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Abstract

Time-variable gravity data of the GRACE (Gravity Recovery And Climate Exper-

iment) satellite mission provide global information on temporal variations of conti-

nental water storage. In this study, we incorporate GRACE data for the first time

directly into the tuning process of a global hydrological model to improve simula-

tions of the continental water cycle. For the WaterGAP Global Hydrology Model

(WGHM), we adopt a multi-objective calibration framework to constrain model

predictions by both measured river discharge and water storage variations from

GRACE and illustrate it on the example of three large river basins: Amazon, Mis-

sissippi and Congo. The approach leads to improved simulation results with regard

to both objectives. In case of monthly total water storage variations we obtained a

RMSE reduction of about 25 mm for the Amazon, 6 mm for the Mississippi and 1

mm for the Congo river basin. The results highlight the valuable nature of GRACE

data when merged into large-scale hydrological modeling. Furthermore, they reveal

the utility of the multi-objective calibration framework for the integration of remote

sensing data into hydrological models.
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gravity, time variable gravity, hydrological modeling, model calibration,

Preprint submitted to Elsevier 14 October 2008



multi-objective calibration

1 Introduction1

By mapping time variations of the Earth’s gravity field with the Gravity Re-2

covery and Climate Experiment satellite mission (GRACE) since its launch in3

2002, an unprecedented global data set of mass variations close to the Earth4

surface became available (Tapley et al., 2004). After removal of mass variations5

due to tides and non-tidal atmospheric and oceanic transport processes, the6

time-variable gravity data mainly represent water mass variations in continen-7

tal hydrology, i.e., total water storage change (TWSC) on the continents (see8

a recent review by Schmidt et al. (2008a)). In specific regions, also mass vari-9

ation from post glacial rebound (Tamisiea et al., 2007) and seismic activities10

(Chen et al., 2007) could be revealed from the GRACE data.11

For the field of hydrology, the past six years of GRACE operation contributed12

to a significantly improved understanding of the spatio-temporal patterns of13

water storage variations on the continents because no comprehensive TWSC14

data were available before at large spatial scales due to the absence of ad-15

equate monitoring systems (Lettenmaier and Famiglietti, 2006). Thus, the16

GRACE TWSC data give new insights into the Earth’s water cycle includ-17

ing the contribution of TWSC to sea level variations (Ramillien et al., 2008),18

the impact of climate variability or extremes on water storage (e.g. Andersen19

et al., 2005; Seitz et al., 2008), or melting of glaciers and ice caps (e.g. Chen20

et al., 2006; Luthcke et al., 2006). Numerous regional or river basin studies21
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analyzed GRACE TWSC from seasonal to inter-annual time scales (see a re-22

cent review by Schmidt et al. (2008a)). Others solved the water balance using23

TSWC from GRACE for other hydrological components such as evapotranspi-24

ration (Rodell et al., 2004; Ramillien et al., 2006) or runoff (Syed et al., 2007),25

or separated individual storage compartments such as groundwater (Rodell26

et al., 2007; Strassberg et al., 2007) or snow (Frappart et al., 2006; Niu et al.,27

2007).28

Besides observation data, hydrological simulation models are an indispensable29

tool to assess the impact of environmental change on the continental water30

cycle and the particular processes mentioned above. Thus, in turn, they are a31

prerequisite for implementing measures of sustainable management of water-32

related issues in future. At continental to global scales, hydrological models33

are an integral part of atmospheric circulation models where they represent34

the land surface processes for climate and weather prediction simulations, see35

Dirmeyer et al. (2006) for an overview on land surface models and their com-36

parison. In addition, water balance models are used to represent the full water37

cycle in river basins for purposes such as stream flow forecasting and water38

resources assessment (for a recent overview on global water balance models see39

Widen-Nilsson et al. (2007)). However, these large-scale hydrological models40

are known to suffer from uncertainties in terms of model structure, parameter41

values and climate forcing data. As a consequence, simulation results for hy-42

drological state variables and water fluxes on the continents vary considerably43

between models (e.g. Dirmeyer et al., 2006). While river discharge has for a44

long time been the only observable to validate and calibrate global water bal-45

ance models (Hunger and Döll, 2008), considerable model uncertainties remain46

for other components of the water cycle, e.g., water storage, evapotranspira-47

tion or groundwater recharge due to the lack of adequate observation data.48
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In this context, GRACE provides a unique data set to evaluate and improve49

the simulation of TWSC on large scales and therewith to uncover shortcom-50

ings in model designs and parameters. Numerous studies compared GRACE-51

derived TWSC data with simulation results of hydrological models and con-52

cluded with a recommendation to use GRACE data as a model constraint53

(see a recent overview by Güntner (2008)). First attempts have been made54

to modify large-scale hydrological models and to evaluate the modifications55

with GRACE observations (Niu and Yang, 2006; Ngo-Duc et al., 2007) and56

very recently, Zaitchik et al. (2008) assimilated GRACE TWSC into a land57

surface model for the Mississippi river basin. A global integration of GRACE58

data with hydrological models to improve model performance by calibration59

has not been reported so far.60

This motivated the present study to incorporate for the first time GRACE61

data into the tuning process of a global hydrological model (section 2.1). For62

this purpose, a multi-objective calibration scheme has been developed (see63

section 2.2). Calibration denotes the selection of model parameter values by64

evaluating the simulation performance via a model output objective against65

observations. In contrary to data assimilation, the system is tuned by deter-66

mining model parameter values during a pre-defined time interval, and the67

resulting parameter set may be used for subsequent independent model runs.68

Multi-objective calibration denotes that more than one model output objec-69

tives are taken into consideration. In this study, two different types of measured70

data are used to constrain parameter sets (section 2.3). Improvements for the71

simulation of TWSC are analyzed (in section 3) and the value of calibration72

procedure using GRACE data towards enhanced predictions of the continental73

water cycle is outlined (section 4).74
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2 Methods and Data75

2.1 Global Hydrological Model76

The WaterGAP Global Hydrology Model (WGHM) is a conceptual water bal-77

ance model which simulates the continental water cycle including the most im-78

portant water storage components, i.e., interception, soil water, snow, ground-79

water and surface water. The major hydrological processes are simplified by80

conceptual formulations. WGHM has a 0.5◦x0.5◦ spatial resolution and a daily81

computation time step. Information on land surface characteristics such as the82

spatial distribution of vegetation, soil types, land use, groundwater and sur-83

face water bodies is given in the model from global data sets. For details on84

model equations and their parameters see Döll et al. (2003). The model has85

widely been used to analyse continental water storage change (Güntner et al.,86

2007). In comparisons with GRACE TWSC, a general agreement of seasonal87

and other periodic characteristics of TWSC was found at the global scale,88

but amplitudes and phases in the model showed significant differences (larger89

than GRACE errors) in particular river basins (Ramillien et al., 2005; Schmidt90

et al., 2006, 2008b).91

In this study, WGHM is driven by climate data (temperature, cloudiness and92

number of rain days per month) of the European Centre for Medium-Range93

Weather Forecast (ECMWF) and monthly precipitation data of the Global94

Precipitation Climatology Centre (GPCC). Precipitation is disaggregated to95

a daily resolution with the given number of rain days per month. The climate96

input data are available from 01/1992 until 12/2007 for this study. Antarctica97

and Greenland were excluded from the simulations.98
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We used the most recent WGHM version as described by Hunger and Döll99

(2008), who calibrated (i.e. tuned) the model against observed mean annual100

river runoff at 1235 discharge stations worldwide, by varying one runoff gen-101

eration parameter. This model version is called the original version in the102

following. Overall, the model includes 26 process parameters. Their values in103

the original model as well as parameter ranges for the calibration are based on104

literature and qualitative reasoning (Kaspar, 2004), see Table 2 for the parame-105

ters calibrated in this study. Thereof, the parameter root depth is based on the106

global land cover distribution and can be calibrated by a multiplicative factor.107

The Priestley-Taylor coefficient is used in the corresponding approach to quan-108

tify potential evapotranspiration. The radiative fraction of the extraterrestrial109

radiation that reaches the Earth’s surface is determined by cloud cover data110

and the radiation proportion parameter. The variability of snow melt temper-111

ature is due to different elevation and vegetation cover of different regions. A112

more detailed description of the model parameters is provided by Döll et al.113

(2003).114

2.2 Calibration Technique115

Combining both the present station-based accuracy of WGHM in terms of116

river discharge and the integrative nature of the GRACE data with global117

coverage, improved simulation results were expected from a multi-objective118

calibration approach. Calibration in the sense used here denotes an iterative119

method of testing different parameter values and selecting the best parame-120

ter sets based on performance criteria that evaluate simulation results against121

observation data. Calibration methods differ in their strategies to select pa-122

rameter sets for each iteration from the given parameter space. Furthermore,123
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multi-objective calibration denotes the selection of parameter values through124

evaluating model performance against more than one objective. In this study,125

these objectives are based on two observation data sets: river discharge and126

periodic TWSC (see section 2.3); hence, it is a two dimensional problem. In-127

stead of a single optimum parameter set, such an approach will lead to a128

Pareto set of optimal solutions (Gupta et al., 1998). Each Pareto optimum of129

this set is an optimal solution from a multi-objective point of view in the sense130

that no other solution exists that provides a better simulation performance131

for both model output objectives. Hence, when moving from one Pareto so-132

lution to another, simulation performance increases for one objective while133

it decreases for the other objective. Without additional information it is not134

possible to undertake a ranking among the Pareto solutions. The trade-off (i.e.135

the spread) between the Pareto solutions reflects the minimum parameter un-136

certainty (Vrugt et al., 2003) caused by errors in the input and the measured137

data as well as by model structure.138

The calibration of a number of model parameters against more than one ob-139

jective depicts a highly non-linear optimization problem and requires a global140

optimization method. Furthermore, only stochastic methods like a multi-start141

simulated annealing or an evolutionary algorithm assure a feasible computing142

time for the calibration of the global hydrological model WGHM. Therefore,143

to handle the complexity of a multi-objective and multi-parameter calibration144

problem as well as the computational demands we select the ǫ-Non-dominated-145

Sorting-Genetic-Algorithm-II (ǫ-NSGAII) (Kollat and Reed, 2006), which ranks146

among the most effective and efficient multi-objective optimization methods147

(Tang et al., 2006). This global optimization algorithm solves multi-objective148

problems using the concept of evolutionary parameter variation (mutation,149

crossover and selection). It is an elitist algorithm with a Pareto ranking rou-150
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tine. Furthermore, as an extension of NSGAII (Deb et al., 2000) by the concept151

of ǫ-dominance, it allows to specify the accuracy to be fulfilled by each ob-152

jective. For this study, we parameterize its operators as proposed by Kollat153

and Reed (2006). Furthermore, we use a population size of N = 8 and an154

ǫ-resolution of 0.05 for both objectives and stop the optimization after 400155

iterations.156

The calibration of WGHM is exemplarily done for the Amazon, the Mississippi157

and the Congo river basins in this study. These basins were selected because158

of their large size of over three million km2. The period 01/2003-12/2006 was159

used for WGHM calibration.160

Güntner et al. (2007) showed that WGHM parameter sensitivity for TWSC161

simulations varies considerably between the river basins. This inter-basin vari-162

ability of parameter sensitivity can be explained by differences of the climatic163

conditions (represented in the model by the climate input data and param-164

eters steering evaporation or snow melt processes, for instance) and of the165

land surface properties (represented by, e.g., vegetation or soil parameters)166

between the river basins. This results in different water flow and storage char-167

acteristics in the basins. In particular, different storage components dominate168

the individual river basin response, e.g., snow storage in higher latitude areas169

or surface water storage in some tropical areas with large inundation zones.170

Thus, also the sensitivity of model parameters used to govern these individ-171

ual dominant storage processes varies between the river basins. Consequently,172

ahead of the calibration work, a sensitivity study was undertaken by a Latin173

Hypercube sampling for 2000 parameter sets and by an analysis scheme going174

back to Hornberger and Spear (1981), who selected sensitive parameters based175

on their ability to provide behavioural model simulations. For each river basin,176
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we selected the six most sensitive parameters for calibration against TWSC177

and river discharge (see row (e) and row (f) of Table 1). Parameter values and178

ranges are documented in Table 2.179

For the Amazon basin, three of these parameters concern the process of surface180

water transport, because of the high water volume during an important flood181

season. In contrast, evaporation is most important in the tropical Congo river182

basin with a distinct dry season. A diverse set of important processes (e.g.183

snow, evaporation and surface water) provides the most sensitive parameter of184

the Mississippi river basin, due to its location in three different climate regions185

(cold in the north, subtropical in the southeast and dry in the southwest).186

The evaluation of model performance for each iteration is effected by the fol-187

lowing four steps: 1) Model simulation of monthly global TWSC fields and188

river discharge with the current parameter set. 2) Application of a GRACE-189

equivalent filter procedure, which comprises the conversion of WGHM TWSC190

fields into the frequency domain, i.e. spherical harmonic coefficients, followed191

by Gaussian smoothing (Jekeli, 1981) and the computation of basin aver-192

ages of TWSC according to Wahr et al. (1998). 3) Fitting amplitudes and193

phases of significant periods which were determined from GRACE data (see194

section 2.3.2) to the simulated basin averages of TWSC and reconstruction195

of a basin-average time series of TWSC from these periods. 4) Evaluation of196

each calibration objective (discharge and TWSC) by computation of the Nash-197

Sutcliffe-efficiency coefficient (NSC) (Nash and Sutcliffe, 1970) as a criterion198

of agreement between modeled and measured time-series.199

NSC is a simulation performance measure that normalizes the squared differ-200

ence of a predicted (P ) to an observed (O) time series by the variance of the201
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observed values with n time steps:202

NSC = 1 −

∑
n

i=0
(Oi − Pi)

2

∑
n

i=0
(Oi − Ō)2

, (1)203

where Ō is the mean of the observations over the examined period. NSC204

evaluates both phase and amplitude agreement between two time series. It205

ranges from −∞ to 1 (optimal fit), with a value of 0 indicating a simulated206

time series that performs as well as a model being equal to the mean of the207

observable. Therefore Pareto solutions are restricted to NSC values greater208

than 0.209

2.3 Calibration data210

2.3.1 River basin discharge: Objective 1211

River discharge data of Amazon, Mississippi and Congo from the most down-212

stream gauging station were used (Table 1). We computed monthly mean213

values for the calibration period. For the Congo river where no up-to-date214

measurements were available, we assigned the monthly mean discharge of ear-215

lier observations to the calibration period.216

2.3.2 GRACE TWSC: Objective 2217

Reconstructed significant periodic parts of basin-averaged TWSC resulting218

from the investigation presented in Schmidt et al. (2008b) are used as calibra-219

tion input for this study. These data are chosen, because errors in the GRACE220

original data and the difficulty to separate the errors from real signals mark221

the greatest challenge for application of satellite gravity solutions.222
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Schmidt et al. (2008b) developed a technique to extract significant water stor-223

age change information from GRACE data by three steps: 1) Identification224

of the dominant spatio-temporal patterns in mass variations derived from225

GRACE observations through a principal component analysis (applied at the226

scale of the river basins to grids previously filtered by a Gaussian smooth-227

ing with a 500 km averaging radius), 2) Identification of significant periods228

of TWSC contained in the principal components without fixing a priori the229

period lengths, and 3) Reconstruction of (error-reduced) basin-average time230

series of TWSC from the significant periods.231

As a basis, monthly GRACE-only time series of global gravity fields generated232

as spherical harmonic expansions up to degree and order 120 at the GFZ233

German Research Center for Geosciences (GRACE Level-2 products, version234

GFZ-RL04, Schmidt et al., 2008a) for the time period from 02/2003 until235

12/2006 (excluding unavailable months 06/2003 and 01/2004) were used. The236

noise contained in the spherical harmonics increases with the degree of the237

expansion terms, and the noise/signal ratio reaches unacceptably high values238

in higher-degree terms. In the space domain this noise becomes visible in the239

form of the typical meridional-oriented spurious gravity signals (“stripes”)240

(e.g. Swenson and Wahr, 2006; Schmidt et al., 2008a). Hence, a spatial filtering241

is mandatory when computing water storage variations from GRACE gravity242

field models in order to reduce these errors. For the present study a widely243

used Gaussian smoothing (Jekeli, 1981) with an averaging radius of 500 km244

was applied. Mass variations (TWSC) were derived relative to a mean field245

(i.e. in the form of mass anomalies) for the considered data period applying246

the procedure presented by Swenson and Wahr (2002).247

Since the effects of the atmospheric and the oceanic circulations were previ-248
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ously removed in the course of the gravity field recovery from the raw GRACE249

data by applying appropriate geophysical models (Flechtner, 2007), the ma-250

jor part of the signal contained in the derived grids of mass anomalies can251

be attributed to hydrological variations. Due to the rather short time period252

covered by the available GRACE data, the long-term trends determined both253

from the hydrology model WGHM and from the GRACE gravity fields should254

be regarded as less reliable than the periodic components resulting from the255

same data. Therefore, as the last preparatory step, the data used in this study256

have been de-trended.257

Subsequently, the three-step strategy for the detection of significant peri-258

odic components, depicted at the beginning of this section, was realized, see259

(Schmidt et al., 2008b) for more details. It is important to note, that the period260

search was not a-priori constrained to seasonal or other postulated variations.261

For all three river basins, considered in this study, two periods resulted to be262

significant with respect to their signal proportion and an uncertainty study.263

Corresponding amplitudes and phases used for the calibration are given in Ta-264

ble 1, row (g). TWSC of all three basins exhibit a seasonal period. A second265

period of inter-annual scale (about 2.5 years) occurs for the Amazon as well266

as the Mississippi and of semi-annual scale for the Congo river basin. The cu-267

mulative variability of the reconstructed periodic components dominates the268

integral GRACE signal (see Table 1 row (h) for percentage proportion).269

Error estimations of GRACE data differ between several studies. For example,270

using a Gaussian smoothing with an averaging radius of 750 km Wahr et al.271

(2006) derived latitude-dependant errors of GRACE mass estimates ranging272

from 8 mm near the poles up to 25-27 mm at low latitudes, when expressed273

in water column equivalents. This results in a global area-weighted mean of274
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21 mm. Schmidt et al. (2007) gave for a 500 km Gaussian filtering a global error275

estimate of 24-30 mm water column. According to Schmidt et al. (2008a) the276

accuracy of the GFZ-RL04 used in this study is approximately two times better277

than the accuracy of the earlier releases used in both cited studies. However, it278

should be taken into account that errors may be higher for particular regions279

and months, and are also influenced by leakage errors after forming basin-280

average values.281

3 Results and Discussion282

The multi-objective calibration of WGHM with GRACE TWSC and river283

discharge led to improved simulation results in all three river basins (Figure 1).284

Each Pareto solution (on the red line) is superior to the original model version285

(green dot) with regard to both objectives.286

Best results were obtained for the Amazon basin. NSC performances better287

than 0.95 with respect to both objectives were achieved for the Pareto solu-288

tion closest to the optimum (hereafter referred as the selected Pareto-optimum,289

blue dot in Figure 1a). The amplitude of periodic terms of TWSC increased290

markedly in the Pareto solutions when compared to the original model (Fig-291

ure 2a). Since the narrow uncertainty band given by the Pareto set of solutions292

does not include the original model time series, the significance of model im-293

provement is substantiated. Although the amplitudes of basin-average TWSC294

were slightly overestimated by the selected Pareto solution in 2003 and 2006,295

its root mean square error (RMSE) of the complete (but de-trended) TWSC296

signal was reduced by 50% compared to the original model version (Table 3).297

The reduction of RMSE for discharge was even greater, since a phase shift of298
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discharge seasonality could be corrected by the multi-criteria calibration (see299

Figure 3a). A main reason for the model improvements in the Amazon basin300

could be attributed to longer residence times of surface water in rivers and301

floodplains as expressed by lower values for the flow velocity parameter in the302

Pareto solutions.303

Also in the Mississippi basin a very good fit to observations with NSC per-304

formances of about 0.9 for both objectives were obtained for the selected305

Pareto-optimum (Figure 1b). Although the results for river discharge are more306

uncertain than for TWSC, the improvement compared to the original WGHM307

is greater for discharge than for TWSC. This is reflected by the reduction308

of the RMSE of the monthly mean discharge of about 80%, respectively 13309

km3/month (Table 3) for the selected Pareto-optimum. The clear improve-310

ment of monthly discharge simulations is also due to the fact that the original311

model was calibrated for mean annual values and did not take into account312

the seasonal distribution of discharge as in the present scheme. Therefore, the313

overestimated peaks of monthly discharge during spring in the standard model314

version could be corrected for all Pareto solutions (see Figure 3b). The recon-315

structed calibrated time series of water storage variations shows a slightly316

shifted phase and an amplitude which is closer to the GRACE time series317

(Figure 2b). The RMSE of the full de-trended time series of TWSC was im-318

proved about 6 mm compared to the original model version (Table 3). This319

improvement was most likely caused by changes of two model parameters.320

An increased effective root zone increases the soil storage capacity and an in-321

creased snow melt temperature smooths the previously overestimated runoff322

peaks.323

Calibration for the Congo basin resulted in a much wider trade-off between324
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both objectives (note the different scaling of both axes in Figure 1c). The325

performance of the Pareto solutions varies between 0.0 and 0.8 for discharge326

and between 0.7 and 0.9 for TWSC (Figure 1c). This trade-off resulted in327

a wider uncertainty band for the calibrated TWSC periods of the Pareto328

solutions (Figure 2c). Nevertheless, a small phase shift of TWSC periods was329

achieved for all Pareto solutions. The RMSE of the full TWSC signal for330

the selected Pareto-optimum was improved by about 1 mm (Table 3). All331

other Pareto solutions provide greater RMSE reductions, since they show a332

higher simulation performance for the significant periods of TWSC, as the333

selected Pareto-optimum. For discharge, there were slight improvements in334

the monthly regime (Figure 3c), as indicated by higher peaks during the turns335

of the year (from October till January) for the re-calibrated hydrograph of336

the selected Pareto-optimum. While the RMSE for discharge could clearly be337

decreased by the calibration procedure, the NSC value for the selected Pareto-338

optimum of 0.76 still indicates only moderate correspondence of simulated339

and observed river discharge. Though, the rather discontinuous course of the340

Pareto frontier may imply that a higher number of function evaluations would341

give better calibration results. These limitations in achieving better discharge342

and TWSC simulations as well as the wider uncertainty in the calibration of343

the Congo basin are likely due to the lack of river runoff measurements during344

the calibration period and complicate the assignment of improved processes345

for the Congo basin. The particular characteristics of the rainfall distribution346

in each year will cause substantial deviations from the mean hydrograph that347

was used for model evaluation in this basin (Figure 3c). This may also point348

out errors in the model structure, the model input data, or in the parameter349

space allowed for calibration in the Congo basin and is subject to further350

studies.351
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Introduction of further observables to the multi-objective calibration scheme352

could further reduce the resulting equifinality of parameter sets as expressed353

by the dense Pareto-Frontier shown for Amazon and Mississippi. In particular,354

parameter values of storage processes that are represented by these additional355

observations could be more effectively constrained. For example, surface water356

storage derived from satellite altimetry and imagery can provide such data357

sets for an individual storage compartment (Papa et al., 2008). Though, the358

success will be limited as long as the observables contain high errors (e.g.359

groundwater, Döll and Fiedler, 2008) or the approach demands sophisticated360

model modifications to make model state variables match the observables (as361

for remotely sensed surface soil moisture).362

A validation of the calibrated model was performed for de-trended GRACE363

signals including non-periodic components and errors from January until De-364

cember 2007 (see Figure 4). For this year, a simulation run was realized with365

WGHM using the parameter values that were calibrated for the period 2003-366

2006. For the Amazon and the Mississippi river basins, simulation results were367

markedly better for the validation period, when they are compared to the re-368

sults of the standard model in terms of amplitude, phase and RMSE values.369

This improvement is similar to what was achieved in the calibration period370

(see Table 3). This corroborates the model improvement of TWSC that could371

be achieved by the multi-criterial calibration for these basins. For the Congo372

river basin, however, the RMSE value increased, indicating that the model373

performs somewhat worse with the re-calibrated parameter set in the valida-374

tion period. This confirms the above results that improvements by calibration375

are difficult to achieve with the present model set up and data availability for376

this river basin. For further studies it should also be taken into consideration377

that it might be justified to reduce the weight assigned to the river discharge378
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data during calibration in the Congo basin due to their high uncertainties.379

This may enable the selection of Pareto optima with higher TWSC-simulation380

performance (see Figure 1c).381

4 Conclusions382

The first multi-objective calibration of the global hydrology model WGHM383

with TWSC data from GRACE and monthly mean river discharge was suc-384

cessfully carried out. By this approach, phase and amplitude differences of385

periodic water storage variations between GRACE and WGHM could be sig-386

nificantly reduced as compared to earlier versions of WGHM. We could show387

that the direct integration of GRACE data into the calibration process of388

WGHM leads to a clear improvement of simulated monthly TWSC signals on389

a scale of large river basins. At the same time, a better simulation of river390

discharge could be achieved. This highlights the particular value of multi-391

objective process analyses. If two observables are considered within the cali-392

bration approach, the trade-off in model performance of different hydrological393

variables is taken into account. Finally, this allows for an improved represen-394

tation of the water balance as a whole.395

It should be pointed out that the calibration approach adopted in this study396

followed two principles that can be seen as a prerequisite for the successful397

integration of GRACE water storage data into large-scale hydrological models398

(Güntner, 2008). First, GRACE and WGHM model data were treated exactly399

in the same way before comparison and parameter adjustment, i.e., the same400

methods of filtering and basin-averaging were applied to both data sets. This401

excludes the risk of poor comparability of the time series if unfiltered model402
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data are compared to filtered GRACE data which may include filter-induced403

biases. Secondly, with WGHM a hydrological model was used that represents404

all relevant water storage compartments in the analyzed river basins, including405

surface water storage. Thus, it is assured that water storage calibrated in the406

model is consistent with the observation variable, i.e., the integrative nature407

of GRACE-based TWSC.408

A better process understanding in global hydrology is necessary to provide409

more reliable estimates of changes in the continental water cycle, which con-410

stitutes an important input for climate studies or water resources management.411

In order to get a closer view into the reasons why the model differs from the412

real world, more accurate input data and improved calibration settings should413

be applied. The former can be achieved by using up-to-date river discharge414

data (i.e. for the Congo basin) and better GRACE filter methods. For the415

latter, technically more extensive model calibrations in terms of the size of416

parameter set population and of function evaluation are necessary to shift the417

Pareto frontier towards an even better model performance. Also, the analysis418

of a posteriori model states and parameter sets will help to uncover potential419

errors in model structure or input data. In this way, an improved understand-420

ing of continental water storage processes may finally be achieved by a stepwise421

modification of the modelling concept (Fenicia et al., 2008). Especially for re-422

gions like the Congo river basin with a very inaccurate or lacking coverage423

of terrestrial data, the usage of GRACE data is most proliferous concerning424

model improvement. Longer GRACE time series and the continuing error re-425

duction within GRACE gravity recovery are likely to reduce the uncertainty426

of GRACE TWSC recovery and therefore the data assimilation into global427

hydrology modeling in further studies. Additionally, the presented approach428

is promising for the integration of alternative data sets from remote sensing,429

18



such as soil moisture, snow cover or surface water volumes into hydrological430

models. Furthermore, the methods considered here to achieve consistency of431

model variables and GRACE observations in terms of, e.g., data filtering and432

the selection of dominant signals, may similarly apply to other areas of Earth433

system modelling where GRACE data are to be used as a model constraint,434

such as for processes of the cryosphere or the Earth’s interior.435
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Table 1
(a) Re-calibrated river basins with (b) corresponding area and (c) discharge station.
(d) Discharge source and time series for computation of monthly means. (e) Number
of WGHM parameters from different processes (S: Soil, SW: Surface water, GW:
groundwater, ER: Evaporation and Radiation, SN: Snow, IN: Interception) derived
from a sensitivity study against TWSC and river discharge. The underlined process
includes the most sensitive parameter. (f) Calibration parameter in corresponding
order to row (e) (MCWH: maximum canopy water height, PT: Priestley-Taylor).
(g) Significant GRACE derived TWSC periods Pn of basin averages with associated
amplitudes An and phases φn, with t0 =01.01.2005. (h) Cumulative proportion of
the significant periods in the full GRACE signal variability.

(a) Amazon Mississippi Congo

(b) 5.9 Mio km2 3.0 Mio km2 3.6 Mio km2

(c) Obidos Tarbert Landing Kinshasa

1.9◦S, 55.5◦E 31.6◦N, 91.5◦W 4.3◦S, 15.3◦W

(d) ORE HYBAM US ACE GRDC

2003-2006 2003-2006 1903-1983

(e) 3 SW, 1 GW, 1 S, 1 SW, 1 S, 2 ER 2 ER, 1 S, 1 GW,

1 IN 1 SN, 1 IN 2 SW

(f) runoff coefficients runoff coefficient radiation proportion

river velocity root depth PT coefficient

wetland depth radiation proportion rooting depth

GW baseflow coeff. PT coefficient GW baseflow coeff.

rooting depth snow melt temperature wetland depth

MCWH MCWH SW baseflow coeff.

(g) P1 = 0.9833 a P1 = 0.9826 a P1 = 0.9881 a

A1 = 146 mm A1 = 33 mm A1 = 30 mm

φ1 = 3.82 mon φ1 = 2.99 mon φ1 = 1.82 mon

P2 = 2.5297 a P2 = 2.4824 a P2 = 0.5022 a

A2 = 22 mm A2 = 22 mm A2 = 15 mm

φ2 = 19.29 mon φ2 = 29.59 mon φ2 = 4.75 mon

(h) 99% 75% 73%
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Table 2
Calibration parameter values and their ranges for the calibration work (GW:
groundwater, MCWH: maximum canopy water height, PT: Priestley-Taylor, SW:
surface water).

Parameter Standard value and unit Minimum Maximum

GW baseflow coefficient 0.01 / day 0.006 0.1

MCWH 0.3 mm 0.1 1.4

PT coefficient 1.26 0.885 1.65

radiation proportion 0.25 0.08 0.54

river velocity 1 m/s 0.05 2.0

root depth mult. 1 0.5 2.0

runoff coefficient mult. 1 0.5 2.0

snow melt temperature 0◦C -3.75 3.75

SW baseflow coefficient 0.01 / day 0.001 0.1

wetland depth 2 m 1.0 5.0

Table 3
RMSE of simulated versus detected hydrological states for the calibration period
01/2003-12/2006: monthly mean river discharge (col. 2-3) and de-trended TWSC
signal with non-periodic components (col. 4-5). RMSE is given for the original
WGHM (original) and for the selected Pareto solution of the re-calibrated (re-
cal.) WGHM version. For the validation period 01/2007-12/2007 RMSE of TWSC
is given in col. 6-7.

Discharge [kg3/month] TWSC [mm] TWSC [mm] (2007)

Basin original re-cal. original re-cal. original re-cal.

Amazon 126.6 28.1 49.6 24.7 64.0 34.1

Mississippi 17.2 4.0 21.8 16.1 18.9 13.4

Congo 22.0 13.5 24.7 23.6 25.4 30.5
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