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In hydrological and soil erosion modelling at large spatial scales, semi-distributed approaches 
may use representative hillslope profiles to reproduce landscape variability. Until now, the 
process of delineating landscape units as homogeneous parts of the landscape with regard to 
their terrain, vegetation and soil properties required expert knowledge and familiarity with the 
study area. In addition, the delineation procedure was often highly time-consuming and 
included a high degree of subjectivity. This paper presents a novel, semi-automated approach 
for the delineation of landscape units, the derivation of representative toposequences and their 
partitioning into terrain components. It incorporates an algorithm to retrieve representative 
catenas and their attributes for elementary hillslope areas based on elevation and other key 
spatial data frequently required as environmental model input, e.g. vegetation and soil data. 
An example application for the Ésera catchment in Spain illustrates that with the presented 
approach upscaling of hillslope properties becomes feasible for environmental modelling at 
large scales while ensuring reproducible results. 
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1. Introduction 

In hydrological and erosion modelling, spatial discretisation of the landscape into modelling 
units is usually accomplished using a fully-distributed, semi-distributed or lumped scheme. 
While the fully distributed approach is relatively straightforward by often using raster-based 
input data as derived from, e.g., remote-sensing, the data volume and computational demand 
increase strongly with extent of the domain and finer grid resolution. This is a limiting factor 
for practical applications (e.g. Bathurst 2002, Garbrecht & Martz 2000). Moreover, raster 
cells of fixed resolution and non-adjustable shape impose an artificial discretisation of fluxes 
(e.g. overland flow) in the process representation. 
Models that are not based on a raster representation require pre-processing steps in 
Geomorphometric Regionalisation (Schmidt & Dikau 1999) to describe the spatial domain in 
the model. At small scales, ‘hillslope-based’ models like WEPP (Flanagan & Nearing 1995) 
or KINEROS (Woolhiser et al. 1990) delineate the stream network and parameterise the 
surrounding runoff contributing areas (hillslopes) with a detailed and geo-referenced 
representation of their longitudinal profiles. Models designed for larger river basins like 
WASA (Güntner & Bronstert 2004), SWAT (Neitsch et al. 2002) and SWIM (Krysanova et 
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al. 2000) apply semi-distributed schemes. Conceptually, hillslopes undergo an object 
aggregation into functional units of a higher order (e.g. in Hydrological Response Units in 
SWIM, landscape units in WASA), which are represented by characteristic parameters. 
Georeference of the elementary object is only partially preserved by assigning areal fractions 
to higher-order objects (e.g. sub-basins) with known location.  
Although GIS can greatly facilitate the retrieval of hillslope information, deriving the exact 
location of hillslope profiles is often performed manually (e.g. Maurer 1997) and introduces a 
certain degree of subjectivity (Cochrane & Flanagan 2003). Moreover, the process is labour-
intensive or even unfeasible for larger catchments, because available GIS-tools allow further 
object-aggregation in crude ways only (Schmidt & Dikau 1999). Thus, for use in large-scale 
models like SWAT and SWIM, hydrological response units are usually derived by mere 
intersection of GIS-map layers such as land use, management and soil data. For each entity a 
mean value for slope is computed. This method naturally cannot preserve the intra-slope 
distribution of properties nor topological information.  
Garbrecht & Martz (2000) presented object analysis methods (‘Data Reduction methods’) for 
deriving representative values for the length and slope of sub-catchments. However, 
depending on the definition of these parameters, significant differences may result from the 
different Data Reduction methods. For deriving basic morphometric hillslope parameters, 
Cochrane & Flanagan (2003) used a sophisticated weighted mean technique to compute the 
average slope values and the average length from all flowpaths for a given hillslope area. By 
this way, more details of the hillslope geometry are preserved and a complete profile instead 
of a single value for slope is produced. The results can be used in models that represent 
hillslopes as flowstrips of constant width (e.g. WEPP, KINEROS). Information on variable 
hillslope width as supported in models such as CATFLOW (Maurer 1997) is not generated, 
nor can additional attributes such as soil and vegetation be considered.  
For semi-distributed models like WASA or SWAT, the derived hillslope properties must be 
upscaled by performing a further object aggregation. Hillslopes are grouped into classes that 
comprise profiles with similar distribution of topography, soil and vegetation properties along 
the hillslope. The resulting objects may be represented by a considerably reduced set of 
parameters, but the upscaling produces biased results when done manually, especially if 
multiple attributes are to be considered in the classification process. 
Güntner & Bronstert (2004) used the SOTER concept (FAO 1993), transformed by Gaiser et 
al. (2003), to parameterise the sub-areas of river basins with similar hillslope characteristics. 
The SOTER concept was introduced to provide a consistent method for the worldwide 
delineation of the so-called SOil-TERrain-units, focussing on the properties mentioned above 
(topography, soils, etc.). However, this concept was not specifically designed with application 
to hydrological and erosion modelling in mind. Its implementation depends to a large degree 
on expert knowledge and thorough familiarity with the area of interest. Moreover, 
representing large spatially contiguous areas with a single hillslope profile is necessarily a 
rather strong simplification of reality, especially for relatively heterogeneous landscapes with 
different hillslopes types in close proximity.  
To address the challenges in the parameterisation of ‘hillslope-based’ models described 
above, a novel, semi-automated algorithm for the delineation of landscape units is presented 
in this paper. Although tailored for use with the WASA model, the algorithm can potentially 
be applied for other models that require the derivation of representative hillslopes in the 
catchment. Nevertheless, the WASA terminology is used in this paper as illustrated in Fig. 
1)1: landscape units (LU) are parts of the catchment that can be characterised by a typical 
toposequence. Toposequences are idealised hillslope profiles representing the upscaled 
properties of the hillslopes they represent. Toposequences always start at a local divide and 
end at the channel. They are composed of terrain components (3 TCs in Fig. 1). Each TC has 
a distinct slope gradient and soil- and vegetation-association. The term catena is used for a 
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hillslope profile of a particular hillslope area with a concrete spatial reference. The meaning 
of both toposequence and catena is not limited to morphometrical attributes, but is used more 
generally as a set of attributes (including soil properties, for example) along the length of a 
hillslope. 
 
[Insert fig 1 about here] 
Fig. 1: Explanation of terminology: landscape units (LUs) are homogenous parts of the catchment, 
represented by toposequences that consist of terrain components (TCs).  
[A: catchment boundary; B: river; C: example of an EHA] 
 
The presented algorithm called ‘LUMP’ (Landscape Unit Mapping Program) was designed to 
fulfil the following demands: 
(1) The delineation of landscape units (LU) is to be automated. The algorithm should reduce 
subjective decisions on spatial discretisation to a minimum but at the same time allow for 
including prior knowledge. (2) For each LU, a representative toposequence must be 
computed. The toposequences have to be decomposed into terrain components (TCs). (3) The 
properties of the resulting LUs and TCs (area, slope, length, soil and vegetation properties, 
etc.) must be derived as input data for the hydrological model. (4) Besides a silent ‘default’ 
mode, a more sophisticated ‘expert’ mode is necessary to check and modify intermediate 
results, if desired. (5) For the purpose of visualisation and easy data import/export, the close 
interaction with a GIS is mandatory. 
This paper describes how these functions are implemented in LUMP (Section 2). The quality 
of the algorithm and its limitations are discussed for an example application in Section 3. 

2. Methods 

LUMP assesses various representative properties of elementary hillslope areas, assigns similar 
areas to the same LU class and, finally, produces a spatially continuous map displaying the 
extension of the LUs within the area of interest. The partitioning of the representative 
toposequences of the LUs into TCs and computing the resulting TC parameters conclude the 
tasks of LUMP. The steps of the entire algorithm are illustrated in Fig. 2, detailed 
explanations are given below. LUMP consists of a set of interacting scripts for GRASS-GIS 
(GRASS Development Team, 2005) and Matlab™ (Mathworks, 2002). The scripts and a 
technical documentation are freely available (SESAM, 2006). 
 
[Insert fig 2 about here] 
 
Fig. 2: Steps performed in the LUMP process with reference to the respective section in this paper in 
brackets 
 

2.1. Delineation of elementary hillslope areas (EHA) 

2.1.1. Concept 
An elementary hillslope area (EHA) is the basic unit that is used for the calculation of a 
representative catena. It comprises a contiguous slope area that can be characterised by a 
representative catena. All EHAs with a similar catena form a LU (see Fig. 1). This means that 
an EHA must be large enough to cover the range from the channel to the local divide but 
small enough to contain only one characteristic hillslope type. Thus, its size depends on the 
spatial scale of the hillslopes to be expected and the resolution of the digital elevation model 
(DEM) used. Consequently, the minimum size of the EHA also determines the resolution at 
which the spatial extent of the LUs will be generated. 
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2.1.2. Data used 
The delineation of the EHAs requires a digital map of the stream network, provided directly 
or computed from a DEM. The DEM is also needed to derive flow accumulation with 
common GIS-operations that are used in later steps.  

2.1.3. Algorithm 
All flow-related GIS-operations described use a hydrologically corrected, i.e. filled DEM, 
according to common practice (Garbrecht & Martz 2000). 
EHAs are equivalent to small subcatchments, which are hillslope areas that drain into the first 
adjacent downslope channel (Garbrecht & Martz 2000). Thus, their delineation can be done 
with standard GIS-algorithms (e.g. r.watershed with GRASS). By applying an appropriate 
threshold value for flow accumulation area, the catchment can be subdivided into areas that 
cover the extent of EHAs (Fig. 4). The resulting delineation can be modified manually by the 
user, if required. 
 
[Insert fig 3 about here] 
Fig. 3: Example of a delineation of a catchment into 660 elementary hillslope areas (Ésera basin, North-
Eastern Spain, basin area: 1231 km²) 

2.1.4. Limitations 
Especially with ephemeral rivers, the delineation of the river network – and thus the 
separation between hillslope and river cells – is not always straightforward. The user has to 
ensure that the distinction made corresponds to distinct dominating flow regimes (i.e. flow on 
hillslopes and river flow) and their representation in the model. 
Each EHA must have a minimum number of cells to be able to be processed in the next step. 
When using lower resolution DEMs (cell-size > 50 m), this may lead to EHAs that cover 
larger areas, which increases the probability of lumping different hillslope types within this 
EHA. Thus, low resolution DEMs will finally result in coarser and more generalised maps of 
LUs. 
 

2.2. Derivation of representative catena for each EHA 

2.2.1. Concept 
The calculation of representative catenas is based on the created EHAs. Preliminary studies 
indicated that the concept of calculating representative catenas based on a 2D-domain (areal 
data) perform far better than methods based on randomly sampled hillslope profiles (linear 
data). The results of the latter are very sensitive to DEM-noise and to variations in the 
algorithm (Francke 2005, Francke et al. 2006). Instead, by calculating representative catenas 
from the EHAs, each single cell is included in the computation. The calculations are based on 
the approach given by Cochrane & Flanagan (2003), extended by additional attributes (e.g. 
soil, vegetation; further termed ‘supplemental data’). Moreover, hillslope width as a function 
of the distance to the river is also computed. 

2.2.2. Data used 
This step requires two more grid maps that are generated from the DEM and the river 
network. The raster map ‘relative elevation’ contains difference between the elevation of a 
cell and the elevation of the rivercell it drains to. The map ‘flowpath length’ is generated from 
the travel distance of the waterflow from a cell to the river. 
Additional spatial data relevant for hydrological and sediment modelling can be included as 
maps containing either quantitative data (e.g. aspect, LAI, erodibility, groundwater levels, etc) 
or categorical, i.e. nominal or classified data (soils, land use, aggregated prior knowledge like 
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hydrological response units or connectivity classes, etc). All data are used at the same 
resolution as in the DEM. 

2.2.3. Algorithm 
Cochrane & Flanagan (2003) proposed methods for the computation of a representative 
catena profile for a given hillslope, which comprise equations for calculating the 
representative catena length and the representative catena profile. The representative catena 
length is the length to be used when representing a hillslope as a series of rectangles with 
constant width (as in the WEPP model). The representative catena profile describes the 
gradient along the respective hillslope. 
 
Representative catena length 
Cochrane & Flanagan (2003) present the ‘Chanleng”- and ‘Calcleng”-method for the 
computation of the representative catena length. The Chanleng-method (calculation of catena 
length based on area and length of adjacent channel) is restricted to hillslopes draining to the 
sides of channels (i.e. no headwater slopes). It also requires the determination of the length of 
the adjacent channel reach, is consequently very sensitive to the resolution of the used raster 
map. Therefore, the Calcleng-method (calculation of catena length based on flowpath lengths) 
was chosen, which is independent of the calculation of the channel length. The original 
Calcleng-method is based on the processing of all flowpaths in the hillslope. For the easier-to-
perform cell-based calculation, this translates to: 
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where 
L : representative catena length [m] 
m  : number of cells which have no upslope contributing area [-] 
lc  : flowpath length from current cell to river as contained in map ‘flowpath length” [m] 
ac  : area of flowpath [m2] 
with 

cc la ≅  eq. 2 

which allows the calculation of L for each EHA. L determines the distance from the bottom of 
the hillslope at which the representative profile (computed below) is truncated. Fig. 4 
illustrates the results of the calculation of the representative length for an example EHA. 
 
Representative catena profile 
For the calculation of the representative morphometric profile, the ‘Linear Average 
Representative Slope Profile” method is used. According to Cochrane & Flanagan (2003), this 
method produces results which are not significantly different from more elaborate methods 
such as the ‘Exponentially Transformed Average Representative Slope” and ‘Weighted 
Average Representative Slope Profile”. 
When generalising this concept, a representative value not only for slope but for any other 
attribute can be computed for each point along the representative catena. Again, the original 
calculation is based on the flowpaths within the hillslope. It implies that each single cell 
within the hillslope is considered as many times as it is a member of a flowpath. This is equal 
to weighting a cell’s value by the flowpath density at this cell:  
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where 
Ai : value of attribute of mean catena at the distance i from the channel 
n : number of cells in hillslope with distance i from the channel [-] 
a : value of attribute at given cell 
fdc : flowpath density at given cell [-] 
 
Flowpath density at each cell c is approximated as: 

cc fafd ≅  eq. 4 

where fa is the flow accumulation (upslope contributing area) derived before. 
The above calculation of the longitudinal profile uses relative elevation rather than slope as 
used by Cochrane & Flanagan (2003), because the former is independent of the choice of 
slope calculation methods and thus more robust than the derivative slope (Evans 1990).  
For quantitative attributes, eq. 3 can be applied directly. For each categorical attribute with r 
classes, eq. 3 is processed r times for each class separately. Thus, a mean probability or 
fraction for each class is computed for every distance i from the channel (see section 
‘Classification of catenas” for details). 
Fig. 4 depicts the results of the calculation of the mean catena profile for an EHA. 
 
Additionally derived hillslope properties 
For each EHA, the cumulative density of the number of cells denscum is calculated as:  

|},...,{|)( 21 kcum ccckidens ==  eq. 5 

where cindex are all cells with  
iclengthflowpath index ≤)(_  eq. 6 

denscum is a measure of the distribution of hillslope area as a function of its distance from the 
river. The gradient of this function describes hillslope width. Thus, the areal convergence of 
EHAs, i.e. the change in width along the length, can be captured (see Fig. 4). This attribute 
can be used in the classification process and for hillslope parameterisation if required by the 
model. 
 
[Insert fig 4 about here] 
 
Fig. 4: Example of a representative catena computed from an EHA. Black dots mark individual cells 
within the EHA. The coarsely dashed vertical line denotes the representative length, which determines the 
top end of the mean catena profile (bold line). 
 
For each EHA, the representative catena and its attributes is finally resampled to the 
resolution of the DEM and passed to the classification process. 

2.2.4. Limitations 
The concept of describing a three-dimensional landscape by using two-dimensional catenas is 
necessarily a simplification. Although the calculation of hillslope width along the length of 
the catena preserves some characteristics of the three-dimensional reality, this will hardly 
reflect the true process of flow concentration downhill, especially because the calculated 
hillslope width generally increases downslope. This ‘convergence paradox” (Boogart & 
Troch, 2006) can explicitly only be dealt with if the resolution of the DEM allows the 
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identification of individual flow concentrating features at the hillslope. Alternatively, flow 
concentration may be treated implicitly within the model (e.g. Güntner & Bronstert 2004). 
The number of cells within an EHA decreases with its size. Therefore, the calculation of the 
representative catena becomes more sensitive to the value of a single (possible erroneous) 
cell. On the other hand, very large EHAs may average over distinct hillslope types as 
described in section ‘Delineation of EHAs”, which will lead to averaged and probably not 
very representative catenas. 
 

2.3. Classification of catenas, generation of toposequences 

2.3.1. Concept 
The previous step produced a representative catena for each EHA. The length and relative 
elevation gain (difference in elevation between top and foot) of these catenas varies, as does 
the number of their respective catena points from discrete sampling, depending on the output 
resolution of the previous step. Beside the morphometrical data, a set of various supplemental 
attributes (quantitative and/or categorical) can optionally be associated to each point of a 
catena (as with ‘LAI’ and ‘soils’ in Tab. 1). 
Tab. 1: Example properties of three (hypothetical) catenas, as returned by the derivation of representative 

catenas 
[Insert tab 1 about here] 
 
LUMP classifies all catenas into a given number of classes using cluster analysis. The 
attributes used in the clustering process are: 
 horizontal and vertical length (elevation gain relative to foot of catena, expressed as single 

values for each catena) 
 shape of hillslope profile, and 
 sets of supplemental attributes, stored for each point along the catena, that further 

characterise hillslope properties. 
The classification is not limited to a single value for each catena but regards attribute 
characteristics along the hillslope. LUMP enables the classification considering multiple 
attributes with different physical units or categorical data: The successive classification runs 
perform the classification for each single attribute separately, with the final class assignment 
resulting from the intersection of the single classification steps. 

2.3.2. Algorithm 
In cluster analysis, ‘similarity” of two objects is measured with the help of their distance in a 
multi-dimensional vector-space. Therefore, as a first step all catenas are resampled to a unit-
resolution by converting all catenas to the same number of catena-points using linear 
interpolation which allows their representation as vectors with the same number of elements. 
The median of the number of sampling points of the catenas is used for determining the 
number of points u_res in the unit-resolution.  
For categorical (i.e. classified) supplemental data, the class-ID merely reflects the 
membership of a certain class but is numerically meaningless as a quantitative measure. 
Therefore, any categorical attribute with n classes is internally converted to a vector v of the 
length n. The relatedness to class m is expressed as a fraction stored at the m’th component of 
v. This concept allows for incorporating the occurrence of multiple classes at one point (e.g. at 
catena point 1 soil classes D and E were encountered). It also enables the resampling 
described above by interpolation fractions and allows including the supplemental data in the 
clustering process. Tab. 1 and Tab. 2 illustrate this concept. 
 
[Insert fig 5 about here] 
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Fig. 5: 60 catenas, resampled to a unit resolution of 10 catena points and normalized (example from Ésera 
catchment) 
The elevation profiles of the resampled catenas is then normalised to a vertical extension of 
unity. This conversion results in an attribute vector which holds the normalised ‘shape” of the 
hillslope profile and will further be referred to as the shape-attribute. The true horizontal 
length and the elevation gain are stored as separate attributes of the catena. Tab. 2 gives an 
example of the internal representation of all attributes of the resampled catena 1. 

Tab. 2: Internal representation of catena 1 (see Tab. 1) after resampling. 
[insert tab 2 about here] 
 
For each attribute included, LUMP classifies the set of catenas into the specified number of 
classes. Increasing the number of classes for an attribute considered predominant allows the 
user to force the algorithm to produce a more detailed classification with regard to that 
attribute. On the other hand, attributes which are, e.g., set to produce one class only, will not 
contribute to a further partitioning of the dataset (e.g. attribute ‘LAI’ in the example given in 
Tab. 3 is not used to further partition the dataset). The catena attributes ‘Horizontal length’ 
and ‘Elevation gain’ are treated together as a composite attribute (further referred to as xy-
extent) as a measure of catena extent and mean slope. An adjustable weighting factor facy 
multiplying ‘Elevation gain’ allows emphasizing this element of the two-element vector cxy. 
All other attributes are represented in ca containing the attribute values along the entire 
catena:  

where nclasses(a) is the number of classes of the attribute, which is 1 for all quantitative data. 
The final class membership of a catena results from the unique combination of the successive 
classification assignment according to each attribute (Tab. 3). Thus, all catenas with an 
identical classification assignment throughout all attributes are finally to the same class. 

Tab. 3: Example of successive classification of 4 catenas with 4 attributes 
[insert tab 3 about here] 
 
LUMP uses either an unsupervised K-means clustering algorithm to produce the number of 
classes specified by the user or a supervised cluster algorithm based on pre-defined end 
members. Both options use squared Euclidean distances. 
A dendrogram, the silhouette coefficient and a silhouette plot (Kaufman & Rousseeuw 1990) 
can give a visualisation of the quality of the separation and the distinctiveness of the classes. 
Since each node in the dendrogram represents a split of the respective subgroup, this figure 
can be a guide in selecting an appropriate number of classes for the given task and attribute. 
The vertical distance of the nodes usually decrease, indicating that increasing the number of 
classes yields progressively less improvements in the classification of the dataset. 
A representative toposequence for each resulting class is computed by averaging the catena 
attributes of the members of the respective class:  

where a_ts(k)j refers to the jth attribute of the toposequence representing class k. hk is an index 
to all catenas belonging to class k. 
The toposequences are then passed for further processing to the partitioning module (see 
following section) and stored for inclusion in input files of the model. 
 
[Insert fig 6 about here] 
 

cxy= 
 

};{ yyx LfacL ⋅  eq. 7

ca= ])}[,_(...)2,1();1,1({ nanclassesresuaaa  

a_ts(k)j=mean[a(hk)j] eq. 8
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Fig. 6: 518 catenas classified into 9 classes (3 classes in attribute shape, 3 classes in attribute xy-extent)  
The classification results are re-imported into the GIS by re-classifying each EHA according 
to the membership of its representative catena (Fig. 7). 
 
[Insert fig 7 about here] 
 
Fig. 7: Example of delineated LUs as a result of a classification 

2.3.3. Limitations 
Resampling the catenas implies a loss of information for catenas of which the number of 
catena points is reduced. On the other hand, catenas with few points are internally resampled 
to a higher resolution. Thus, their number of catena points is increased, although the actual 
information is not that detailed. 
Currently, the user has to specify the number of classes to be produced for each attribute. A 
silhouette plot and the dendrogram can help with choosing this number appropriately. An 
automatic selection of the number of classes will be added to future versions of LUMP. 
An advantage of the applied method is the optional inclusion of multiple layers of 
supplemental information into the classification process. This option, however, also requires a 
certain amount of expert knowledge to adjust the respective number of classes accordingly. It 
is the responsibility of the user to choose appropriate numbers to produce LUs that are 
meaningful with regard to the intended modelling purpose. 
 

2.4. Partitioning of the toposequences of the LUs into terrain components (TCs) 

2.4.1. Concept 
The classification step produces one representative toposequence for each LU. To describe 
different segments within the hillslope, the toposequences can further be partitioned into 
terrain components (TCs). A TC is an idealised representation of a continuous part of the 
toposequence having uniform slope and distinct characteristics of supplemental attributes. The 
algorithm sub-divides each toposequence into a user-specified number of TCs by delineating 
parts according to the definition above. Besides slope gradients, each available supplemental 
attribute can be included into the partitioning process. For each attribute a the respective 
weighting factor facTCa has to be specified. This weighting scheme allows including multiple 
attribute of different physical units. 

2.4.2. Algorithm 
Each toposequence is converted into a matrix M (u_res x nrows) so that each column contains 
the entire set of attributes for one point of the toposequence. nrows is a function of the 
number of attributes na’ at each point of the toposequence: 
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1
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a
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The user-specified weighting factor faca of each attribute a is adjusted according to eq. 10 to 
ensure consistent weighting independent of the number of classes used in categorical 
attributes: 

where ncompa denotes the number of components the attribute uses and nclassesa is the 
number of classes of the attribute, which is 1 for all quantitative data. Attribute weighting is 
performed by multiplying each row of M with the resulting weighting factor facTCa

*. 
Tab. 4: Internal representation of a toposequence for TC-partitioning with all weighting factors set to 1. 
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[Insert tab 4 about here] 
LUMP employs an optimisation towards minimum variance for delineating similar parts 
within a toposequence. This method partitions the toposequence in a way that the overall 
variance vo,p within the nTC TCs is minimised throughout all possible permutations of 
partitionings p: 

vo,p

 

∑
=

⋅=
rcn

j
jj TCl

1
)var(

 |vo,p| Min→  
eq. 11

The factor li is a weighting term that equals the length of the respective TC.  
The overall variance vo of a given partition p is a vector of nrows elements. Each element 
contains a single variance value, computed from weighted sum of variances of one 
attribute.To compare the vo,p of different partitionings p the vector-norm of vo,p is used. 
 
[Insert fig 8 about here] 
 
Fig. 8: An example toposequence of a LU, partitioned to 5 TCs based on minimisation of variance 

2.4.3. Limitations 
The choice of an adequate number of TCs has to be made by the user, pondering the 
contradicting demands of an appropriate representation and a reasonable generalisation. Thus, 
it is a function of the landscape characteristics and the requirements and capabilities of the 
target model and has to be adjusted accordingly. 
For sub-dividing the toposequence into TCs, the slope data are incorporated into the 
algorithm. The slope at each point of the toposequence is calculated from the horizontal 
spacing and the elevation gain to the next uphill point. At the most uphill point of the 
toposequence, however, the previous downhill point must be used, because no uphill point is 
available. 
The TC-concept allows the occurrence of several soil and vegetation classes within a TC. In 
theory, a hillslope segment with constant slope and soils A and B alternating exactly at each 
point of the toposequence is conceptually a TC with uniform soil characteristics. This 
hypothetical example, however, has a rather high variance component for the soil attribute 
which might spuriously force the described algorithm to split this hillslope segment into 
several TCs. 

3. Example application and discussion 

3.1. Study area 

An example run of LUMP was performed for the Ésera catchment (Central Spanish 
Pyrenees), which is located at about 42°20’N and 0°30’E. The catchment, with an area of 
1231 km², is part of the Ebro Basin and is characterised by heterogeneous relief, vegetation 
and soil characteristics. Elevation increases from 430 m in the southern and central parts of 
the catchment (Intermediate Depression and Internal Ranges) to up to 3000 m asl in the 
northern parts (Axial Pyrenees, Valero-Garcés et al. 1999, see Fig. 9, left). The climate is a 
typical Mediterranean mountainous type with mean annual precipitation rates of 600 to 
1200 mm and an average potential evaporation rate of 550 to 750 mm, both rates showing a 
strong south-north gradient due to topography. The vegetation includes deciduous oaks, 
agriculture, pastures and mattoral in the valley bottoms, evergreen oaks, pines and mattoral in 
the higher areas (see Fig. 9, center). While the northern parts are composed of Paloeozoic 
rocks, Paloegene and Cretaceous sediments, the lower parts are mainly dominated by 
Miocene continental sediments. These areas consist of easily erodible materials (marls, 



 11

sandstones, carbonates), leading to the formation of badlands (Fig. 9, right) and making them 
the major source of sediment within the catchment (Fargas et al., 1996). 
 
[Insert fig 9 about here] 
 
Fig. 9: relief (left), land use (center) and occurrence of badlands (right) in the Ésera catchment, NE-Spain 

3.2. Application of LUMP, results 

Aiming at the parameterisation of a hydrological and sediment transport model, the geospatial 
data of elevation (30-m-DEM derived from ASTER imagery), the mean LAI (derived from 
the land use map, C.H.E 1998) and the occurrence of badlands (derived from orthophotos) 
were assumed important proxies for runoff and sediment dynamics and processed with the 
LUMP algorithm. Based on the delineation of the catchment into 930 EHAs, representative 
catenas were derived as described in the methods section. LUMP was configured to classify 
the catenas into three classes regarding the attributes hillslope-shape, xy-extent, LAI and into 
two classes with regard to badland-occurrence. 
Of the 54 (3x3x3x2) possible LU-classes, 42 classes resulted. The final LU-delineation is the 
intersection of the four maps below (Fig. 10a-d), but for legibility, the map is displayed for 
each of the attributes with classes of similar properties grouped within the same shade. 
 
[Insert fig 10 about here] 
 
Fig. 10: LUs delineated by LUMP, grouped by similar classes within the attributes shape (a), xy-extension 
(b), LAI (c) and badland occurrence (d) 
The LU-delineation viewed according to the attributes xy-extent, LAI and badland-occurrence 
(Fig. 10b-d) show clear correlations with the input maps of the respective attribute (Fig. 9). 
The central to southern parts of the catchment are covered by LUs with flat hillslope profiles, 
steeper and longer catenas are only found in the northern parts. This distribution matches the 
actual properties of the catchment. The LAI-aggregated map of the LUs (Fig. 10c) resembles 
the land use map with LUs of high LAI mainly located in woodland areas and low-LAI LUs 
to be found in the valley bottoms where agriculture and pastures prevail. The spatial 
resolution of the LU-map is considerably coarser than the land-use map as an effect of the 
minimum size of the EHAs, the low number of three classes used for this attribute and the 
resulting averaging effects. This also explains the characteristics of the LU-map with regard 
to badland occurrence (Fig. 10d). The general location of the badland areas and their 
distribution is reproduced adequately by the LU-map, but the level of detail is reduced during 
the upscaling process. 
The quality of the representation of the shape-attribute is difficult to assess from Fig. 10a. 
Therefore, the LUs were aggregated by shape and xy-extension class, resulting in nine 
classes. The respective areas were re-analysed as described in the section 2.2. This procedure 
allows a visual validation of the distribution of hillslope properties within the delineated LUs, 
which are supposed to be similar in shape and xy-extent within a class. Furthermore, the 
consistency of the algorithm can be assessed by comparing the properties of the 
toposequences (generated by LUMP) and the representative catenas (derived directly from the 
assigned area of each LU using eq. 1 and eq. 3). 
 
[Insert fig 11 about here] 
 
Fig. 11: Mean toposequences of aggregated LUs (LUMP output) and representative catenas derived 
directly from the LU-areas 
In Fig. 11, the 3 classes of the shape-attribute (straight, concave, convex) are arranged 
column-wise, the xy-extent-attribute (short-flat, long-flat, long-steep) is ordered in rows. 
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Comparing the different scatter-characteristics of all the cells in each of the nine LU-
aggregations, it can be concluded that LUMP partitioned the catchment into distinctive 
classes. There however, remains a large variation in the hillslope morphometry within each 
LU, especially in the case of the combination concave/long-steep. This fact indicates that the 
low number of 3-by-3 classes for hillslope-morphometry (chosen for illustrative purposes) 
results in LU-classes that still comprise a considerable variety of morphometrical hillslope 
types. In order to represent the wide range of hillslope types in the catchment, more LU-
classes are recommended to decrease the variance within the LUs.  
Fig. 11 shows that the toposequences of the LUs closely resemble the representative catenas 
derived from the re-analysis of the respective areas. Slight deviations are only evident at the 
upper parts of some LUs. Thus, the algorithm proves to be consistent because it delineates 
LUs and produces respective toposequences that are equivalent to representative catenas that 
are derived directly from these areas. 

3.3. Discussion 

Although the delineation of LUs and the derivation of toposequences produced plausible and 
consistent results, their appropriateness is ultimately to be judged by the performance of 
model applications. The performance of the LUMP results as model input will strongly 
depend on the selected landscape attributes and the number of classes into which each 
attribute is classified. Test runs with the hydrological model WASA for the Ésera catchment 
suggest that simulation results in terms of river runoff are sensitive to shifts in the 
classification focus between attributes and to the resulting modelling units and parameters at 
the sub-basin scale (in average 75 km² in size), while this was not the case at the basin scale 
(1231 km²) (Francke et al. 2006). 
Little experience yet exists for selecting the appropriate number of classes into which a 
specific landscape attribute should be classified. For hillslope erosion, some authors tried to 
quantify the relative importance of multiple process factors (e.g. Curtis et al. 2005, Schoorl et 
al. 2004). Scherrer & Naef (2003) classified various soil and terrain attributes according to 
their role for runoff generation processes. These findings may give an indication as to which 
attributes are to be included in the classification in great detail, i.e., in many classes. The 
transferability to other catchments, however, remains uncertain. 
Moreover, the optimal set of class numbers will depend on the model used and its particular 
process representation. A model that does not consider a certain attribute in its process 
parameterisation is unlikely to improve performance when this attribute is resolved in great 
detail in the delineation process. Furthermore, the target variable (e.g. runoff coefficient, 
sediment yield) for which the simulation is to be optimised will likely affect the choice of 
attributes to be included and their number of classes in the classification. The investigation of 
the relations between model performance and the number of classes for different attributes for 
a given model and target variable is a future task and is beyond the scope of this study. 
An unresolved problem remains the definition of the hillslope extent and the length of its 
representative catena. Saying that the hillslope should reach from the watershed divide down 
to the river, the determination of its length encompasses a scale problem, i.e., it depends on 
the resolution of the available river network information. This, in turn, depends either on the 
scale of an existing river network map or on the user-defined threshold to indicate at which 
flow accumulation value the river network starts when generating by means of GIS analysis. 
The lack of an unbiased definition for the initiation point of a river is an inherent problem 
when deriving parameters like hillslope length (Schmidt & Dikau 1999). Conceptually, the 
threshold should aim at separating the ‘hillslope” and ‘river” domain according to the 
prevailing transport processes and how they are most suitably represented by the respective 
model equations. 
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4. Conclusions 

LUMP is a tool for the semi-automated delineation of landscape units and their partitioning 
into terrain components. It facilitates the preparation of spatial data for the application of 
semi-distributed, hillslope-based models and ensures reproducible results. LUMP allows for 
including expert knowledge by incorporating various landscape attributes and by ‘weighing’ 
them by a large number of classes according to the perceptual understanding of their impact 
on catchment processes. Thus, it overcomes several shortcomings of the discretisation 
strategies currently used in semi-distributed modelling: the hillslope-based parameterisation 
becomes feasible for larger spatial domains due to the automated algorithm while ensuring 
reproducible results by reducing subjective decisions. 
The LUMP algorithm derives representative hillslope parameters and upscales the hillslope 
properties with the help of landscape units. In this way, the delineation of modelling units and 
their parameterisation can be performed automatically for meso- to large scale catchments 
where a manual procedure is unfeasible and upscaling is mandatory. In contrast with methods 
based on mere intersection of multiple layers, LUMP preserves information on the 
distribution of landscape parameters in relation to the river network and their topographic 
position and thus allows for addressing connectivity issues in model applications. 
In the presented application example, LUMP showed a satisfying capability of delineating 
LUs. Depending on the chosen attributes and respective number of classes, different spatial 
discretisation schemes of the same study area may result. The optimum number of classes and 
the selection of attributes depend on the choice of the model used and the target variable for 
which the calculation is to be optimised. LUMP provides new opportunities for further 
research on this subject because it allows the efficient and reproducible investigation of the 
effects of spatial discretisation in semi-distributed modelling. The implications of applying 
the LUMP-derived results in meso-scale hydrological and sediment modelling are currently 
being investigated. 
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Figure Caption 
 
Fig. 1: Explanation of terminology: landscape units (LUs) are homogenous parts of the 
catchment, represented by toposequences that consist of terrain components (TCs).  
[A: catchment boundary; B: river; C: example of an elementary hillslope area (EHA)] 
  
Fig. 2: Steps performed in the LUMP process with reference to the respective section in this 
paper in brackets 
  
Fig. 3: Example of a delineation of a catchment into 660 elementary hillslope areas (Ésera 
basin, North-Eastern Spain, basin area: 1231 km²) 
  
Fig. 4: Example of a representative catena computed from an EHA. Black dots mark 
individual cells within the EHA. The coarsely dashed vertical line denotes the representative 
length, which determines the top end of the mean catena profile (bold line). 
  
Fig. 5: 60 catenas, resampled to a unit resolution of 10 catena points and normalized (example 
from Ésera catchment) 
  
Fig. 6: 518 catenas classified into 9 classes (3 classes in attribute shape, 3 classes in attribute 
xy-extent)  
 
Fig. 7: Example of delineated LUs as a result of a classification 
 
Fig. 8: An example toposequence of a LU, partitioned to 5 TCs based on minimisation of 
variance 
 
Fig. 9: relief (left), land use (center) and occurrence of badlands (right) in the Ésera 
catchment, NE-Spain 
     
Fig. 10 : LUs delineated by LUMP, grouped by similar classes within the attributes shape (a), 
xy-extension (b), LAI (c) and badland occurrence (d) 
  
Fig. 11: Mean toposequences of aggregated LUs (LUMP output) and representative catenas 
derived directly from the LU-areas 
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Table Caption 
 
Tab. 1: Example properties of three (hypothetical) catenas, as returned by the derivation of 
representative catenas 
 
Tab. 2: Internal representation of catena 1 (see Tab. 1) after resampling. 
 
Tab. 3: Example of successive classification of 4 catenas with 4 attributes 
 
Tab. 4: Internal representation of a toposequence for TC-partitioning with all weighting 
factors set to 1. 
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Fig. 1: Explanation of terminology: landscape units (LUs) are homogenous parts of the catchment,
represented by toposequences that consist of terrain components (TCs). 
[A: catchment boundary; B: river; C: example of an elementary hillslope area (EHA)]

Fig. 2: Steps performed in the LUMP process with reference to the respective section in this paper in
brackets

Delineation of elementary hillslope 
areas (EHA) (2.1)

Derivation of representative catena for 
each EHA (2.2)

Classification of catenas,
Generation of toposequences (2.3)

Creation of map of LUs

Partitioning of toposequences into 
TCs (2.4)

Landscape Parameterisation,
Model input files
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Fig. 3: Example of a delineation of a catchment into 660 elementary hillslope areas (Ésera basin, North-
Eastern Spain, basin area: 1231 km²)
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Fig. 4: Example of a representative catena computed from an EHA. Black dots mark individual cells
within the EHA. The coarsely dashed vertical line denotes the representative length, which determines the
top end of the mean catena profile (bold line).
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Fig. 5: 60 catenas, resampled to a unit resolution of 10 catena points and normalized (example from Ésera
catchment)

0

200

400

600
straight concave convex

sh
or

t

0

200

400

600

re
l. 

el
ev

at
io

n 
[m

]

lo
ng

-fl
at

0 1000 2000 3000
0

200

400

600

0 1000 2000 3000
flowpath length [m]

0 1000 2000 3000

lo
ng

-s
te

ep

Fig. 6: 518 catenas classified into 9 classes (3 classes in attribute shape, 3 classes in attribute xy-extent) 
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Fig. 8: An example toposequence of a LU, partitioned to 5 TCs based on minimisation of variance



Fig. 9: relief (left), land use (center) and occurrence of badlands (right) in the Ésera catchment, NE-Spain



Fig. 10 : LUs delineated by LUMP, grouped by similar classes within the attributes shape (a), xy-extension
(b), LAI (c) and badland occurrence (d)
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Fig. 11: Mean toposequences of aggregated LUs (LUMP output) and representative catenas derived
directly from the LU-areas
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Soil 
D Soil E

1 1 2025 9.1 0 0 0 0.5 0.5 
1 2 2026 6.2 0.4 0 0 0.2 0.4 
1 3 2108 3.0 0.4 0 0 0.2 0.4 
1 4 2145 2.0 0 0.2 0 0.2 0.6 
1 5 2211 3.0 0 0 0 0.6 0.4 
2 1 2163 4.6 0.5 0 0.25 0 0.25 
2 2 2229 2.5 0.25 0 0.5 0 0.25 
2 3 2281 6.5 0.6 0 0.2 0 0.2 
2 4 2352 2.7 0.2 0 0 0.6 0.2 
2 5 2394 4.5 0.2 0 0 0.2 0.6 
2 6 2470 3.3 0.4 0 0 0.4 0.2 
2 7 2556 1.5 0.2 0 0 0.6 0.2 
2 8 2637 1.5 0.2 0 0 0.2 0.6 
3 1 1528 10.2 0 0 0 0.2 0.8 
3 2 1592 6.5 0 0 0 0.4 0.6 
3 3 1816 5.5 0 0 0.2 0.6 0.2 
... 

Tab. 1: Example properties of three (hypothetical) catenas, as 
returned by the derivation of representative catenas 

 
 
 

Tab. 2: Internal representation of catena 1 (see Tab. 1) after resampling. 
Fraction 

 
Catena 
point, 
resampled 

Horizontal 
length Shape LAI 

Soil A Soil B Soil C Soil D Soil E
1 482.80 0.00 9.10 0.00 0.00 0.00 0.50 0.50 
2  0.00 7.10 0.28 0.00 0.00 0.32 0.40 
3  0.12 5.34 0.40 0.00 0.00 0.20 0.40 
4  0.34 3.78 0.40 0.00 0.00 0.20 0.40 
5  0.38 3.55 0.35 0.00 0.00 0.15 0.50 
6  0.45 3.38 0.35 0.00 0.00 0.15 0.50 
7  0.49 2.76 0.30 0.05 0.00 0.20 0.45 
8 0.59 2.27 0.11 0.15 0.00 0.20 0.55 
9 

Elev. gain 
0.76 2.31 0.00 0.14 0.00 0.32 0.54 

10 186.00 1.00 3 0.00 0.00 0.00 0.60 0.40 
 
 

Tab. 3: Example of successive classification of 4 catenas with 4 attributes 
 Attribute     

Catena 
ID 

horizontal length, 
elevation gain shape LAI soil final 

classification 

 (2 classes) (3 classes) (1 class) (2 classes) (<= 2x3x1x2 
classes) 

1 1 1 1 1 1 



2 2 2 1 2 2 
3 1 3 1 2 3 
4 1 1 1 1 1 
…      
 
 
 

Tab. 4: Internal representation of a toposequence for TC-partitioning with all weighting 
factors set to 1. 

toposequence 
point 1 2 3 4 5 6 7 8 9 10 

Slope 0.00 0.10 0.18 0.13 0.08 0.14 0.20 0.20 0.18 0.13 
LAI 9.1 7.1 5.3 3.8 3.6 3.4 2.8 2.3 2.3 3.0 
Soil A 0 0.28 0.4 0.4 0.35 0.35 0.3 0.11 0 0 
Soil B 0 0 0 0 0 0 0.05 0.15 0.14 0 
Soil C 0 0 0 0 0 0 0 0 0 0 
Soil D 0.5 0.32 0.2 0.2 0.15 0.15 0.2 0.2 0.32 0.6 
Soil E 0.5 0.4 0.4 0.4 0.5 0.5 0.45 0.55 0.54 0.4 
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