of the model CM4 and C3FM. From degree
n=5 onwards the spectra differ, but initially in small range. For higher degrees the power is
still increasing for CM4 whereas for C3FM the influence of the damping is significant and the
power in the degrees n=12 to n=15 is reduced by nearly one order of magnitude. This is
mainly a result of the different regularization for both geomagnetic field models. The secular
variation is used for the regularization of C3FM at the CMB, but for CM4 at the earth’s
surface.

Moreover, fig. 4 shows the power-spectra of both field models and of the differences in the
Gauss coefficients. Up to degree n = 9 both spectra of the field models have similar power
and the difference spectrum is more than five orders of magnitude smaller. From degree
n = 10 onwards the power-spectrum of CM4 increases again, whereas the values for C3FM
decrease to degree n=15 by more than one order of magnitude. The related power-spectrum
of the differences in the Gauss coefficients shows a significant increase from degree n=10 to
n=13 from 105 nT2 to 3 · 107 nT2.

This indicates the differences in the regularization of both geomagnetic field models and
the uncertainties of both models in resolving the field on SH degrees larger then n = 9 to
n = 10. Therefore, we restrict our interpretation of the resulting torques to the maximum
SH degree of nmax =8.
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(a) Br(r = Rc) for nmax =8
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(b) Bφ(r = Rc) for nmax =8
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[1000nT]

−100 0 100
(f) ∆Bφ(r=Rc)

Figure 2: Comparison of the magnetic field models for the year 1995 at the CMB (r = Rc).
In (a) and (b) are shown Br and Bφ, respectively, for nmax =8 using the field model C3FM.
The related differences between this components and thus of the field model CM4 are shown
in (c) and (d), respectively. Moreover, in (e) and (f) this differences are shown for the same
field models but using now nmax = 15 for C3FM and nmax = 13 for CM4, respectively.

4.3 LOD data and mechanical torques

The data of ∆LOD and the atmospheric angular momentum (AAM) are obtained from IERS
(C04 and AAM NCEP-NCAR reanalysis time series). We subtract the LOD-equivalent of
AAM, obtaining residuals ∆LODobs−AAM to be interpreted by core-mantle coupling, i.e. we
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Figure 4: Degree-power spectra of the geomagnetic field models C3FM and the CM4 at
the CMB by NHDC. In addition is shown the spectrum of the differences in the Gauss
coefficients, where the values are smaller than 105 nT2 for degrees smaller than 10.

imply that the contributions of ocean and the continental hydrosphere are insignificant for
our investigations. At the latest, if we will switch over to a finer and more comprehensive
investigation of a joint coupling in future, we must consider these contributions too. The
values of ∆LODobs−AAM are shown in fig. 5.

To derive the necessary mechanical torque, Lmech
z , from ∆LODobs−AAM we smooth the

time series by a standard running mean procedure, and determine Lmech
z according to the
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Figure 6: Variations of Lmech
z necessary to produce ∆LODobs−AAM . They are obtained by

numerical differentiation according to eq. (25).

third component of the Euler-Liouville equation for the angular velocity, ωM , of the mantle

CM
dωM

dt
= − 2π

T 2
0

d∆LOD
dt

= Lmech
z , (25)

where T0 = 86400 s is the length of day, and ∆LOD is the observed variation of T0. The time
derivative of ∆LOD in eq. (25) will be computed by B-spline interpolation and the related
analytical derivation using cubic B-splines. The values of Lmech

z are shown in fig. 6.
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Figure 7: Lpz in dependence on the cumulative degree N and time for the conductivity model
1 (see eq. (24)) and the geomagnetic field model C3FM.

5. RESULTS

We will first study the dependence of Lpz and its time behavior on the SH degree n of the
geomagnetic field models. Those are developed for the maximum degree, nmax = 13 or
nmax =15, respectively (Section 4), giving a set of Gauss coefficients for n=1, 2, 3, . . . , nmax

and m = 0, . . . , n. The EM torques are computed in dependence on the cumulative degree
N according to eq. (23) for n = 1, 2, 3, ..., N , i.e. Lpz(N) contains the contributions of the
modes with lower n too. The absolute values of the EM torque Lpz are shown in figs. 7
and 8. For the model C3FM the time behavior of Lpz changes significantly up to N = 6.
In contrast, for the higher degrees (N =7, . . . , 12) the resulting EM torque is nearly shifted
without any pronounced change in the time behavior and for the degrees N =13, . . . , 15 the
torque and its time behavior vary only in a small range of around 2 %. This observations can
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Figure 8: Lpz in dependence on the cumulative degree N and time for the conductivity model
1 (see eq. (24)) and the geomagnetic field model CM4.

be partly explained by the uncertainties of the field model and its secular variation at SH
degrees n=9 and above (c. f. discussion of fig. 4 and 3). The observed shift with decreasing
offsets in Lpz(N) results most likely from the unreliability of the coefficients for N > 10.

The changes in the time behavior in Lpz(N) for the model CM4 are significant up to the
cumulative degree N =6 (fig. 8). For all higher degrees the change in the EM torque can be
approximated by a shift and a small variation in a linear trend. Also here the related power-
spectra of the geomagnetic field CM4 (fig. 4) and the related secular variation (fig. 3) give
additional insight in this behavior. For CM4 both spectra increase for the higher degrees,
which is clearly visible in the change of Lpz(N) even for the highest cumulative degrees
N = 11, . . . , 13. This observations also confirm the restriction of Lpz(N) to the cumulative
degree N =8.

Figures 9 and 10 show the variations, ∆Lpz(N), of Lpz(N) with respect to their linear
trends for the cumulative degree N and both geomagnetic field models. Following the
argumentation above, we restrict our discussion here to ∆Lpz(N) for N ≤ 8, which allows
us in this case to conclude, that the differences in figs. 9 and 10 are related to the chosen
geomagnetic field model. The curves of ∆Lpz(N) computed from C3FM and CM4 are rather

14
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Figure 9: The variations, ∆Lpz, with respect to their linear trends in dependence on the
cumulative degree N for the conductivity model 1 (see eq. (24)) and the geomagnetic field
model C3FM.

incompatible. This is the second result, we want to emphasize. Again, this can be explained
by the different modelling approaches to set up the field models.

Finally, we will show the dependence on σM and compare ∆Lpz with the mechanical
torque. Figures 11 and 12 show the dependence of ∆Lpz on the conductivity model for
nmax =8 and the comparison between ∆Lpz and ∆Lmech

z for the σM -model 1, respectively.
The curves in fig. 11 show an expected linear influence of σM , i.e. an increase in σM does

not change the temporal structure of the torque. A thickening of the highly conductive layer
above the CMB from 0.5 km to 2.0 km results roughly in a four times larger EM torque. For
comparison, ∆Lpz is also plotted in fig. 11, which is computed from CM4 for the conductivity
model 1. Beside a smaller amplitude we find a significantly different time behavior.

In addition, fig. 11 shows significant differences in ∆Lpz between both geomagnetic field
models used as input data, demonstrated for the conductivity model 1. Figure 12 shows
the poloidal axial EM torque and the axial torque, ∆Lmech

z , computed from the observed
values of ∆LOD, whereas ∆Lpz is in the order of 1016 Nm and ∆Lmech

z is in the order of
1017 Nm. Therefore, the plotted difference between both axial torques is nearly identically
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Figure 10: The variations, ∆Lpz, with respect to their linear trends in dependence on the
cumulative degree N for the conductivity model 1 (see eq. (24)) and the geomagnetic field
model CM4.
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Figure 11: The dependence of ∆Lpz on the conductivity models (see eq. (24)) and time for
nmax = 8 (C3FM, solid lines; CM4, dashed line).

with ∆Lmech
z . Apart from this observations, a time shift between the EM torque and the

’mechanical’ torque is obtained, which is about 1.5 yr. This is in agreement with the con-
clusion of Stix and Roberts (1984), computing a time constant of ∼ 1.6 yr for the Earth’s
mantle.
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z and ∆Lpz for nmax =8 (C3FM, conductivity model 1, see eq. (24)) both

centered about their mean value, and the difference between them.

6. CONCLUSIONS

The investigation of the dependence of Lpz and ∆Lpz on the cumulative degree N shows that
we have to restrict the geomagnetic field models to SH expansions with maximum degree
nmax = 8 for the computation of the torque variation. As discussed in Section 4.2, this is
probably a consequence of an insufficient resolution of the geomagnetic field at higher degrees
by the data and the algorithm.

Concerning the torque Lpz, the differences between the two geomagnetic field models
used, particularly with respect to the temporal behavior, are not marginal even in the case
for nmax =8 (e. g. fig. 11). Our conclusions are: (i) the SH representation of the geomagnetic
field models should be also consistent with observable physical quantities like LOD variations
and (ii) we have to gain more insight into the sources for this (specially temporal) differences
between the geomagnetic field models.

The comparison between EM and mechanical torques derived from ∆LODobs−AAM con-
firms what we know from earlier investigations: we cannot identify a best fitting conductivity
model only by ∆Lpz and ∆Lmech

z . The poloidal axial EM torque is more than one order of
magnitude smaller than the mechanical torque. Therefore, we have to consider the toroidal
EM torque, Ltz, which is a candidate for a further substantial contribution to the torque
budget.

An identification of a best fitting conductivity model will only be possible within a
comprehensive modelling of core-mantle coupling, where also additional coupling mechanisms
are considered (e. g. Voorhies, 1991; Ponsar et al., 2003). Further investigations demand an
improved reduction of the observed ∆LOD by considering the influence of e.g. oceans and
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continental hydrosphere.
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Krause, F. and Rädler, K.-H., 1980. Mean-Field Magnetohydrodynamics and Dynamo The-
ory. Akademie-Verlag, Berlin.
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APPENDIX

We will derive the boundary conditions as a consequence of the continuity of the components
of B, and show, how their mode form depends on the Gauss coefficients of the surface field.
First, from eqs. (3)–(5) we can derive

Br = − 1
r

[
1

sinϑ

∂

∂ϑ

(
sinϑ

∂S

∂ϑ

)
+

1
sin2 ϑ

∂2S

∂ϕ2

]
= − ΩS

r
, (26)

Bϑ =
1
r

∂S̃

∂ϑ
+

1
sinϑ

∂T

∂ϕ
, (27)

Bϕ =
1

r sinϑ

∂S̃

∂ϕ
− ∂T

∂ϑ
, (28)

using the abbreviation S̃ =
∂

∂r
(rS), see eq. (4).

With eqs. (8), (9), (11) and (26)–(28) we obtain the SH expansion of the field components

Br =
1
r

nmax∑
n=1

n∑
m=0

n(n + 1)
[
Sc

nm cos mϕ + Ss
nm sinmϕ

]
Pnm(cos ϑ), (29)

Bϑ =
1
r

nmax∑
n=1

n∑
m=0

[
S̃c

nm cos mϕ + S̃s
nm sinmϕ

]
∂Pnm(cos ϑ)

∂ϑ
, (30)

Bϕ =
1
r

nmax∑
n=1

n∑
m=0

[
S̃s

nm cos mϕ− S̃c
nm sinmϕ

]
m

sinϑ
Pnm(cos ϑ). (31)

The magnetic flux B is continuous at r = Rσ and the toroidal field is zero there like at
any surface between a conductor and an insulator. The continuity of Br results that of the
modes Scs

nm at Rσ and the continuity of Bϑ and Bϕ that of S̃cs
nm respectively. The continuity

of Scs
nm gives the first boundary condition in eq. (13). The continuity of S̃cs

nm gives[
Scs

nm + r
dScs

nm

dr

]
R+

σ

=
[
Scs

nm + r
dScs

nm

dr

]
R−σ

. (32)

The representation of Br in eq. (29) is useful to find the relation between the geomagnetic
Gauss coefficients, gnm, hnm, and the S-modes. The surface potential V of B is usually given
by

V = RE

nmax∑
n=1

n∑
m=0

(
RE

r

)n+1

λnm Pnm (gnm cos m ϕ + hnm sinm ϕ), (33)

where λnm are the Schmidt’s normalization coefficients given by

λnm =
[
(2− δ0m)

(n−m)!
(n + m)!

]1/2

(34)
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and RE is the mean Earth radius, respectively. Because of B= − gradV , we obtain for Br

Br =
nmax∑
n=1

n∑
m=0

(n + 1)
(

RE

r

)n+2

λnm Pnm (gnm cos m ϕ + hnm sinm ϕ). (35)

Comparing (29) with (35), we obtain the equivalent potential coefficients

Sc
nm =

1
n

λnm gnm(t) RE , Ss
nm =

1
n

λnm hnm(t) RE (36)

to be continued to r = Rσ. At r = R+
σ , the boundary condition (32) is due to the continuity

of dS/dr, which can be computed according to (36) as −(n + 1)r−1Scs
nm, giving with the

continuity of Scs
nm itself the second boundary equation in (13).
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