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Bidirectional and unidirectional fracture growth
during hydrofracturing: Role of driving stress gradients
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[1] An unexpected observation from induced seismicity during stimulation experiments
was the identification of asymmetric bidirectional and unidirectional growth of the seismic
front and back front, indicating asymmetric growth of the hydrofracture itself. We develop
and analyze a new analytical hydrofracture model that considers for the first time the
effect of stress and pore pressure gradients on growth. It is based on plane strain linear
elastic fracture mechanics and further considers 1‐D laminar flow, the opening shape of
the fracture, and a Griffith fracture criterion. The model explains asymmetric bidirectional
growth during the injection and bidirectional and unidirectional growth during the
postinjection phase. Analytical relations are derived for both cases to estimate the front and
back front of the seismicity as a function of injection pressure, volume rate, stress
gradients, viscosity, and elastic modules of the rock. Interestingly, the postinjection phase
can be described by self‐similar solutions, which depend only on the stress gradient and
the injection pressure and which predict a parameter‐independent length increase of the
fracture after the injection stops. We use the theoretical opening shape of the fracture to
calculate time‐ and space‐dependent Coulomb stress changes in the rock in order to
predict the patterns of induced seismicity in the neighborhood of the fracture. The model
explains in detail the patterns of earthquakes induced during hydrofracturing stimulation
experiments in a low‐permeable gas field sandstone in west Texas, and we estimate a
lateral stress or pore pressure gradient of more than 0.8 MPa km−1. If the downhole net
pressure during the experiments was 1MPa, the gradient is constrained at about 10MPa km−1.

Citation: Dahm, T., S. Hainzl, and T. Fischer (2010), Bidirectional and unidirectional fracture growth during hydrofracturing:
Role of driving stress gradients, J. Geophys. Res., 115, B12322, doi:10.1029/2009JB006817.

1. Introduction

[2] Hydraulic fracturing is performed in borehole wells
within sections sealed off from the fluid pressure above and
below. Fluid is injected at a constant flow rate. During
injection the wellbore inside the sealed section is pressurized
for several minutes until the initiation of the tensile fracture,
which is usually recognized by a breakdown of the pressure.
After initial breakdown, injection continues until the pres-
sure is stabilized. Injection is then stopped, and pressure is
allowed to decay. The in situ principal stress magnitudes
within the rock are estimated from the fracture initiation
pressure, the shut‐in pressure at which the fluid flows into
the newly formed fracture, the pore pressure of the forma-
tion after the shut‐in phase, and the fracture reopening
pressure during a second cycle of hydrofracturing [e.g.,
Pollard and Fletcher, 2005; Economides and Nolte, 2003,

chapter 3]. The orientation of the least horizontal stress can
additionally be estimated by mapping well breakouts [e.g.,
Pollard and Fletcher, 2005]. Well stimulation, i.e.,
hydraulic fracturing experiments lasting longer and realizing
larger injection volumes, have further been used for hot dry
rock geothermal energy to create artificial cracks (heat
exchanger) in the surrounding material of the heat produc-
tion well. The system of artificially formed cracks increases
the effective permeability and the heat exchanging surface
of the rock and thus the productivity of the power plant.
Well stimulation is also applied to hydrocarbon reservoirs to
enhance the productivity of fluid extraction. For stimulation
experiments it is important to predict and measure the length
and width of the newly formed fractures.
[3] Monitoring and locating acoustic emissions and

microseismic clouds accompanying stimulation experiments
is a novel technique to characterize the newly formed fracture
system and other physical properties of the formation [Cornet
and Julien, 1989; Cornet and Yin, 1995; Rutledge and
Phillips, 2003; Shapiro et al., 1997]. The hypocenter can
nowadays be located within ±20 m if borehole sensor arrays
are used [e.g., Eisenblätter, 1988; House, 1987; Dahm et al.,
1999; Manthei et al., 2003; Moriya et al., 2006; Rutledge
et al., 2004; Oye et al., 2004; Evans et al., 2005; Eisner
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et al., 2006; Fischer et al., 2008], so that details of the
seismicity patterns have been recognized. For instance, the
front of the microseismic cloud often expands at approxi-
mately constant rate in the beginning phase, and the migra-
tion velocity decreases during a later phase of the injection.
The seismicity front even continues to grow, for a short
period, after stopping the injection. Often, a migrating back
front of seismicity is observed, which marks a line where the
seismic activity abruptly ceases. Then, the seismicity is
geometrically restricted to a band or volume that is bounded
by the front and back front of the seismic cloud.
[4] Different models have been suggested to explain the

shape and pattern of the fracturing‐induced seismicity. The
classical approach is a hydromechanical fracture model that
relates the induced seismicity to stress changes from the
newly formed, macroscopic tensile fracture. Early hydraulic
fracturing models were developed to estimate only the width
of the hydrofracture for a given length and flow rate.
[5] Khristianovich et al. [1959] assumed that the fracture

width changes horizontally but not vertically, which is valid
if complete slip would occur at the boundary of the pay
zone. The vertical cross section of their fracture is rectan-
gular. They assumed a constant flow rate and a constant
pressure within the fracture, except for a small region close
to the fracture tip where the pressure is zero in order to
represent the concept of fluid lag [e.g., Warpinski, 1985].
The Khristianovich and Zheltov model was further extended
by Geertsma and de Klerk [1969] to consider fluid leak off,
which is now known as KGD model.
[6] Perkins and Kern [1961] neglected fracture mechanics

but considered fluid flow aspects. The fracture tip region did
not play a role, and leak off and storage were neglected in
their model. Perkins and Kern [1961] assumed an elliptical
shape of the vertical cross section of the fracture, which is
also confined in vertical direction by the height of the
fracturing layer (pay zone). They pointed out that the frac-
ture would continue to extend after injection stopped, until
either leak off limited further extension or the minimum
pressure for fracture propagation was reached. However,
fracture length could not be estimated as part of the solution.
Later, Nordgren [1972] further considered the equation of
continuity and added leak off and storage within the

fracture, which is now known as the PKN model. The
Nordgren solution was only provided numerically and cannot
be expressed in analytical form. In general, the early hydro-
fracture models have not explained the pattern of induced
seismicity.
[7] Other models have been proposed that do not consider

the fracturing and the development of a single fluid‐filled
crack but assume that seismicity is triggered by a transient
pore pressure pulse, caused by the injection of fluids and
migration of pressure through a porous rock. Deformation
and stress changes in the skeleton rock of the porous
medium are neglected, and earthquakes are triggered by the
changing effective normal stress on preexisting failure
planes in the medium. Damage of the medium and defor-
mational feedback is not considered. These models were
used to estimate isotropic and anisotropic permeability of
the rock [Shapiro et al., 1997; Shapiro, 2000] and were used
to explain the back front of seismicity [Parotidis et al., 2004].
A recent study aimed to link both type of approaches by
considering fluid leakage from the newly formed fracture into
the porous formation. Shapiro et al. [2006] predicted a
square root temporal expansion of the seismic cloud if fluid
leakage is dominant and a linear growth if fracture growth
controls the stress changes in the rock.
[8] In this paper, we study the stress changes in the rock

skeleton that are induced by the emplacement of the fluid‐
filled fracture, and we neglect the leakage of fluid into the
rock. We first develop a simplified 2‐D hydrofracture model
from elementary crack solutions and show that linear as well
as decreasing growth velocities can be explained. We further
investigate, for the first time, the effect of driving and pore
pressure gradients on the orientation, shape, and pattern of
the fracture and seismic cloud. Asymmetric bidirectional
growth during the injection phase can be explained and used
to derive stress gradients and other parameters. After that, the
postinjection phase is analyzed, where we derive equations for
bidirectional and unidirectional growth and predict the after‐
injection length of the fracture. The front and back front of
seismicity are estimated from the tip and the thickest point of
the fracture. Section 2 discusses the Coulomb stress changes
in the rock mass surrounding the fracture and how they
trigger seismicity. The model can be applied to experiments

Figure 1. Schematic sketches of (a) the injection phase 1 with bidirectional fracture growth in ±x direction
and (b) the postinjection phase 3 with unidirectional growth in x direction. The external normal stress, syy −
aPp(x), decreases in x direction (see, e.g., gray double arrows in Figure 1a). The internal driving pressure,
P(x), and the internal net pressure increase in x direction (see, e.g., black double arrows in Figure 1b). An
overview of other parameters is given in the notation section.
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where the formation permeability is small or the injection
pressure is large. One such stimulation experiment was
conducted in a gas field in Texas, where the induced seismic
cloud indicated 1‐D growth of the fracture [e.g., Eisner et al.,
2006; Fischer et al., 2009].We find very good agreement and
discuss this application in section 3 before we conclude our
main findings in section 4.

2. Fracturing Model

[9] We assume a homogeneous isotropic porous rock
mass embedding the newly formed fracture. The fracture is
growing in ±x direction and opens in y direction (Figure 1).
The opening isDu, and the average half opening is defined by
h. The general notation is summarized in the notation section.
The fracture is idealized by a 2‐D crack (plane strain prob-
lem), which is valid if the crack extension in z direction is
much longer than in x direction or if growth in z direction is
limited by sealing layers on which slip occurs (compare
KGD model). The approximation may also hold in the
central plane of symmetry of an ellipsoidal fracture.
[10] The injection of fluids is restricted to a single fixed

line or plane in space from which the fracture begins to grow
and the fracture is assumed to be completely sealed along its
surface. The opening shape and size of the fracture are
controlled by the internal effective driving pressure P, by
the length 2a of the fracture and by the fracture toughness of
the rock, Kc. During injection, the driving pressure P in the
fracture is expressed as the sum of the net overpressure (net
pressure), Pnet, and the possible fluid‐related pressure drop
within the wings of the newly formed fracture. At the
injection point x = 0 we have P(0, t) = Pnet(0, t) = P0(t). The
net pressure is the difference between the internal downhole
pressure, Pd, and the external normal stress (compression)
acting on the outer fracture wall. The external stress is
controlled by both the tectonic normal stress, syy, and the
pore pressure of the formation, Pp. Within a porous rock
formation with Biot’s constant a, the internal net pressure is
therefore defined by Pnet = Pd − (syy − aPp), where we
assume that the exact effective stress law [Nur and Byerlee,
1971] is valid [see, e.g., Zoback, 2007]. The equation is
similar to equations 5‐3 and 5‐4 of Economides and Nolte
[2003], except that the effective stress instead of the total
stress is used. Note that the three influences, tectonic stress,
pore pressure, and internal pressure, sum up in a single net
pressure and cannot be individually resolved.
[11] Our model considers stress and pressure gradients in

the direction of fracture growth (x direction). We assume
linear pressure and stress changes only, i.e., constant gra-
dients, and define g, gv, and geff as the gradients of the net
pressure, viscous pressure drop, and effective driving
pressure, respectively, where geff = g + gv. A nonzero gradient
g ≠ 0 may stem (1) from the gravity effect within the injection
fluid if the fracture is extended in vertical direction (Pd is
changing), (2) from a nonzero pore pressure gradient (Pp is
changing), or (3) alternatively from a nonzero tectonic stress
gradient (syy is changing). We assume that the net pressure
gradient is pointing in growth direction x. Then the tectonic
stress gradient or the pore pressure gradient are both
pointing in −x direction (Figure 1).
[12] The injection experiment consists in general of four

subsequent possible phases: (1) the injection phase with

bidirectional fracture growth, (2) the postinjection phase
with bidirectional growth, (3) a possible postinjection phase
with unidirectional growth, and (4) a possible after‐injection
phase with a slow wholesale movement of the fluid‐filled
fracture.
[13] The injection phase 1 (see Figure 1) is characterized

by a point‐like massive injection of fluids at x = 0 lasting
several minutes or tens of minutes and, after initiation, is
usually performed under nearly constant injection downhole
pressure and volume rate. The injection downhole pressure
has a larger magnitude than the least tectonic stress plus the
formation pore pressure, so that a positive net and driving
pressure exists and a hydrofracture is created and driven in
+x and −x direction (bidirectional growth). The position and
the velocity of the crack tips of the short and long wings are
denoted by as, al and vs, vl, respectively, and the bidirec-
tional growth is symmetric if ∣vs(t)∣ = ∣vl(t)∣, where t is the
time. Otherwise, it is asymmetric; that is, one wing of the
fracture is growing faster than the other. Asymmetric growth
with a longer wing in +x direction occurs if g > 0.
[14] The postinjection phase 2 starts immediately after

stopping the injection. For a short time period, the hydro-
fracture continues to grow bidirectional until the ambient net
pressure within the fracture is reduced below a critical value
that is necessary to further drive the fracture. According to
the Griffith criterion, the stress intensity factor at both of the
fracture tips, K+(t) or K−(t), is equal to Kc. If g = 0, the
problem is symmetric and K+ = K− so that the postinjection
phase 2 stops simultaneously at both ends.
[15] If g > 0, however, a third phase (phase 3) may follow

this postinjection phase, in which the tip at the shorter wing
is not moving and the longer wing continues to grow until the
stress intensity factor K+ has also decreased to the critical
value Kc. The fracture growth becomes unidirectional during
this phase (see phase 3 in Figure 1b).
[16] If g > 0 and if enough fluid has been injected, the

fracture may have grown to an overcritical length, 2a ≥ 2ac.
Then, driven by the apparent “buoyancy force” at the tip of
the longer wing, the problem is characterized by a slow
wholesale movement in a direction of positive net pressure
gradient g (phase 4). Phase 4 is usually very slow and dif-
ficult to observe for hydrofracturing experiments. It has,
however, often been observed in the context of magma
movement beneath volcanoes [e.g., Dahm, 2000b, 2000a,
and references therein].
[17] The theoretical description of fracture growth should

possibly involve processes such as the elastic rock
emplacement under varying driving pressure, the viscous
flow problem under moving boundaries, and the rock frac-
turing problem at the crack tip under a slowly changing
shape of the fracture. The fracture growing velocity is
observed to be small compared to a wave velocity, so that
inertia terms can be neglected. The three processes are
coupled by the driving stress. Complete analytical solutions
to such a problem are difficult and not known to us, and
usually, simplifying assumptions are introduced. In our
study, for instance, we neglect the details of the shape of the
fracture when estimating the viscosity‐controlled pressure
drop from flow. Laminar flow is assumed and characterized
by a constant viscous pressure gradient and effective chan-
nel thickness. In combination with the constant net pressure
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gradient we employ cracks under time‐dependent, spatially
constant driving pressure gradients and consider the stress
intensity factor K± at both crack tips. As we show below, the
fracture criterion at the crack tip is essential in our model to
the understanding of the postinjection phase 2 and the uni-
directional growing self‐expanding crack in phase 3.

2.1. Elementary Crack Solutions and Concept

[18] Appendix A gives the fracture opening and stress
intensity factors K± for opening mode cracks under different
driving pressure and positions of the injection point. In the
most general case, K± depends on the fracture half‐length a,
the position a′ (injection point or point of zero flow), the
maximal internal driving pressure P0, and the effective
gradients gs

eff and gl
eff in the shorter and longer wing of the

fracture (see equations (A14) and (A15)). Since the Griffith
fracture criterion is fulfilled during growth, we always have
K± = Kc. The internal driving pressure at both tips, however,
may slightly differ if the shape of the tip differs (see (A14)
and (A15)).

[19] Fluid flow is assumed in two opposite directions
away from the injection point. As long as the fracture is
growing, the net pressure (no‐flow) is larger than the
effective driving pressure at the tips. The pressure drop from
the high net driving pressure to the relatively small tip
driving pressure is accomplished by viscous flow.
[20] Figure 2 sketches how the effective driving pressure

changes with fracture length during the three phases (1–3).
During injection, the injection point and net pressure Pnet(x =
0) = P0 is held constant. During phase 1 the high net pressure
at the tip of both wings is reduced by viscous pressure drag
from flow in opposite directions. During phase 2 the injection
has stopped, the ambient net and driving pressure decreases
as a result of volume decompression, and the point of zero
flow slowly moves backward in the −x direction. At the end
of phase 2 the net pressure at the tip of the shorter wing is
equal to the driving pressure necessary to just start or stop
fracture growth there. The effective driving pressure is then
constant over the whole length of the fracture, and the frac-
ture opening is elliptical (see Figure A1, top). During the
postinjection phase 3 the fluid flow and fracture growth is

Figure 2. Sketch of the effective net pressure (black line) and the driving stress (no‐flow net pressure,
red line) for increasing growing length of the asymmetric fracture (indicated by the thick blue line).
(a) The injection phase, (b) the postinjection phase with bidirectional growth and (c) the postinjection
phase with unidirectional growth. The injection driving pressure P0 and the injection point are indicated.
The red arrows indicate the pressure drop that is accomplished by viscous fluid flow. For simplicity, we
indicate a constant critical effective net pressure at the tips of the fracture (dashed line). In theory, the tip
net pressure is slightly decreasing with increasing fracture length.
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unidirectional in +x. With increasing fracture length, the net
pressure at the tip of the shorter wing is further decreasing
below its critical value, and the opening shape of the fracture
more and more resembles a teardrop‐shaped crack (Weertman
crack, see Figure A1, middle). Phase 3 is completed when the
effective driving pressure at the tip of the shorter wing is
negative and 1/3 of the driving pressure at the longer wing’s
tip [e.g., Dahm, 2000b].
[21] The viscous pressure gradient is equated by gv =

geff − g. Figure 2 shows that ∣gv∣ becomes smaller the
longer the fracture is growing. This indicates that the flow
velocity may decrease with increasing fracture length.
However, the average thickness during the injection phase
will increase with length, which has an opposite effect on
flow velocity.
[22] The principle to derive the crack tip velocity in both

fracture wings is similar for all three phases. We use the
boundary conditions for gv as discussed with Figure 2. We
further equate the average half opening of the fracture, hs
and hl, as a function of fracture wing length as and al, and
apply a “laminar flow law” as

v ¼ �C h2 gv � h2 gv: ð1Þ

C is a constant depending on the dynamic viscosity of the
fluid and possibly other elastic parameter. Both h and gv are
functions of a, P0, Kc, and a′ (see Appendix A). Equation (1)
depends explicitly on the length of the fracture but only
implicitly on time. We assume that during injection,
equation (1) can be applied to derive the length‐dependent
velocities vs and vl in both wings of the fracture and take
further advantage of the length‐dependent description
below. The time‐dependent velocity of the fracture tips,
however, can be derived from v = v(a) by direct integration,

dt ¼ v�1 að Þda and thus t asð Þ ¼
Z as

0
v�1
s að Þda

and t alð Þ ¼
Z al

0
v�1
l að Þda : ð2Þ

2.2. Injection Phase 1 Under Driving Stress Gradients

[23] The stress intensity factor at the tip is equal to Kc.
Using (A13), the effective pressure gradient is given by (see
Figure A3)

geff að Þ ¼ geffs að Þ ¼ �

2a
P0 � Kcffiffiffiffiffiffi

�a
p

� �
and

geffl að Þ ¼ �geffs að Þ ; ð3Þ

where a (positive quantity) is the distance of the tip 1 or 2 to
the injection point. The viscous pressure drop in both wings
is equated by

gvs ¼ geffs � g > 0 and jgvl j ¼ jgeffl j þ g ; gvl < 0 :

ð4Þ

If g = 0 (bidirectional symmetric growth), the given equa-
tions are sufficient to derive v. From the balance of influx
volume rate q0,

q0 tð Þ
2

¼ qs tð Þ ¼ ql tð Þ ¼ þ2hl tð Þvl tð Þ ¼ �2hs tð Þvs tð Þ ;

and using a(t) = as(t) = al(t) one finds a length‐dependent
formulation as

q0 að Þ
2

¼ qs að Þ ¼ ql að Þ ¼ þhl að Þvl að Þ ¼ �hs að Þvs að Þ : ð5Þ

From (1), (4), and (5) this leads to

v0 ¼ �vs ¼ þvl ¼ 1

48�
q20 g

eff

� �1=3

¼ �

96�

q20
a

P0 � Kcffiffiffiffiffiffi
�a

p
� �� �1=3

; 0 � a � am ; ð6Þ

am is the half‐length of the “symmetric fracture” at the end
of the injection phase, and v0 is the length‐dependent growth
velocity if driving stress gradients are zero, i.e., g = 0
(bidirectional, symmetric growth). Usually, both P0 and q0
are estimated during injection and vary only smoothly with
time or length of the fracture. Then, velocity scales
approximately with v0 ∼ a−1/3. A slight dependency on
Kc/P0

ffiffiffiffiffiffi
am

p
is observed if the net pressure at x = 0 and P0 is

Figure 3. (a) Normalized crack tip velocity v0 (96ham/
pq0

2P0)
1/3 (see equation (6) as a function of normalized length

a/am (am is the length at the end of the injection phase 1
against different parameters of relative overpressure Kc/
P0

ffiffiffiffiffiffi
am

p
). (b) Solution was integrated to time‐dependent

fracture length, where absolute values are plotted. The examples
uses am = 100 m, q0 = 7 × 10−3 m2 s−1, Kc = 5 MPa

ffiffiffiffi
m

p
,

and h = 150 Pa. P0 was varied at 1, 2, and 10 MPa.
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small (Figure 3). The length a(t) is obtained by numerical
integration of v = da/dt and leads to a function approxi-
mately as a ∼ t3/4. A larger net pressure is leading to a
faster growth than a smaller one. However, although the
absolute values of a(t) differ for different ratios Kc/P0

ffiffiffiffiffiffi
am

p
(Figure 3), the shape of the different curves is similar, and
it is thus not very likely that this ratio can be resolved
against changes of the fluid viscosity, which also controls
the absolute velocity of growth.
[24] The injection phase is mainly flow rate controlled.

Observing a symmetric bidirectional growth and measuring
q0 and a(t) (and thus v = da/dt) gives the possibility to
estimate the “effective thickness” of the fracture, heff = q0/
(2v), and to compare this with the elastic average thickness
h = [(1 − n)/4m]paP0 (see (A12) for g = 0; P0 has to be
measured).
[25] What does change when g > 0? Equation (1) can now

be written as

vs ¼ �v0 að Þ 1� g

geff að Þ
� �

and vl ¼ v0 að Þ 1þ g

geff að Þ
� �

with v0 að Þ ¼ 1

3�
h að Þ2 geff að Þ : ð7Þ

Since geff(a) and h(a) are both independent of g (see also
Figure 2), velocity change in both wings is only controlled
by the changing viscous gradient (see equation (7)). The

time‐dependent solution can be discussed by numerical
integration of (2) to derive the time‐dependent length and the
time‐dependent growth velocities of both wings (Figure 4).
The variable am, the half‐length of the “symmetric fracture”
at the end of the injection phase, is introduced as normali-
zation factor. If gam is small compared to the injection
driving pressure P0 (net pressure at x = 0), the asymmetric
growth is small and the growth velocity of both wings de-
creases with time. However, if gam is of similar size as P0,
the effect is significant. The longer wing grows faster and at
nearly constant rate, while the shorter wing velocity slows
down quickly.
[26] The numerical integration illustrated in Figure 4

confirms the derivation given by Fischer et al. [2009], e.g.,

1

2
as tð Þ þ al tð Þð Þ � a tð Þ and �

al tð Þ � as tð Þ
a2s tð Þ þ a2l tð Þ
� �

� g

P0
: ð8Þ

Note that the different factor of p/2 between the results of
Fischer et al. [2009] and (8) results from the fracture
mechanical approach used here. Relation (8) can be used to
estimate the driving stress gradient g directly from the time‐
dependent lengths of both fracture wings.

2.3. Bidirectional Growth in the Postinjection Phase 2

[27] The bidirectional growth in the postinjection phase 2
is maintained by the remaining driving pressure in the
fracture at the end of the injection phase. The mechanism is
qualitatively described in Figure 2. The fracture is now
viewed as “finite volume crack,” and the internal over-
pressure decreases with fracture growth (decompression
effect), resulting in a slowing down of growth. At the
beginning time tm of the postinjection phase the fracture has
the length 2am, a driving pressure at x = 0 of P0m = P0(tm)
and an internal volume (cross‐sectional area) of Am (calcu-
lated from the average thickness h in (A12) times length).
We first discuss the case when g = 0. Introducing a nor-
malized volume as A′m = Am/fam

2 , f = [4(1 − n)p]/3m, a
normalized fracture toughness as K′cm = Kc/

ffiffiffiffiffiffiffiffi
�am

p
and a

relative length as a′ = a/am, the driving stress at x = 0 and for
a > am (a′ > 1) is (see (A12))

P0 a0ð Þ ¼ Am
0

a0ð Þ2 � 2Kcm
0 1ffiffiffiffi

a0
p ; ð9Þ

and the effective pressure gradient is calculated from (A12)
as

amg
eff a0ð Þ ¼ �

2a0
P0 a0ð Þ � Kcm

0 1ffiffiffiffi
a0

p
� �

: ð10Þ

Setting geff(a′) = 0, the maximal postinjection length abmax is
calculated as

abmax ¼ am
P0m

3Kcm
0 þ

2

3

� �2=3

: ð11Þ

For instance, if the half‐length of the fracture at the end of
the injection phase was am = 64 m, the downhole injection
net pressure P0m = 1 MPa and the fracture toughness is Kc =
10 MPa

ffiffiffiffi
m

p
, the postinjection half‐length is abmax ≈ 1.1am ≈

70 m. The postinjection length increases when the ratio

Figure 4. Asymmetric time‐dependent crack length a1 and
a2. The dashed line indicates the symmetric wing length
for g = 0. The continuous lines for (a) g = 1 MPa km−1 and
(b) g = 5 MPa km−1. The following parameters have been
used: Kc = 5 MPa

ffiffiffiffi
m

p
, P0 = 1 MPa, am = 100 m, q0 =

10−2 m2 s−1, and h = 150 Pa s.
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between injection pressure and fracture toughness is larger,
and vice versa, measuring the relative postinjection length
from induced seismicity may be used to estimate the fracture
toughness in the formation.
[28] What happens if g >= 0? Phase 2 is then associated

with a reorganization of internal flow, such that the point of
zero flow is moving toward the tip at the shorter wing 1.
This is plausible because the viscous pressure gradient is
∣gsv(t)∣ < ∣glv(t)∣. The analytical derivation is possibly diffi-
cult. However, at the end of the postinjection phase 2 and
for g >= 0 the point of zero flow is at the tip of the shorter
wing at as. The flow‐related viscous pressure gradient at
the end of phase 2 is just compensating the gradient of the
driving stress, and gv = −g. Then geff is zero, and the post-
injection phase enters a different mode which we defined as
phase 3 (Figure 2). Therefore, at the end of phase 2 and
beginning of phase 3 the growth velocity at the tip of the
longer wing is well defined and may be used to estimate g.

2.4. Unidirectional Growth in the Postinjection Phase 3

[29] The postinjection phase 3 takes place only if g > 0. It
starts at time t3 when the fracture has a half‐length of a3 =
a(t3). The opening shape of the fracture at time t3 is elliptical
and symmetric, since geff(t3) ≈ 0 (see Figure A1, top).We now
define x = 0 at the tip at the shorter wing of the fracture
(thinner tip), which remains fixed during unidirectional
growth (see Figure 1). The tip at the longer wing (thicker tip)
is at a distance 2a(t) from x = 0 and grows with velocity v(t) in
+x direction. Similar to before, we define the time‐dependent
effective driving pressure by P(t) = P0(t) + geffx(t), noting that
P0(t) is now the ambient overpressure at the midpoint of the
fracture. The midpoint of the fracture is moving with velocity
v(t)/2 = da(t)/dt.
[30] The problem simplifies if a midpoint‐fixed, moving

coordinate system (“primed”) is introduced, x = x′ + a(t) and
y′ = y (see Figure 1, phase 3). In the absolute system, the
position of the midpoint of the fracture is xmid = a(t), and at
the tip of the longer wing xtip = 2a(t). The postinjection
phase lasts from t3 ≤ t ≤ t4, and the duration is associated
with a continuously increasing half‐length a(t) from a(t3) =
a3 ≤ a(t) ≤ a4 = a(t4). The growing velocities at time t3 and t4
are defined by v3 = v(t3) and v4 = v(t4), respectively.
Equivalently, overpressure, fracture volume, and average
thickness at times t3 and t4 are declared by indices 3 and 4.
The driving pressure P0(t) is the largest at the time t3 and
then continuously decreases, while geff(t) is zero at time t3
and then continuously increases with time. All equations in
the moving coordinate system may be expressed as a
function of a = a(t). Since a can be directly measured from
seismicity, the length‐dependent approach already allows
one to estimate key parameter of the problem. In a final step,
however, we introduce the time dependency of the solution.
[31] Equation (A2) is rewritten in the primed system as

Du x0; að Þ ¼ 1� �ð Þ
�

2P0 að Þ þ geff að Þx0� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x0ð Þ2

q
; ð12Þ

where −a ≤ x′ ≤ a and P0(a) is the driving pressure at x′ = 0.
P0(a3) is accordingly the driving pressure at x′ = 0 when the

fracture has grown to the half‐length a3. The static pressure
gradient in (A2), g, is replaced by the length‐dependent
effective driving pressure gradient geff(a) = g − ∣gv(a)∣,
where gv is the average viscous pressure gradient along the
fracture caused by unidirectional fluid movement inside the
crack in +x direction.
[32] The stress intensity factor at the tip of the longer wing

is constant and equal to the fracture toughness,

Kc ¼ Kþ ¼ ffiffiffiffiffiffi
�a

p
P0 að Þ þ geff að Þ

2
a

� �
or

P0 að Þ ¼ Kcffiffiffiffiffiffi
�a

p � geff að Þ
2

a : ð13Þ

The stress intensity factor at the tip of the shorter wing is
equal to the fracture toughness at time t3 but decreases
continuously after the longer wing begins to grow. This,

Kc ¼ K� t3ð Þ ¼ ffiffiffiffiffiffiffiffi
�a3

p
P0 a3ð Þ � geff a3ð Þ

2
a3

� �
;

combined with (13) leads to

P0 a3ð Þ ¼ Kcffiffiffiffiffiffiffiffi
�a3

p ; and geff a3ð Þ ¼ j�j � 0 ; ð14Þ

where � is arbitrarily small. The effective driving pressure is
thus constant at the beginning of the postinjection phase,
and the fracture opening shape is elliptical and symmetric.
For a > a3 (t > t3) the driving stress is linear with x′, and the
type of fracture opening belongs to the family of so‐called
Weertman cracks.
[33] For t > t3 we findK

−(t) > 0 <Kc, and the transition from
a symmetric elliptical crack to a fracture with teardrop shape
at time t4 is reached when K− = 0, since then the ambient
pressure cannot be further decreased without a beginning
closure at the tip of the shorter wing [e.g., Dahm, 2000b].
[34] The cross‐sectional area is expressed by (see (A3))

A a3ð Þ ¼ A3 ¼ 1� �ð Þ
�

�a23P0 a3ð Þ ¼ 1� �ð Þ
�

�a23
Kcffiffiffiffiffiffiffiffi
�a3

p
� �

:

ð15Þ
The bulk modulus of the fluid is assumed to be large, so that
the fluid volume, or cross‐sectional area, is approximately
constant, i.e., A(a) ≈ A3:

A3 ¼ 1� �ð Þ
�

�a2
Kcffiffiffiffiffiffi
�a

p � geff að Þ
2

a

� �
: ð16Þ

As a result of the expansion of the fracture the ambient
overpressure at x′ = 0 decreases with

P0 að Þ ¼ Kcffiffiffiffiffiffiffiffi
�a3

p a3
a

	 
2
¼ P0 a3ð Þ a3

a

	 
2
: ð17Þ

From (15) and (16) we find

geff ¼ 2

a

Kcffiffiffiffiffiffi
�a

p � a23
a2

Kcffiffiffiffiffiffiffiffi
�a3

p
� �

¼ 2Kc

a
ffiffiffiffiffiffi
�a

p 1� a3
a

	 
3=2� �

¼ 2P0 a3ð Þ
a3

a3
a

	 
3=2
� a3

a

	 
3� �
: ð18Þ
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The driving pressure gradient is zero for a → a3. It has a
maximum at dgeff/da = 0, i.e., at a = a4 = 22/3a3, which is
geff(a4) = 1

2P0(a3)/a3. Using the nonpenetrating condition,
P0(a) ≥ (geff/2)a, together with (13) and (18), the maximal
length of the fracture is equated to a = 22/3a3 ≈ 1.59a3, i.e.,
exactly to the length where the pressure gradient has its
maximum. It is noteworthy that the maximal length of the
self‐expanding, unidirectional growing fracture in phase 3 is
independent of the elastic parameter, ambient driving pres-
sure, or other initial conditions.
[35] With (16) and (18) we find for the average half

thickness of the fracture

h að Þ ¼ A3

4a
¼ 1� �ð Þ

4�
Kc

ffiffiffiffiffiffi
�a

p
1 � geff að Þ

2

a
ffiffiffiffiffiffi
�a

p
Kc

� �

¼ 1� �ð Þ
4�

Kc
ffiffiffiffiffiffi
�a

p a3
a

	 
3=2
� 1

a
: ð19Þ

The half thickness is the largest at the beginning of the
growth and then steadily decreases proportional to a−1. The
ambient pressure, gradient, and half thickness, as well as
some other parameter, are plotted in Figure 5.
[36] As before, the crack tip velocity is equated by

assuming laminar flow as

v ¼ 2
da

dt
¼ 2

3�
h2 g � geff
� � ¼ 1� �ð Þ2

96��2
K2
c�a

a3
a

	 
3
g � geff
� �

¼ 1� �ð Þ2
96��2

K2
c�a

a3
a

	 
3
g � 2Kc

a
ffiffiffiffiffiffi
�a

p 1 � a3
a

	 
3=2� �� �
: ð20Þ

Equation (20) is related to the fixed coordinate system and is
used to derive, upon integration, the theoretical relationship
for a(t). The crack velocity as a function of crack half‐length
a is plotted in Figure 6.
[37] The ratio of velocities at the beginning and end of

phase 3 is

v

v3
¼ a23

a2
1� geff að Þ

g

� �
; and

v4
v3

¼ 2�4=3 1� P0 a3ð Þ
2a3g

� �
:

ð21Þ

The ratio v4/v3 depends only on initial conditions and g. The
end velocity v4 is zero if P0(a3) = 2a3g. The ratio v4/v3 gives
an independent method to estimate the gradient g and thus
the pore pressure or tectonic stress gradients in the formation.
[38] In order to retrieve a(t) and v(t) as a function of time

the differential equation has to be integrated numerically
(Figure 6). The normalized presentation of the time‐
dependent half‐length is clearly influenced from ga3, and
vice versa, g and possibly Kc can be retrieved by modeling
the time‐dependent length of the fracture during the post-
injection phase with unidirectional growth.
[39] The opening shape of the fracture controls the stress

changes in the surrounding rock. Inserting (13) into (12)
leads to

Du x0; að Þ ¼ 1� �ð Þ
�

2
Kcffiffiffiffiffiffi
�a

p þ geff að Þ x0 � a½ �
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x0ð Þ2
q

¼ 2
1� �ð Þ
�

Kcffiffiffiffiffiffi
�a

p 1 þ x0 � a

a

� �
1 � a3

a

	 
3=2� �� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x0ð Þ2

q
; ð22Þ

for a3 ≤ a ≤ 22/3a3. For a = a3 the fracture has an elliptical
shape, and for a = 22/3a3 the fracture opening and its first
derivative are zero at the tip of the shorter wing at x′ = −a or
at x = 0.
[40] The position of maximal opening, x′max, moves in

direction of unidirectional growth and is given by

x0max ¼
�P0 að Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0 að Þ2
	

þ 1

2
2ageff að Þ� �2r

2geff að Þ

¼ a
� a3

a

	 
3=2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

a3
a

	 
3
� 16

a3
a

	 
3=2
þ 8

r

4 1� a3
a

	 
3=2� � : ð23Þ

[41] A plot of the opening shape of the fracture at different
times (fracture length) is given in Figure 7 (left; g = 0 for
Figures 7a and 7b; g > 0 for Figure 7c). The position of the

Figure 5. (left) Net pressure P0 and the effective pressure gradient geff and (right) the average fracture
half thickness h and the position of maximal opening x′max are plotted as a function of fracture half‐length
a. Parameters are Kc = 10 MPa, a3 = 100 m, m = 30 GPa, n = 0.25, h = 104 Pa s. The curves are all inde-
pendent of g.
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maximal opening should correlate with the back front of
ceasing seismicity since the stress magnitude decreases in
the region that has been passed by the thickest part of the
fracture. It is interesting that x′max does not depend on
dynamic parameters but only on the geometry of the prob-
lem. The maximal opening is at position x′ = 0 when the
unidirectional propagation begins (x = a3 in the absolute
system) and at relative position x′ = a(t4)/2 = a4/2 at time t4
(x = 3a4/2 in the absolute system). In absolute coordinates
the position of the back front (xmax) and front (x+) of the
seismicity is expected to be roughly at

xmax tð Þ ¼ x0max tð Þ þ a tð Þ and xþ ¼ 2a tð Þ ; ð24Þ

respectively.

2.5. Wholesale Fracture Movement: Postinjection
Phase 4

[42] Depending on the size of the fracture at time t = t4, or
the remaining overpressure, the fracture may experience a
slow wholesale migration in direction of driving stress
gradient for t > t4. This process has been discussed in several

papers [e.g., Weertman, 1971b; Dahm, 2000b, 2000a] and is
not discussed here.

2.6. Stress Changes and Seismicity Pattern

[43] The solutions can be used to predict the stress
changes in the medium. We adapt a boundary element
method [Crouch and Starfield, 1983] to calculate the frac-
ture‐induced stress in a homogeneous infinite medium. The
fracture is represented by elements of constant length and
dislocation. Theoretical Green functions are used to calcu-
late the influence from each boundary source to any point Q
in the full or half‐space. The superposition of Green func-
tions gives strain and stress at Q. We calculate at Q the
principal stress magnitudes s1 and s2 and from this the
maximal normal (sn), shear (ss), and Coulomb stress (sc)
for a friction coefficient of f = 0.8. Pore pressure changes
have not been considered. A background stress may be
added to the induced stress if significant tectonic shear stress
is postulated, and this would possibly change the pattern of
Coulomb stress. However, often the induced shear stress
close to the fracture is larger than the tectonic shear stress. It
is thus omitted in our application here.
[44] According to Coulomb’s failure criterion the trig-

gering of microearthquakes is promoted within volumes
where sc is increasing with time [e.g., Becker et al., 2010];
that is, where the Coulomb stress rate Dsc/Dt, or Dsc/Da,
is positive. The Coulomb stress rate has been estimated on
favorably oriented fault planes. Figure 7 shows the evolu-
tion of the opening shape and the associated patterns of
positive Coulomb stress rate. The fracture is assumed to
grow continuously, and three snapshots for different fracture
lengths, indicated in the top left corner of each panel, are
simulated for each of phases 1 to 3. Figure 7 (left) shows the
evolution of the opening shapes during the continuous
growth. Note that the scale of vertical axes changes between
phases 1 and 3 and that the horizontal axes are scaled to
their maxima during each phase. Figure 7 (right) shows the
normalized Coulomb stress change per unit length increase
of the fracture. Phases 1 and 2 have been simulated for g =
0, while in phase 3 we assume g > 0. For each of the three
snapshots in the phases 1 to 3, the induced earthquakes are
expected in the red regions with positive Coulomb stress
rate. During injection phase 1 the seismicity occurs over the
whole length of the fracture and the Coulomb stress rate is
large. This justifies the common approach to estimate the
orientation and length of the hydrofracture from the cloud of
induced seismicity. However, a closer look indicates that the
actual length of the fracture is slightly smaller than the
extent of the expected seismicity cloud.
[45] During postinjection phase 2 the fluid and growth

reorganize, and the fracture is in a stage of self‐expansion
under constant volume. The Coulomb stress rate decreases
with expansion of the fracture. It is noteworthy that the

Figure 6. Fracture tip velocity v is plotted as function of
(a) normalized time and (b) normalized length for different
values of ga3 = 10MPa, 0.5MPa, and 0.282MPa. The normal-
ized time‐dependent half‐length is given in Figure 6a (top).
Note that the smallest gradient is g = 1.028P0(a3)/(2a3). See
Figure 5 for further reference.

Figure 7. (left) Normalized fracture opening in phases (a) 1, (b) 2, and (c) 3 for three lengths of a, at the beginning (black),
in the middle (red), and at the end of the period (blue) (g = 0 for Figures 7a and 7b, g > 0 for Figure 7c). The opening shape
at the beginning of phase 3 is elliptical (black line in Figure 7c). (right) Normalized Coulomb stress change per incremental
length increase of 0.01a is plotted in a x‐y plane for the three different stages. The frictional coefficient was 0.8. The con-
toured stress changeDsc is normalized to approximately the same relative scale. The fracture was discretized by 100 bound-
ary elements of constant dislocation. The grey inverted triangle indicates the position of maximal opening.
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strongest decrease in Coulomb stress rate is in the middle of
the fracture. If a smaller coefficient of friction is used, the
middle of the fracture may even experience a negative
Coulomb stress rate; that is, earthquakes are rarely induced
in the middle part. This may explain observations of seismic
back fronts during the postinjection phase.
[46] Most interesting in our case is the postinjection phase

3, where unidirectional fracture growth is observed. At the
end of phase 2 and the beginning of phase 3 the potential of
inducing seismicity decreases for a short time period; that is,
we expect fewer earthquakes during this phase. We will see
below that this is observed in real data examples. Interest-
ingly, the red regions move unidirectional in the same
direction as the tip of the growing longer wing, and a sharp
transition to a region with no expected earthquakes develops
behind the propagating tip. The transition zone between
earthquakes and no earthquakes is approximately at the
position of the maximal opening of the fracture. Since the
maximal opening position at the beginning of phase 3 is in
the middle of the fracture, the back front of seismicity has its
origin in the middle of the fracture at time t3. The modeling
thus confirms the hypothesis that a unidirectional propagation
of a seismic cloud during the postinjection phase is associated
with the unidirectional propagation of the hydrofracture.
[47] Figure 7 contains more information than the predic-

tion of fore and back front of induced seismicity. The rate of
seismicity, as well as the strength of events, may be quan-
titatively related to the rate of Coulomb stress during frac-
ture growth and possibly used to derive a better kinematic
fracture model in applications.

3. Application to Hydrofracturing Experiment
and Discussions

[48] In 2005 a well in the Sawyer Canyon Sands gas field
of west Texas was completed by hydraulic fracturing over
six depth intervals. Such completions are routinely done in
the field to stimulate production from the low‐permeability
sandstones. Microseismic monitoring was performed for all
six hydraulic fracture stimulations [e.g., Fischer et al., 2008].
The well was nearly vertical, and the six stimulation stages
were conducted over isolated intervals ranging from 10 to
34 m at depths between 1518 and 1858 m. In 2005, six
hydraulic fracturing experiments in a low‐permeability gas
field in the Canyon sandstone, west Texas, have been per-
formed in order to stimulate the field and increase the pro-
ductivity of the producing sands [e.g., Fischer et al., 2008].
The nearly vertical borehole at a depth between 1518 and
1858 m was sealed off in intervals between 10 and 34 m.
The casing was perforated in these intervals, and each
stimulation lasted about 30 min at a wellhead pressure
between 25 and 30 MPa. Assuming a hydrostatic gradient in
the well, the downhole overpressure was possibly between 3
and 8 MPa. However, since the viscosity of the injection
brine was increased by adding a low concentration of
polymer and CO2 to reduce fluid leak off, the downhole
overpressure (net pressure) was possibly smaller. In each
stage, more than 100 m3 of fracturing fluid and about 20 m3

of sand were injected into the reservoir formation.
[49] The seismic monitoring was conducted with a vertical

array of eight three‐component geophones installed at depth
between 1604 and 1817 m (30 m spacing) within a second

borehole about 250 m from the injection borehole. Location
errors are about ±20 m. The experiments and localization
technique are further described by Eisner et al. [2006] and
Fischer et al. [2008].
[50] All stimulation experiments induced numerous micro-

earthquakes. A characteristic feature was the asymmetric
bidirectional growth of the seismic cloud during the injec-
tion and the unidirectional growth during the postinjection
phase. The asymmetric growth during injection has been
interpreted by Fischer et al. [2009] by means of driving
stress gradients. Here, we concentrate on the unidirectional
growth of the seismic cloud during the postinjection phase
and the behavior of the fore and back front of seismicity.
[51] Figures 8 and 9 show the time‐dependent position of

induced earthquakes projected along the strike direction of
the hydrofracture. The distance‐time plots can be used to
estimate a parameterized fore and back front of the seis-
micity by means of a maximum likelihood method [Fischer
et al., 2008]. This is justified if the time‐dependent down-
hole pressure has not been measured during the injection
phase 1. Comparing the relative lengths of the short and
long wings is sufficient to estimate the gradient g [Fischer
et al., 2009]. In this paper we demonstrate that all three
phases, 1–3, can be modeled with a consistent set of para-
meters and a single gradient g. For this, it is sufficient to keep
the downhole overpressure (net pressure at x = 0) constant
during phase 1.
[52] The front of seismicity is assumed to be slightly

ahead of the tip of the fracture. The back front of seismicity
is defined by the position of xmax. The duration of the
injection has been measured and is indicated in Figures 8 and
9. Phase 3 begins at time t3 and ends at time t4. Other times
and lengths am, a3 and a4 have been inferred from the
geometry of the seismic cloud. Using these constraints, both
the front and back front of seismicity are well fitted in stage 3
(Figure 8) and stage 2 (Figure 9) of the hydrofracturing ex-
periments. The parameters used are given in the captions for
Figures 8 and 9.
[53] Figures 8 and 9 give an overview and show the

seismicity of the postinjection phase in a zoomed section.
The length increase of the longer wing, as well as the
position of xmax, are independent of fluid viscosity, net
pressure, fracture toughness, elastic constants, or driving
stress gradient. They are independent on external parameters
and cannot be tuned to fit the data. In both cases, the model
predicts very well the geometry of the front and back front
during phase 3, which we interpret as a very strong support
of the model presented.
[54] It can be recognized, especially in Figure 9, that the

number of events decreases shortly before phase 3 begins at
time t3. This behavior can possibly be associated with the
reshaping of the fracture opening before unidirectional
growth begins and was indicated by the modeling of Cou-
lomb stress changes (e.g., Figure 7).
[55] The origin of the seismic back front is in the middle

of the fracture at time t3, i.e., at position (x + a3)/a3 in
Figures 8 and 9 (bottom). This was also predicted by the
modeling of Coulomb stress changes (Figure 7). The cur-
vature of the front and back front during the postinjection
phase 3 depends only on the driving stress gradient g and Kc

(or P0(a3), see equations (21) and (24)) and are well ex-
plained in both stages with a common driving stress gradient
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of g larger than 0.8 MPa km−1. In order to fit the seismicity
front during the injection phase 1 the ratio g/P0 has to be
chosen at 10 and 14 km−1 for stages 2 and 3, respectively.
Assuming a net injection pressure of P0 = 1 MPa for stage 2,
the net pressure gradient is estimated at 10 MPa km−1. This
is similar to the value derived by Fischer et al. [2009]. A
smaller net pressure would lead to a smaller gradient, and
vice versa, a larger net pressure to larger gradient. However,
the limiting value for g is 0.8 MPa km−1, and we find a
small difference between stages 2 and 3. For instance,
assuming g = 10 MPa km−1, the net pressure for stage 2 is

P0 ≈ 1 MPa and the influx volume rate is q0 ≈ 0.3 × 10−2 m2

s−1. For stage 3 the associated values are P0 ≈ 0.7 MPa and
q0 ≈ 0.6 × 10−2 m2 s−1. The net injection pressure during
stage 2 is predicted larger than the one for stage 3, and the
influx volume rate just the opposite, smaller for stage 2 and
larger for stage 3. This may be explained because the
injection phase at stage 3 lasted about 24 min and a3(t3) was
about 90 m, while for stage 2 it lasted only 19.5 min and
a3(t3) was about 61 m. A longer fracture can be driven with a
smaller overpressure compared to a shorter one, supporting
the indication that P0(t3) was larger for the shorter fracture.

Figure 8. Distance versus time plot of the seismic cloud of injection experiment stage 3. The theoretical
front and back front as derived by formulas (7) and (20) are plotted as red and blue lines, respectively. The
injection period lasted from time t1 = 1 min to t2 = 24 min (grey area). The red ticks indicate the lengths of
short and long wings from which the half‐lengths a3 = 90 m and a4 = 142.5 m were measured. Other
geometrical parameters have been estimated from the pattern of the seismicity and are indicated (t3 = 27min,
t4 = 70min, am = 85m). The dynamic parameters to obtain the fit were P0 ≈ 0.7MPa, g = 10MPa km−1,Kc ≈
1 MPa m1/2, q0 = 0.6 × 10−2 m2 s−1, m = 10 GPa, n = 0.25, h = 150 Pa s.
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Another possibility might be that the net pressure at the tip
had more time to be reduced if the injection lasted longer.
[56] Absolute velocities depend on many more parameters

than the net pressure or the stress gradients. The parameters
chosen to model the injection phases 1 and 2 in Figures 8 and
9 are in a realistic range but are mutually dependent and not
well resolved. Other combinations of parameters may pos-
sibly behave equally well. Additionally, the downhole
pressure and flow rate was possibly not stationary during
injection. The main goal here is to demonstrate that absolute
values of nonlinear growth velocities, seismicity, and frac-
ture length can be modeled by means of realistic parameters.
We need relatively small values of net pressure Pnet(x = 0)
and fracture toughness Kc to consistently model the complete

sequence from phase 1 to 3. Kc is only about 1 MPa m1/2,
which is much smaller than values estimated from the shape
of solidified magmatic dikes in hard rock. A possible reason
might be that the fracture was driven in a porous sandstone
of a gas field, which can be assumed to be mechanically
much weaker than hard crystalline rock. Another reason
might be that preexisting fractures existed. The low values
of ambient net pressure might indicate that the pressure loss
is significant from the injection point down to the fracture
itself. Unfortunately, no downhole pressures have been
measured during the experiments.
[57] It has often been argued that the tip pressure and a

fracture criterion can be neglected to understand the growth
of hydrofractures. Our model, on the other hand, needs a

Figure 9. Distance versus time plot of the seismic cloud of injection experiment stage 2 lasting from t1 =
2 min to t2 = 21.5 min (grey area). Geometrical parameters were t3 = 24 min, t4 = 70 min, am = 58.5 m,
a3 = 61 m, a4 = 98.5 m, and dynamic parameters to obtain the fit were P0 ≈ 1 MPa, g = 10 MPa km−1,
Kc ≈ 1 MPa m1/2, q0 = 0.3 × 10−2 m2 s−1, m = 10 GPa, n = 0.25, h = 150 Pa s. See Figure 8 for further
explanations.
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fracture criterion and a nonzero fracture toughness to
explain postinjection growth. While the viscous pressure
drop may control the overpressure along the length of the
fracture and thus the shape of the fracture and the average
opening, the tip pressure and the fracture toughness will
control the growth and stopping of the fracture. Even if the
viscous pressure drop was huge compared to the remaining
driving pressure at the tip, it is the small remaining driving
pressure that decides in our model whether the fracture
continues to grow or not.

4. Conclusion

[58] The presented model is the first hydrofracturing
model that considers stress gradients and quantifies the
effect of postinjection bidirectional and unidirectional
growth. We derive analytical equations to predict the frac-
ture length and growth velocity and their interrelation to
stress, downhole and formation pore pressure, or parameters
of the fluid. The model is simplifying and so far does not
account for storage, fluid leak off, non‐Newtonian fluids, or
3‐D geometry because we mainly aim to clarify the prin-
cipal physical effects. However, we believe that the 2‐D
model can already be used to make first estimates on the
stress gradients from field experiments. This belief is sup-
ported by the good fit between model predictions and ob-
servations in a gas field in Texas. The estimated lateral
stress gradient (e.g., pore pressure gradient) is in the range
of 10 MPa km−1 (assuming a net pressure of P0 ≈ 1 MPa)
and on the order of the vertical hydrostatic gradient. The
proposed model has further been used to estimate time‐
dependent Coulomb stress changes and thus provides a
direct theoretical link between rock emplacement and
Coulomb stress‐induced seismicity during hydrofracturing.

Appendix A: Static Fracture Solutions Under
Stress Gradients
A1. Driving Stress With Constant Gradient

[59] The effects of gradients in the regional stress, or
gradients in the internal pressure of the fracture, have been
first analyzed by, e.g., Weertman [1971a] and Pollard and
Mueller [1976]. We assume that the crack center is at x =
0 and the crack half‐length is a. The effective driving stress
acting on the crack wall is defined by

P xð Þ ¼ P0 þ gx : ðA1Þ

where g is here for simpler notation the gradient of driving
stress.
[60] The opening dislocation Duy = Du of the crack wall

is given by (Figure A1)

Du ¼ 1� �ð Þ
�

2P0 þ gxð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
; ðA2Þ

where −a ≤ x ≤ a. P0 ≥ ag/2; otherwise, the fracture would
close at tip of the shorter wing. The opening shape of the
fracture may, in general, vary from elliptical to teardrop
shape.

[61] The cross‐sectional area A of the fracture, i.e., the
volume per unit depth, is

A ¼ 1� �ð Þ
�

�a2P0 : ðA3Þ

Note that the cross‐sectional area of a 3‐D fluid‐filled
fracture under stress gradients equals the one given here
[e.g., Dahm, 2000b]. From A the average half thickness of
the fracture can be equated by

h ¼ A

4a
¼ 1� �ð Þ

4�
�aP0 : ðA4Þ

It is interesting that the cross‐sectional area A, or the average
half thickness h, are independent of the gradient.
[62] The slope of the opening is then

dDu

dx
¼ 1� �ð Þ

�
� 2P0x þ gx2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p þ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p� �
; ðA5Þ

and has its maximum at

xmax ¼
�P0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
0 þ 1

2 2agð Þ2
q

2g
: ðA6Þ

[63] The stress intensity at the tips of a fracture is, in
general [e.g., Hahn, 1976; Pollard and Segall, 1987],

K� ¼ 1ffiffiffiffiffiffi
�a

p
Za
�a

P0 sð Þ
ffiffiffiffiffiffiffiffiffiffiffi
a� s

a	 s

r
ds : ðA7Þ

[64] For linearly varying driving stress we find [e.g.,
Weertman, 1971a; Pollard, 1976]

K� ¼ ffiffiffiffiffiffi
�a

p
P0 � g

2
a

	 

: ðA8Þ

[65] A teardrop opening shape, a so‐called Weertman
fracture, is retrieved when stress intensity factor at the tip of
the shorter wing is K−(−a) = 0. Then, the fracture closes at x =
−a under a horizontal slope, dDu/dx∣x=−a = 0. The opening
shape of the teardrop fracture may be simplified to

Du ¼ � 1� �ð Þ
�

g a þ xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
: ðA9Þ

A2. Symmetric Loading With Gradients

[66] Symmetric loading with gradients has been analyzed
for geological problems by Weertman [1971a] and Pollard
[1976]. The effective driving stress acting on the crack
wall is now defined by

P xð Þ ¼ P0 þ g1x for x � 0
g2x for x 
 0

�
; ðA10Þ
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where g = g1 = −g2 and g ≥ 0 is assumed. The opening
dislocation Duy = Du of the crack wall is [e.g., Weertman,
1971a; Pollard, 1976] (Figure A1)

Du ¼ 1� �ð Þ
�

� 2P0 � 2

�
ga

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
� 2

�
gx2 ln

x

a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p



� �

;

ðA11Þ

where −a ≤ x ≤ a.
[67] The average half thickness of the crack is calculated

by integrating (A11), leading to

h ¼ 1

4a
2

Za
0

Du dx ¼ . . . ¼ 1� �ð Þ
4�

�aP0 1� 4

3�

ga

P0

� �
: ðA12Þ

[68] The average opening of the crack decreases with
increasing gradient g if P0 at the midpoint x = 0 is held
constant. If the ambient pressure at point x = 4a/3p would be
held constant, the opening would not change for varying
gradients.
[69] The stress intensity at the tip of the longer and shorter

wing of the fracture can be calculated by (A7) and is [see
Pollard, 1976, formula (6)]

K� ¼ ffiffiffiffiffiffi
�a

p
P0 � 2

�
ga

� �
¼ ffiffiffiffiffiffi

�a
p P0 � 2

�
g1a for x � 0

P0 þ 2

�
g2a for x 
 0

8>>><
>>>:

:

ðA13Þ

A3. Asymmetric Loading With Gradients

[70] The most general profile of the driving stress is
(Figure A2)

P xð Þ ¼
P2 þ g2x ¼ P0 þ g2a0 þ g2x for �a0 � x � a

P1 þ g1x ¼ P0 þ g1a0 þ g1x for �a � x � �a0

8><
>:

with a0 ¼ a2 � a1
2

The injection point is asymmetric at point −a′.
[71] We equate the stress intensity at the tip of the longer

wing by solving (A7),

ffiffiffiffiffiffi
�a

p
K2 ¼

Z�a0

�a

P0 þ g1a
0ð Þ þ g1s½ �

ffiffiffiffiffiffiffiffiffiffiffi
aþ s

a� s

r
ds

þ
Za
�a0

P0 þ g2a
0ð � þ g2s½ Þ

ffiffiffiffiffiffiffiffiffiffiffi
aþ s

a� s

r
ds :Figure A1. Opening shape of fractures under different

types of pressure loading, i.e., (top) constant overpressure,
(middle) constant pressure gradient, and (bottom) symmetric
loading with gradients.
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[72] Using the integral formula (B2), we find

ffiffiffiffiffiffi
�a

p
K2 ¼ �aP0 þ �ag1

a

2
þ a0

	 

þ g2 � g1ð Þ 2aþ a0

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ a0ð Þ a� a0ð Þ

p
þ g2 � g1ð Þa aþ 2a0ð Þ

� sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ a0

2a

r !

¼ �aP0 þ g2

"
2aþ a0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ a0ð Þ a� a0ð Þ

p

þ a aþ 2a0ð Þ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ a0

2a

r !#

� g1

"
2aþ a0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ a0ð Þ a� a0ð Þ

p
þ a aþ 2a0ð Þ

� sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
aþ a0

2a

r !
� �

2

( )#
: ðA14Þ

[73] The stress intensity factor at the tip of the shorter
wing, K1, is equated from (A14) by interchanging the index
of gi and changing the sign of gi and a′ so that

ffiffiffiffiffiffi
�a

p
K1 ¼ �aP0 � g1

"
2a� a0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ a0ð Þ a� a0ð Þ

p

þ a a� 2a0ð Þ sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
a� a0

2a

r !#

þ g2

"
2a� a0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ a0ð Þ a� a0ð Þ

p
þ a a� 2a0ð Þ

� sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
a� a0

2a

r !
� �

2

( )#
: ðA15Þ

[74] If a′ = 0 (a1 = a2 = a) and g1 = g2, the stress intensity
is equal to the one in (A8). K2 in (A14) is equal to K− in
(A8) if g2 < 0 and a′ → a, i.e., if the injection point moves
toward the tip of the shorter wing. Note that for comparing
this case the internal pressure has to be equated to the same
point, e.g., the midpoint of the fracture.
[75] In the case of symmetric loading with a′ = 0 (a1 =

a2 = a) and g1 = −g2, the stress intensity is equal to (A13).
Equations (A14) and (A15) can be expressed in terms of a1
and a2 when replacing a = (a2 + a1)/2 and a′ = (a2 − a1)/2.
[76] Figure A3 shows the stress intensity factor at the tip of

the longer wing as a function of parameter a′, i.e., of the shift of
the injection point in negative direction. Three different values
of the pressure gradient, ag2/P0 = 0, 0.25 and 0.5 are shown.
The stress intensity slightly decreases with increasing value of
asymmetry a′ and with increasing value of gradient g2. The
correct values are compared to the approximations in (A13)
and (A8). For a zero gradient, g2 = 0, the two approxima-
tions give the exact values. If g2 < 0, equation (A13) gives
fairly good estimate as long as a′/a < 0.4.

Appendix B: Integral Formula

[77] The integral of one type is

I1 ¼
Za2
a1

ffiffiffiffiffiffiffiffiffiffiffi
aþ s

a� s

r
ds and I2 ¼

Za2
a1

s

ffiffiffiffiffiffiffiffiffiffiffi
aþ s

a� s

r
ds : ðB1Þ

[78] Substitution of u = a − s (s = a − u, ds/du = −1, a +
s = a + a − u = 2a − u) gives

I1 ¼ �
Za�a2

a�a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a� u

u

r
du

and

I2 ¼ �
Za�a2

a�a1

a� uð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a� u

u

r
du ¼

Za�a2

a�a1

u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a� u

u

r
du þ aI1 :

Figure A2. Sketch of pressure profile of an injection crack
with two gradients of driving stress, g1 and g2, and two
lengths, a1 and a2. The half‐length of the crack is a = (a1 +
a2)/2, and we assume a2 ≥ a1 and g1 ≥ g2. The injection point
is asymmetric at point −a′. The injection pressure is P0. The
stress intensity at the tip of the shorter wing is K1; the one
at the tip of the longer wing is K2.

Figure A3. K2 (black continuous line) is plotted as a func-
tion of a′ for different parameters of the gradient g2. The K

+

approximated by (A13) (long dashed line, using a = a2) and
by (A8) (short dashed line) are plotted for comparison.
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[79] Substitution of v =
ffiffiffi
u

p
(u = v2, du/dv = 2v) leads to

I1 ¼ �2

Zffiffiffiffiffiffiffiffia�a2
p

ffiffiffiffiffiffiffiffi
a�a1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a� v2

p
dv

I2 ¼ 2

Zffiffiffiffiffiffiffiffia�a2
p

ffiffiffiffiffiffiffiffi
a�a1

p
v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a� v2

p
dv þ aI1 :

[80] Using elementary root functions [e.g., Bronstein and
Semendjajew, 1985] leads to

I1 ¼ � v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a� v2

p
þ 2a sin�1 vffiffiffiffiffi

2a
p

� � ffiffiffiffiffiffiffiffia�a2
p

ffiffiffiffiffiffiffiffi
a�a1

p ðB2Þ

I2 ¼ �2
v

4
2a� v2
� �3=2h i ffiffiffiffiffiffiffiffia�a2

p

ffiffiffiffiffiffiffiffi
a�a1

p þ a

2
I1 : ðB3Þ

[81] When choosing a1 = −a and a2 = a, the stress
intensity at the tip of the longer wing is equated to K+ =ffiffiffiffiffiffi
�a

p
(P0 + ga/2).

Notation

x, y, z, t Cartesian coordinates and time.
a position of fracture tip (>0).

as, al length of the short (s) and long (l) fracture wing
during injection phase 1.

Du opening (dislocation of fracture wall).
xmax position of maximal opening.

h average half opening of the fracture.
A cross sectional area.

v(x, t) average cross‐sectional flow velocity.
v(a) fracture tip velocity.
vs, vl short and long wing tip velocity during phase 1.

q = 2hv influx volume rate.
syy tectonic normal stress acting from outside on the

fracture walls (compressive > 0).
Dsc Coulomb stress change.

P internal effective driving pressure
(including flow).

Pp pore pressure in the porous formation, acting from
outside on the fracture walls.

Pd internal downhole pressure (no flow).
a Biot’s constant.

Pnet internal net pressure (no flow), equal to Pd − (syy −
aPp).

g gradient of Pnet along x.
geff effective driving pressure gradient, equal to g + gv.
gv flow‐induced pressure gradient.
K stress intensity factor at tips.
Kc fracture toughness.
h dynamic viscosity.
m shear modulus.
n Poisson’s ratio.
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