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S U M M A R Y
In this paper the new GFZ Reference Internal Magnetic Model (GRIMM) is presented. The
model has been derived from nearly 6 yr of CHAMP satellite data and 5 yr of observatory
hourly means. At high latitudes, full vector satellite data are used at all local times which
allows a separation between, on one hand, the fields generated by ionosphere and field aligned
currents, and, on the other hand, the fields generated in the Earth’s core and lithosphere. This
selection technique leads to a data set without gaps during the polar summers resulting in a core
field model that has an unprecedented time resolution. The modelled static core field, secular
variation and lithospheric field are all in good agreement with previously published magnetic
field models. Order five B-splines are used to model the variation in time of the core field.
The energy in the secular acceleration has, therefore, a smooth behaviour in time and increases
continuously from 2003.5. Mapping the field acceleration from 2001.5 to 2005.5 reveals its
rapid and complex evolution over this time period at the Earth’s surface. Due to the applied
regularization technique, the acceleration energy in spherical harmonics 6–11 is significantly
larger than for other models and we show that such a spectrum is acceptable.

Key words: Satellite magnetics.

1 I N T RO D U C T I O N

The successive launch of the Ørsted, Champ and SAC-C magnetic survey satellites in the recent years has resulted in a significant improvement

in the quality of Earth’s magnetic field models. The recently published satellite-based models are POMME-3 (Maus et al. 2006), CHAOS (Olsen

et al. 2006) and its recent extension xCHAOS (Olsen & Mandea 2007b), and BGS/G/L/0706 (Thomson & Lesur 2007). They usually describe

the core field and its secular variation, the field generated in the lithosphere and the large-scale external fields assumed to be generated in the

magnetosphere. The level of noise in most of these models slowly increases with the spherical harmonic (SH) degrees to reach unacceptable

values around degree 50 for the lithosphere, around degree 12 for the core field secular variation (SV ) and at degree 4 or 5 for the core field

secular acceleration (SA). The altitude of the CHAMP satellite is low enough and the data dense enough to build higher resolution models

and, if we are unable to do so, it is because of the level of noise in the data. This noise is generally attributed to a poor representation of fields

varying rapidly in time as are the fields generated in the magnetosphere, in the ionosphere and by field aligned currents (FAC).

With the exception of the BGS model, all the above models use exclusively total intensity (F) data over the polar regions. This approach

limits in the data set the signal associated with FAC that is mainly in the direction perpendicular to the main magnetic field. The BGS model

uses the data component along the direction of a pre-defined field model with the same expected effect. However, as indicated by Le Mouël

et al. (2003), the signal associated with FAC may not be fully removed by this process. For the ionosphere, the generated magnetic field has a

significant component along the main field direction and, therefore, can be clearly seen in F data. To limit the ionospheric contributions in these

data, the usual approach consists of selecting high latitude F data only during the polar winters. This approach has been used successfully to

build models from Ørsted, CHAMP and SAC-C data, but it clearly limits their resolution in time at high latitudes as there is no night time data

over the polar regions for a large part of the year. It is unlikely that the forthcoming Swarm constellation will help to solve these difficulties,

so we therefore, need to use high latitude data at all local times, even during summers when the polar areas are sunlit. Under such conditions

vector data are required in order to separate the fields generated in the ionosphere and by FAC from the core and lithosphere magnetic fields.

Here we introduce the new GFZ Reference Internal Magnetic Model (GRIMM), built exclusively from vector magnetic data, our main goal

being to describe with better temporal resolution the core magnetic field behaviour. We also attempt to reduce the level of noise in mid and low

magnetic latitude data by selecting data exclusively in directions where the ring current signal is small. To achieve this, the vector magnetic

data, originally in the North, East, Center (NEC) coordinate system, have to be rotated into the Solar Magnetic (SM) Cartesian coordinate
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system (i.e. the system of coordinates where the Z-axis is pointing North along the Earth’s dipole axis and the Y -axis is perpendicular to the

Earth–Sun line towards dusk) and then data in the Z (SM) direction are rejected.

As the main focus of the new GRIMM model is to describe the core field and its variation in time, we have been particularly careful to

build a model with an acceptable behaviour at the core–mantle boundary (CMB). We pay special attention to the years 2002–2005 and see

how well the SV at the Earth’s surface (Mandea & Olsen 2006) and the geomagnetic jerks (Olsen & Mandea 2007a,b) are described by the

new model. The time span of validity for this new model is roughly the same as CHAOS or POMME-3. As for CHAOS, or its recently updated

version xCHAOS (Olsen & Mandea 2007b), we built a model using B-splines to achieve a high resolution in time. In these latter models, the

cubic B-spline core field time parametrization leads to a SA that varies like a degree 1 polynomial in time in between nodes. This is clearly not

an ideal parametrization as the amplitude of the acceleration tends to reach a maximum at the node points and then becomes unrealistically

large. To circumvent this problem order five B-splines are used in GRIMM (order four B-splines are cubic B-splines). In evaluating GRIMM,

comparisons with xCHAOS are systematically shown. Although the parametrization of these models is similar in several aspects, the data

sources and the way these data are handled are radically different. Differences are to be expected between the models particularly over

polar areas where GRIMM should be more robust. We also expect GRIMM to have a smoother and more realistic evolution of the secular

acceleration in time.

As the expressions of the magnetic field in geocentric Cartesian coordinate system are not commonly used, these are given in the next

section (see also Winch 1968) together with some properties of the field. The third section is dedicated to the data selection and the next one

to the model parametrization and estimation. Results are discussed in the section five, and conclusions are made in the last section.

2 T H E O RY

In the absence of magnetic sources, the geomagnetic field can be presented as the negative gradient of a potential: B p =−∇ V (θ , φ, r , t). The

source of this poloidal field can be internal or external in origin, and the associated potentials V i and V e, are described on a spherical surface

by:

Vi (θ, φ, r, t) = a
∑
l,m

(
a

r

)l+1

gm
l (t)Y m

l (θ, φ) (1)

Ve(θ, φ, r, t) = a
∑
l,m

(
r

a

)l

qm
l (t)Y m

l (θ, φ), (2)

where θ and φ are the colatitude and longitude, a = 6371.2 km is the reference radius, Ym
l (θ , φ) are the usual Schmidt normalized spherical

harmonic (SH) functions and gm
l (t), qm

l (t) are the Gauss internal and external coefficients. We use here the convention that negative orders

(m < 0) are associated with sin (m φ) terms, whereas zero or positive orders (m ≥ 0) are associated with cos (m φ).

What follows is divided in three subsections: we justify first different aspects of the data selection technique used at mid and low latitudes,

the modelling techniques are then presented for the fields generated by FAC and finally for the fields generated in the high latitude ionosphere.

2.1 Vector component selection at mid and low latitudes

We consider the direction Z of the geocentric Cartesian coordinate system (i.e. ≈ the Earth’s rotation axis), and assume an optimal distribution

of vector data at satellite altitude such that a magnetic field model can be robustly built. Let us consider a data set made of the Z component

of the measured magnetic field only. We use here the Z component because the formulae are simpler in that case. As it is explained below, the

results obtained are easily derived for any arbitrary directions by rotation. The magnetic field of external origin in this Z direction is given by:

Be
pZ = − cos θ ∂r Ve(θ, φ, r, t) + sin θ

1

r
∂θ Ve(θ, φ, r, t) (3)

which leads to:

Be
pZ = −

L∑
l=1

l∑
m=−l

(
r

a

)l−1

qm
l (t)

√
(l + |m|)(l − |m|) Y m

l−1(θ, φ). (4)

The external field is generally assumed to be large scale and generated mainly in the magnetosphere which justifies the use of L = 2 as the

maximum SH degree. If we consider only the first degree (l = 1), it follows that the normalization factor under the square root vanishes for

m = l, that only the order m = 0 is possible and, therefore, only the SH function Y 0
0(cos θ ) is involved. This function is a constant in space,

so as expected, the large scale SH degree 1 external field along the Z direction (i.e. associated with q0
1) is a constant in space. The field of

internal origin is given by:

Bi
pZ =

L∑
l=1

l∑
m=−l

(
a

r

)l+2

gm
l (t)

√
(l + |m| + 1)(l − |m| + 1) Y m

l+1(θ, φ). (5)

In this equation for a given degree l the SH function is Y m
l+1(θ , φ) whereas it was Y m

l−1(θ , φ) in the expression (4) of the external field. If the

maximum SH degree L = 2 is an acceptable approximation for the external field, the SH function of ‘highest’ degree in eq. (4) is Y m
1 (θ ),
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whereas in eq. (5) the SH function of ‘minimum’ degree is Y m
2 (θ , φ). Therefore, using only the distribution of Z component data described

above leads to a separation of the internal and external field contributions to the magnetic field.

It should be noted that the full set of external Gauss coefficients cannot be estimated from Z component data alone: it is clear from eq. (4)

that the ql
l(t) cannot be resolved. However, this same data set gives a unique estimation of the internal Gauss coefficients. This is obvious

because the internal Z magnetic field component in eq. (5) is the equation of a band-limited potential on the sphere and the square rooted

normalization factor never vanishes for the set range of l and m values. However, having a unique set of internal Gauss coefficients does

not mean that all gm
l (t) are robustly estimated. Following the same approach as in Lowes (1975) and assuming that for all data the errors are

uncorrelated and have the same variance, it is easy to estimate the variances v z(l, m) of the gm
l (t) computed by least-squares from Z component

data:

vz(l, m) ∝ 2l + 3

(l + |m| + 1)(l − |m| + 1)
. (6)

The variances of the Gauss coefficients are, therefore, dependent on the SH degree and order. The best defined coefficients for a given

SH degree l are the zonal coefficients (i.e. m = 0). They behave asymptotically like 1
l . On the other hand, variances for sectorial Gauss

coefficients (i.e. m = l) are asymptotically independent of the degree l. These variances have to be compared with those obtained when the

three components of the magnetic data vector are used: vxyz(l, m) ∝ 1
(l+1)

(Lowes 1975). These are independent of the SH order m and behave

asymptotically like 1
l . Clearly, the sectorial Gauss coefficients are better resolved at high SH degree if the three components of the magnetic

vector data are used, compared to the Z component only option.

The above properties are indeed invariant by rotation and there is a similar separation of external and internal contributions if data in the

X or Y , or any other constant direction of the Cartesian coordinate system is used. As for the Z component, all the external Gauss coefficients

cannot be resolved. For the variances, if one component only is used, some internal Gauss coefficients or combination of Gauss coefficients

cannot be robustly estimated. The situation is greatly improved if two of the three components of the vector data are used. We give here the

expression for the internal poloidal field in the X and Y directions:

Bi
pX = − 1

2

L∑
l=1

(a

r

)l+2
{√

(l + 1)(l + 2)g0
l (t)Y 1

l+1(θ, φ)

+
l∑

m=1

√
(l + m + 1)(l + m + 2)

[
gm

l (t)Y m+1
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l (t)Y −m−1
l+1 (θ, φ)

]

−
l∑
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√
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l (t)Y −m+1
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]}
(7)
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+
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[
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l (t)Y −m+1
l+1 (θ, φ) − g−m
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. (8)

As before the internal Gauss coefficient variances can be estimated and it is obtained:

vxy(l, m) ∝ 2(2l + 3)

(l + |m| + 1)(l + |m| + 2) + (l − |m| + 1)(l − |m| + 2)
. (9)

The best defined Gauss coefficients are now the sectorial (m = l) and the worst defined are the zonal (m = 0), but in both cases their variances

behave asymptotically like 1
l . For all these variance estimates, it is assumed that the noise in the data set is uncorrelated and independent of

the direction. This is not the case for real data, and therefore, there are no major disadvantages in using only two components of the vector

magnetic data compared with the three-component option. In the data selection process (described below) the component along the internal

dipole axis is rejected at mid and low latitudes as it has the largest level of noise due to the usually poorly modelled ring current magnetic

field. We use the X and Y (SM) components only which, as shown above, leads to a separation of external and internal large scale magnetic

fields and also leads to a robust estimation of the internal Gauss coefficients at all SH degrees.

2.2 Modelling toroidal magnetic fields

Over the polar areas it is not possible to use only two vector data components because they are strongly contaminated by the field generated

by FAC. At satellite altitude rs part of this field is toroidal and is given by: Bt = −r̂ × ∇s�(θ, φ, t), where r̂ is the unit vector in the radial

direction and � (θ , φ, t) is given by:

�(θ, φ, t) = rs

L∑
l,m

αm
l (t)Y m

l (θ, φ). (10)
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These equations, associated with a radial system of current, lead to a purely tangential field that contains all SH degrees up to L and, therefore,

it cannot be separated easily from the internal field, unless the three components of the vector data are used. The SH in eq. (10) can be replaced

by a series of localized functions Fi (θ, φ) (see for example, Lesur 2006) defined by:

Fi (θ, φ) =
L∑

l,m

fl Y m
l (θi , φi )Y

m
l (θ, φ), (11)

where the f l are chosen such that the gradients of the function Fi (θ, φ) vanish rapidly away from its centre (θ i, φ i). If f l �= 0 for all l and if

there is enough of these functions, the expression (10) is equivalent to (see Lesur 2006, for ‘exact equivalence’ rules):

�(θ, φ, t) = rs

∑
i

αi (t)Fi (θ, φ), (12)

where the α i(t) are the coefficients corresponding to the αm
l (t) in eq. (10). In GRIMM their time dependence that includes a constant term and

an annual variation, is defined as:

αi (t) = α0
i + αc

i

1 + cos(2π t)

2
+ αs

i

1 + sin(2π t)

2
, (13)

where t is the time in decimal year.

2.3 Modelling the ionospheric fields

Over the polar regions a model of the field generated in the ionosphere is also needed, and assuming the ionospheric currents are all flowing

on a thin shell of radius rio, they are defined by: Jio = −r̂ × ∇s�(θ, φ, t) where the current function � (θ , φ, t) is given by:

�(θ, φ, t) = rio

L∑
l,m

βm
l (t)Y m

l (θ, φ). (14)

These currents generate a poloidal magnetic field that is, therefore, the negative gradient of a potential V io(θ , φ, r). It is easy to establish (see

for example, Parkinson 1983) that this potential is related to the current function coefficients via:

Vio(θ, φ, r, t) =
{

μ0rio
∑

l,m
l

2l+1
( rio

r )l+1βm
l (t)Y m

l (θ, φ) for r ≥ rio

−μ0rio
∑

l,m
l+1
2l+1

( r
rio

)lβm
l (t)Y m

l (θ, φ) for r ≤ rio,
(15)

where μ0 = 4 π 10−7 Hm−1 is the vacuum permeability. As above, this potential can be written in terms of localized functions:

F̃i (θ, φ, r ) =
{

rio
∑

l,m
l

2l+1
( rio

r )l+1 fl Y m
l (θi , φi )Y m

l (θ, φ) for r ≥ rio

−rio
∑

l,m
l+1
2l+1

( r
rio

)l fl Y m
l (θi , φi )Y m

l (θ, φ) for r ≤ rio

(16)

and therefore:

Vio(θ, φ, r, t) = μ0

∑
i

βi (t)F̃i (θ, φ, r ). (17)

The time dependence of the coefficients β i(t) is here:

βi (t) = β0
i + βc

i

1 + cos(2π t)

2
+ βs

i

1 + sin(2π t)

2
. (18)

Separating the ionosphere contributions from the fields generated by the lithosphere or the core requires the full vector data and also a

sampling of the field at all local time.

3 DATA S E L E C T I O N

The GRIMM model is built using exclusively vector magnetic data. The main motivation for this choice is that we want to use data during polar

summers, and, during these summers, vector data at all local times are necessary to separate fields generated by FAC and in the ionosphere

from the core and lithospheric fields.

From 2001.0 to 2006.0, CHAMP vector data corrected from orientation errors (i.e. data set version 50 as available from the CHAMP

data centre) with acceptable quality flag values are selected between ±55◦ magnetic latitudes such that Interplanetary Magnetic Field (IMF)

z component Bz has positive values, 20 s minimum separate two data points, the local time (LT) is between 23:00 and 05:00 and the sun is

below the horizon up to 100 km above the Earth’s reference radius. The Vector Magnetic Disturbance time-series (VMD), an estimate of the

disturbances due to the large scale external field (Thomson & Lesur 2007), is also used and data are selected if the VMD norm is no larger

than 20nT and the norm of its derivative less than 100 nT d−1. Only the X and Y components in SM coordinate system are used. It was

shown in the previous section that using two components only leads to robust estimates of the internal Gauss coefficients and it has the further

advantage that there is no need to model the field generated by the symmetric ring current.

At high latitudes only (i.e. magnetic latitudes outside the ±55◦ interval) the three components of the magnetic data vector are used. There

is no point using data in SM coordinate system at these latitudes as the ring current is not the main source of noise in the data over polar areas,

therefore, the data are used in the usual NEC coordinate system. CHAMP data corrected for orientation errors with acceptable quality flag
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Table 1. Results of the data selection process. The obtained mean residual and rms values are also given.

Data Mag. Lat. Component N Mean res. rms Mean res. rms

range <2006.0 <2006.0 >2006.0 >2006.0

Sat. | mlat | < 55◦ X (SM) 264219 −0.40 nT 3.49 nT −0.05 nT 4.11 nT

Y (SM) 264219 −0.63 nT 4.04 nT −0.44 nT 5.63 nT

| mlat | > 55◦ North 603945 0.27 nT 51.84 nT −1.95 nT 56.56 nT

East 603945 0.98 nT 58.36 nT 1.53 nT 61.57 nT

Centre 603945 −0.77 nT 21.30 nT −1.81 nT 24.55 nT

Obs. | mlat | < 55◦ X (SM) 196468 0.05 nT 3.28 nT

Y (SM) 196468 0.06 nT 3.57 nT

| mlat | > 55◦ North 64354 −2.03 nT 22.35 nT

East 64354 0.08 nT 13.27 nT

Centre 64354 0.61 nT 18.71 nT

values are selected for positive IMF Bz values, with 20 s minimum between two data points, a VMD norm no larger than 20 nT and the norm

of its derivative less than 100 nT d−1. No selection is applied on LT or Sun position. The use of the full magnetic vector at all local times is

necessary for separating the field generated by FAC or in the ionosphere from the fields of internal origin. Using the full vector data at high

latitude also improves the robustness of the low order internal Gauss coefficients, in the same way that vector data are used at mid-latitudes

to avoid the Backus effect in models built mainly from scalar magnetic data (Backus 1970).

At all latitudes, observatory hourly mean values are selected following the same criteria as satellite data for low and midlatitudes. Three

component vector data in the NEC are used at high latitudes while, between ±55◦ magnetic latitudes only X and Y (SM) data are used.

At the time of this study, for year 2006, no observatory hourly mean values were available and the IMF strength and direction information

were rarely available after July. The VMD was not computed yet, and the Dst index was available only as provisional values. The satellite data

for year 2006 were, therefore, selected between ±55◦ magnetic latitudes with 20 s minimum between two data points, for LT between 23:00

and 05:00 and for the sun below the horizon up to 100 km above the Earth’s reference radius. The data were also selected for provisional

Dst values in the range ±20 nT and their derivatives in time between ±10 nT hr−1 until modified Julian day 2420.0 (i.e. 2006 August 16) and

then, as the provisional Dst drifts towards negative values, the bounds on Dst values were set to [0: − 40] nT. Only the X and Y components

in SM coordinate system were used. At high latitudes the full magnetic vector data were used in the NEC coordinate system and the selection

criteria were the same as above, but without selection applied on local time or Sun position. We comment that for year 2006 the selection

process is not satisfactory and the level of noise in these data is necessarily larger than for the previous years.

The number and type of data values used are given in Table 1.

4 M O D E L PA R A M E T R I Z AT I O N A N D E S T I M AT I O N

The data selection process described in the previous section does not allow a robust modelling of the large scale external field. We describe

this field as the gradient of a scalar potential (eq. 2). The maximum SH degree used is L = 1 (although L = 2 would have been possible)

and the time dependence of each Gauss coefficient is a piecewise continuous linear polynomial with a node every 3 months. For mid and

low latitude data only, a dependence on the VMD index is introduced via a scaling factor. Independent scaling factors are used for satellite

and observatory data. Even if, in principal, only one scaling factor is needed here, two were used in order to minimize the noise level in

satellite data. The fit to satellite data improves with two scaling factors which ultimately is beneficial for the resolution in space of the core

and lithospheric field models. Scaling factors are introduced also for the internal part of the VMD describing the field induced in the Earth by

the large scale external field. Altough the VMD is based only on a 1-D Earth conductivity model, we would not expect improvements to the

results by using a 3-D conductivity model instead. We did not use a VMD dependence for polar data as their very high level of noise precludes

a realistic estimate of the large scale external field there. A poor estimate of these fields results in an increase in satellite data noise level at

mid and low latitudes. As above, this increase has a detrimental effect on the core and lithosphere model resolution. No VMD dependence is

applied for year 2006 as the VMD index is not available for that year.

The data selection criteria at high latitude leads to a very good separation of the fields generated by FAC from the fields generated in

the Earth’s core and lithosphere. The FAC generate toroidal fields, and there are no difficulties in separating them from poloidal fields. These

toroidal fields are modelled using a scalar potential (eq. 12) where the function centres are defined in SM coordinate system and the time

dependence, given in eq. (13), includes a constant term and an annual periodicity.

As for toroidal fields, the fields generated in the ionosphere apparently separate well from the fields due to internal sources. This happens

because the average field generated in the ionosphere has a geometry varying slowly in a coordinate system linked to the sun and, therefore,

average out in a coordinate system rotating with the Earth. The model for these fields is using a current function leading to a scalar potential

as in eqs (16) and (17) with a reference radius of 6481.2 km (i.e. 110 km above the Earth’s reference radius). As above the function centres

are defined in SM coordinate system and the time dependence is defined in eq. (18).

The localized functions used for these two fields (eqs 11 and 16) have a maximum SH degree L = 40 and their centres are nearly

equidistant on the sphere (Chambodut et al. 2005). Only the 920 functions that are centred on magnetic latitudes outside the interval ±55◦
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Table 2. B-spline node positions.

Node number Date

1-5 2001.0

6 2001.614

7 2002.710

8 2003.778

9 2004.872

10 2005.940

11–15 2006.726

are used. The above parametrization leads to models with limited time resolution, however, we will see as we proceed that models of

fields generated in the ionosphere and by FAC are not required in order to build accurate and robust models of the core and lithospheric

fields.

As described in Section 2 the core and lithospheric fields are gradients of scalar potentials. The general form of the potential is given

in eq. (1). For a given set of Gauss coefficients, the vector magnetic field can be computed and then rotated to the direction corresponding

to a given data value. From degree 1 to 14, the time dependence is defined by order 5 B-splines and the node positions given in Table 2 are

roughly 400 days apart. The positions of these nodes correspond to time periods where CHAMP data, selected following the criteria given in

Section 3, are available at all latitudes. The effect of this choice is seen in more robust estimates of the SA. Above SH degree 14 and up to the

maximum degree L = 60, the Gauss coefficients are assumed to be time independent.

The observatory data are modelled in the same way as satellite data altough observatory crustal biases are introduced to account for the

lithospheric field in each observatory components, and moreover the contributions from FAC or the ionosphere are neglected.

The second time derivatives of the Gauss coefficients are not robustly estimated for the highest degree of the core magnetic field model.

Therefore, we constrain the solution to minimize the integral over the sphere and time of the squared second time derivative of the radial

magnetic field component at the CMB:

I =
∫ t2

t1

∫
S(c)

∣∣∣∣∂2Bi
r

∂t2

∣∣∣∣
2

ds dt, (19)

where S(c) is a spherical surface of radius c = 3485 km, the estimated radius of the core, and t1, t2 are the limits of the model time span.

As the core magnetic field is described by order 5 B-splines, between two spline nodes the second time derivative of the field is a quadratic

polynomial and the time integral is calculated exactly using a three points Gaussian rule. The SH degrees and orders are separated by the

surface integral and, therefore, eq. (19) leads to a block diagonal damping matrix. The balance between fit to the data and smoothness of the

solution in time is controlled via a damping parameter that is here set to 1.10−3. We comment that this is a relatively weak smoothing and

the damping mainly affects the high SH core field Gauss coefficients. In particular this regularization does not significantly affect the first

5 SH degree Gauss coefficients. This is different from the regularization introduced for CHAOS (Olsen et al. 2006), where the same norm is

minimized but at the Earth’s reference radius.

The constraint introduced above controls the SA well when cubic B-splines are used, but, using order 5 B-splines introduces further

degrees of freedom in the model. This affects all the first 14 SH degrees, but is mainly visible in the low degrees where the regularization

introduced by minimizing eq. (19) has no effect. To circumvent this problem we also minimize the norm of the third time derivative of the

radial component of the field over a sphere at the Earth’s reference radius (a = 6371.2 km):

J =
∫ t2

t1

∫
S(a)

∣∣∣∣∂3Bi
r

∂t3

∣∣∣∣
2

ds dt. (20)

The damping parameter is set to 5 × 10+2 and mainly the low SH degrees are affected. We tested other regularization schemes like imposing

a zero SA at the model end points in time, but the results are essentially the same as those presented in the next section. We also tried to

introduced, at known jerk epochs, discontinuities in the second derivative in time of the magnetic field. This idea was abandoned as it led to a

degradation of the SV time behaviour.

Fitting the data by adjusting the Gauss coefficients is a linear inverse problem. The Gauss coefficients are estimated by an iterative

reweighted least squares procedure using an L1 norm (Farquharson & Oldenburgh 1998). The weights associated with data points are the

inverse of the data density in areas defined by nearly regular triangles. These weights are also divided by the data variances, but we note that

these have little effect on the solution obtained through the iterative reweighted least squares process. These data variances are estimated by

several test-runs prior to the final modelling effort.

The final model is obtained by first fitting the core, lithosphere, large scale external and associated induced field models to the data. In

a second step the residuals are used to build the ionosphere and toroidal models. Although there is no apparent leakage of the ionospheric

fields inside the core field model, the model used for the former fields has too much freedom and cannot be well separated from the core and

lithospheric field models. Co-estimation of the ionospheric model together with other internal field models is not possible unless progresses

are made in the parametrization of the ionosphere current system. Table 1 also gives the residual rms and mean values for the different data

types. Values for year 2006 are given independently as they are significantly larger than for the previous years. We observe that at mid and

low latitudes the rms values and the mean values of the residuals are small. For satellite data, the offset absolute values are less than 0.7 nT
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for both X and Y components in SM coordinate system. Such an offsets are associated to a 24-hr periodicity in a coordinate system rotating

with the Earth and are, therefore, likely to be linked to a large scale external field. However we have not been able to build an acceptable SH
degree 1 model that fits these signals well. At high latitudes the noise level is very high, particularly in satellite data. The above mentioned

modelling of the field generated in the ionosphere or by FAC does not lead to a significant reduction of these rms values. When a L2 norm is

used during the least squares process, the mean residual values of observatory data are null because the crustal biases absorb any unmodelled

contributions. Therefore, as a L1 norm is used here, the large mean residual values obtained mainly show that the residual distribution is not

Gaussian.

5 R E S U LT S A N D D I S C U S S I O N

Fig. 1 presents the field generated by the ionosphere at 400 km altitude as modelled with our parametrization. Fig. 2 shows the toroidal field

generated at satellite altitude by FAC. Not many details can be seen and a better time resolution is required in order to build useful models.

We note however that the northern cap model seems to present more robust features.

Figure 1. North component of the average ionospheric field estimated for 2003.0, 2003.25, 2003.5 and 2003.75 (from left to right) at the satellite altitude. Top

row: Northern polar cap (in SM), bottom row: Southern polar cap (in SM). The X (SM) axis is in the Sun direction at 0◦, 90◦ is dusk.

Figure 2. East component of the average toroidal field estimated for 2003.0, 2003.25, 2003.5 and 2003.75 (from left- to right-hand side) at satellite altitude.

Top row: Northern polar cap (in SM), bottom row: Southern polar cap (in SM). The X (SM) axis is in the Sun direction at 0◦, 90◦ is dusk.
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-a-

-b-

Figure 3. (a) Power spectra of the core field, its secular variation and secular acceleration for year 2003.25 at Earth’s reference radius. The acceleration power

spectrum is compared with xCHAOS secular acceleration spectrum for the same date. (b) Degree by degree ratio of the power in secular variation to the power

in core field (bottom curve) and to the power in secular acceleration to that in secular variation (top curve). Also shown are power law and exponential law fits.

Fig. 3(a) presents the power spectra at the Earth’s reference radius (a = 6371.2 km) of the derived internal field up to SH degree 20,

of the core field SV and of the SA for year 2003.25. The values associated with the constant part of the field are not different from those

obtained for recent geomagnetic models, reaching a minimum at SH degree 18. The SV behaves as expected up to SH degree 12 above which

the model is likely to be not reliable. Finally, the SA spectrum has values similar to those of xCHAOS for the first few SH degrees, presents

larger values than usually obtained from SH degrees 5–11, and otherwise is controlled by the regularization process above SH degree 11.

Technically, the SA power at the intermediate SH degrees (i.e. degrees 5–11) is larger than in xCHAOS because only a weak regularization

has been applied here. Models built with other temporal basis functions (e.g. Lesur et al. 2005; Maus et al. 2006) systematically present a

very small acceleration amplitude that is likely to be due to a lack of time resolution. The GRIMM SA is well constrained up to SH degree

5 or 6 by the combination of observatory and satellite data. For SH degrees above that limit, the observatory data have little effect and the

acceleration is controlled solely by satellite data. To assess if the obtained values are acceptable we consider the degree by degree ratio of the

power in SV to that in the main field (Holme & Olsen 2006):

R(l) =
∑l

m=−l (ġ
m
l )2∑l

m=−l (g
m
l )2

, (21)

and also the degree by degree ratio of the power in SA to that in the SV :

S(l) =
∑l

m=−l (g̈
m
l )2∑l

m=−l (ġ
m
l )2

. (22)

Both R(l) and S(l) are plotted against SH degree l in Fig. 3(b). A power law fit to R(l) and an exponential fit to S(l) for SH degree l = 1 to l =
11 are also plotted. The power law fit to R(l) is better than an exponential fit. This is consistent with an hypothesis of a difference of spectral

content between SV and static core field (Holme & Olsen 2006). It is found R(l) ≈ 1.47 10−6 l2.75 which leads to a correlation time (Hulot

& Le Mouël 1994) τ (l) = 824.8 l−1.375. This power law fit is not much different than what was found for CHAOS (Olsen et al. 2006) or in

(Holme & Olsen 2006). For the SA the exponential fit is better than a power law fit and is found to be S(l) ≈ 9.26 10−4 exp (0.47l). Whereas
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Figure 4. (a) Vertical down component of the modelled core magnetic field at the CMB for 2003.25. (b) Same for the secular variation. (c) Same for the secular

acceleration. (d) East component of the modelled core magnetic field secular variation at the CMB for 2003.25.

a lot of theoretical work has been done to estimate what the SV spectrum should be (e.g. Voorhies 2004, and references included), nothing

has been done for the SA spectrum. This task is far beyond the scope of this paper and we just note that the S(l) exponential behaviour is

close to what is observed for R(l) and that may be an indication that the power of acceleration is not overestimated in this model. We also

note that extrapolating this exponential behaviour to higher degrees up to a ratio equal to 1, gives an acceleration energy at SH degree l ≈
15 of roughly the same magnitude as the SV energy. Accounting for some possible error in slope, this nicely explains why it is so difficult to

estimate reliable SV over SH degree l = 12. At higher SH degrees, SV models are then necessarily time averages.

In Fig. 4 the vertical down component of the core field and SV models, truncated to SH degree 12, are plotted for 2003.25 at the CMB.

The static core field does not differ significantly from what is given by xCHAOS. The same extrema and reverse flux patches are observed.

The SV again is very similar to xCHAOS. However, we observe that over the northern polar cap and from 2003.0, GRIMM presents different

patterns. These are better seen in the East component plotted in Fig. 4(d). There is a clear set of four minima and maxima just outside the

limit of the tangent cylinder (∼ 28.7◦).

A geomagnetic jerk is seen as a sharp change in SV slope in observatory data or, equivalently, is a discontinuity in otherwise nearly

constant SA. The SA, as modelled by GRIMM and its evolution in time, is therefore, a useful tool for studying jerks if one occurs during the

period covered by the model. The Fig. 4(c) shows the vertical down component of SA at the CMB. An area of strong acceleration sits at the

latitudes and longitudes of India, close to the area of the 2003 jerk (Olsen & Mandea 2007a). This strong acceleration pattern drifts south-west

between 2002.5 and 2003.5 and vanishes shortly after 2003.5. We interpret this as a tight relation between this acceleration feature and the

geomagnetic jerk that occurred around 2003. At the CMB, the SA is, as the SV , very weak under the Pacific. The coherency of the modelled

SA at the CMB is another indication that the SA power in Fig. 3 is not overestimated. The temporal evolution of the acceleration vertical

down component at the Earth’s reference radius is plotted in Fig. 5 from 2002.0 to 2005.5, every half year. It shows a positive extremum over

India slowly drifting East first, then South to reach western Australia around 2005.0 and then slightly West. This positive anomaly split in two

around 2003.5 with a weaker part drifting North-East towards Eastern Siberia and then starts drifting West. An area of negative acceleration

appears over South West Africa around 2004.5 and then grow to encompass South Africa in 2005.5. After this date the acceleration pattern

may not be as reliable due to the absence of observatory data from 2006.0. The evolution of these patterns is in agreement to the observed

jerks around 2003 and 2005.

Fig. 6 shows the changes in acceleration (i.e. the third time derivative of the core field) for 2003.5 and 2004.5. Although the model of the

third time derivatives is not very robust, we see in both cases that the maximal changes of acceleration are located at the positions of the jerks
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Figure 5. Vertical down component of the modelled secular acceleration at the Earth’s reference radius.

Figure 6. Vertical down component of the third time derivative of the modelled core field at the Earth’s reference radius. The central meridian is at 90◦ degree

East.

around 2003 and 2005 (Olsen & Mandea 2007a,b). These two plots are very similar, although with smaller scale features, to the ones given

by Olsen & Mandea (2007b). For 2003.5 there is a minimum over India and a maximum over Australia with an extension towards Japan. Also

seen are two maxima over South-Africa and Brazil. These two maxima form a single maximum on southern Atlantic in xCHAOS. For 2004.5,

as in xCHAOS the large minimum over Southern Atlantic and South Africa is flanked on both sides by maxima. A maximum is also present

over Siberia. Whereas in Olsen & Mandea (2007b) the shown plots are differences of acceleration, here are shown third time derivatives of

the GRIMM core field model.

It is also interesting to look at the variation in time of the SA energy. This is plotted at the Earth’s reference radius for GRIMM and

xCHAOS in Fig. 7. The energy for xCHAOS has strong spikes at its B-spline node positions. As described in introduction, cubic B-splines

for the core field lead to a linear behaviour of the SA between spline nodes and, therefore, the SA amplitude reaches maxima at these node

positions. Little can be done against this and the same difficulty arises for GRIMM in the third time derivative. However, for GRIMM the

SA energy varies smoothly and increases after 2003. This increase is robust, but after 2005.5 the time behaviour of GRIMM is questionable

as there are no observatory data for year 2006. Overall it seems that there is little agreement between xCHAOS and GRIMM in terms of SA

energy. The SA energy at the Earth’s surface is mainly controlled by the three first SH degrees. The differences between xCHAOS and GRIMM

are mainly due to the SH first degree, and more specifically the g0
1 Gauss coefficients that vary more rapidly in xCHAOS. The regularization

introduced in GRIMM by minimizing eq. (20) imposes a smooth temporal behaviour for the SA.
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Figure 7. Secular acceleration energy as a function of time at the Earth’s reference radius.

-a-

-b-

Figure 8. (a) Power spectra of GRIMM, CHAOS and MF5 at the Earth reference radius for SH degrees 16–60. (b) Corresponding coherency.

Fig. 8 shows the GRIMM, xCHAOS and MF5 power spectra for SH degrees 16 to 60 and their degree correlation. Both GRIMM and

xCHAOS models are focused on the core field. We observe nonetheless that they present similar spectra and high correlation up to SH
degree 45. This is an improvement compared to the correlation between CHAOS and the BGS/G/L/0706 model (Thomson & Lesur 2007).

The main differences between GRIMM and xCHAOS lithospheric models are close to the auroral electrojets. The equatorial electrojet has no

influence as only night time data are used here. The relatively low coherency between GRIMM and MF5 clearly confirms that not only the MF5

lacks power but also presents spurious features at these low degrees. Fig. 9 present the vertical down component of the GRIMM lithosphere

field modelled at the Earth’s surface for SH degree 16–45 and its differences relative to MF5. The shape of these spurious anomalies are

typical of those introduced by along track filtering.
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Figure 9. (a) Vertical down component of the GRIMM lithosphere field for SH degrees 16–45 at the Earth’s reference radius. (b) Vertical down component of

the model difference with MF5 for SH degrees 16–45 and at Earth’s reference radius.

6 C O N C L U S I O N

GRIMM results from the processing of nearly 6 yr of CHAMP satellite data and 5 yr of observatory hourly means. Our data selection approach

differs from other models as we are not using night side total intensity data over the polar regions but three-component vector data at all

local times. We also used X and Y SM component vector data at mid and low latitudes, avoiding the need to model the magnetic perturbation

generated by the symmetric ring current. The modelling technique is also improved by introducing order 5 B-splines to model the core

magnetic field temporal variations while keeping a short time span between B-spline nodes. We also attempted to model the field generated

by the field aligned currents and the ionospheric fields, but more work is needed there.

The static core field and secular variation models are in good agreement with other geomagnetic models. Interestingly, the GRIMM

secular variation model presents some intriguing features over the northern polar area from 2003.25 which could be linked with core flow

dynamics. A major improvement over all previously published models arises from the use of order 5 B-splines in the description of the secular

acceleration and its time variation. There are strong indications that the secular acceleration amplitude may have been underestimated in

previous models. For the first time we are able to map the temporal evolution of the acceleration patterns at the Earth’s surface. They evolve

rapidly in a continuous way that is consistent with the observed geomagnetic jerks. The acceleration presents a minimum energy in the year

2003 and rise continuously after that. We hope that a better understanding of geomagnetic jerks will come from the detailed study of the core

field acceleration.
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