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Summary 

Active contours or snakes represent widely used methods in edge segmentation. Different, closed snake 

approaches have been proposed in the past but commonly lack of adequate capture ability and quality, noise 

robustness and convergence speed.  In this paper a new closed approach namely “Alternating Vector Field 

Convolution (AVFC)” as well as a new force called “Yukawa Alternating Vector Field Convolution (YAVFC)” 

are proposed which minimize specific snake problems and enhance convergence speed. The comparison of both 

Gradient Vector Flow and Vector Field Convolution snakes with AVFC and YAVFC snakes determines the 

advantages of the new closed approaches. 
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1. Introduction 

The segmentation of images by the extraction of edges can be considered as one of the main tasks in image 

processing. Assuming an image as a representation of its intensity function local extrema are generally searched 

to delineate differing elements. Many different methods of edge segmentation are proposed in literature. Active 

contours also known as snakes belong to modern methods in edge segmentation. In the case of parametric active 

contours specific parametric curves iteratively move through the image domain until certain mathematic 

conditions are fulfilled. The most basic condition is the minimization of a specific energy functional which 

finally contains two terms – the internal energy term and the external energy term. The internal energy term 

corresponds to the curve itself and controls the elasticity and the rigidity of the curve. The external energy term 

corresponds to the considered domain and is usually constructed as the potential of the domain. The solution of 

the minimization problem of the specific energy functional results in a force balance equation, where internal 

forces representing the internal term are at equilibrium with external forces representing the external energy 

term. Typical approaches to model the external force are given by Balloon Forces, Gradient Vector Flow and 

Vector Field Convolution. These approaches address more or less the usual problems of snakes to capture 

boundary concavities, to overcome remaining image noise and to increase the convergence speed. In most cases 

they depend on nearby localization of initial contours towards the regions of interest, on a complex and case 

related determination of snake parameters and the amount of time given for the iterations. These properties do 

not distort the segmentation process unless similar images are used. For rapid segmentation and interpretation of 

different samples an extended approach based on the adaption of Vector Field Convolution and Balloon Snakes, 

Multi Resolution Analysis and alternating snake terms is proposed in this paper.  They are called Alternating 

mailto:rogass@gfz-potsdam.de
mailto:itzerott@gfz-potsdam.de
mailto:schneider@gfz-potsdam.de
mailto:charly@gfz-potsdam.de
mailto:huettl@gfz-potsdam.de


 

  

Vector Field Convolution Snakes (AVFC) respecting the underlying idea of Vector Field Convolution. 

Additionally a completely new force called Strong Force or Yukawa Force is implemented to cope with prior 

given general requirements of image segmentation. The related snake is called Yukawa Alternating Vector Field 

Convolution (YAVFC) snake. Both snake approaches proposed here are evidently able to enhance capture 

quality by simultaneously increased convergence speed.  

2. Materials and methods 

2.1. Traditional Snakes 

In [1,2,3] an active contour or snake is represented in two dimensions by a planar parametric curve v(s) = 

[x(s),y(s)]
T
, s Є [0,1] which moves through the spatial domain of an image to minimize the energy functional 

E =   
1 

2
(α  

∂v

∂s
 

2
+  β  

∂2v

∂s2 
2

) +  Eext (v(s)) ds
1

0
   (1) 

where α and β are weights to control the smoothness and the rigidity of the snake.  
∂v

∂s
  and 

∂2v

∂s2  refer to the first 

and second derivative of v with respect to s.  Eext  denotes the external energy function and is directly derived 

from the image. This function becomes small at the regions of interest (ROI), for instance at edges. Taken I(x,y) 

as the intensity function of an image typical external energy functions are  

 Eext
(1)

(x, y) = − ∇I(x,y) 𝟐       (2) 

 Eext
 2 

(x, y) = − ∇(Gσ x,y ⨂I(x,y)) 𝟐      (3) 

where Gσ x,y  is the 2D Gaussian function with standard deviation σ, ∇ denotes the gradient or Nabla operator 

and ⨂ represents the linear convolution operator [3]. Minimizing Eext  the snake must satisfy the Euler equation 

α 
∂2v

∂s2 +  β 
∂4v

∂s4  − ∇ Eext (v) = 0      (4) 

which is typically considered as a force balance equation 

𝐅int (v) = −𝐅ext (v)      (5) 

where the internal force  𝐅int (v) (5) represents  α 
∂2v

∂s2 +  β 
∂4v

∂s4  (4) and controls the smoothness and the rigidity of 

the snake. There, the smoothness parameter α acts like an elastic membrane and the rigidity parameter β as a 

thin plate [4]. The external force 𝐅ext (v)  (5) deforms the snake towards the ROI. To solve equation (4), the 

snake is considered dynamically by treating v(s) as a function of time t → v(s, t).  

In [3] a solution is obtained when solving the gradient descent equation 

α 
∂2v

∂s2 +  β 
∂4v

∂s4  + 𝐅ext (v) =
∂v

∂t
      (6) 

starting from the initial contour v(s, t = 0).   



 

  

A numerical solution to (6) can be achieved by using discrete s in a finite difference approach [3]. If the 

derivatives are approximated with finite differences and 𝐅ext (v(s, t)) expressed as [𝐅x(v(s, t)), 𝐅y (v(s, t))]
T
, the 

Euler equations can then be written for all snake elements as 

𝐀𝐱 + 𝐅x(v) = 0       (7) 

𝐀𝐲 + 𝐅y (v) = 0       (8) 

where A is a pentadiagonal banded Matrix.  

Assuming 𝐅ext (v(s, t)) constant at each iteration and time step and defining an iterative step size γ the resulting 

Euler equation is given by 

𝐀v + 𝐅ext (v) = −γ 
∂v

∂t
      (9) 

If  
∂v

∂t
  is discretised to 

∂v

∂t
  =  v s, t −  v s, t − 1 =  v

t
−  v

t-1
  , then the snake elements or snaxels can be given 

by the dynamic equation 

v
t

=   𝐀 +  𝛄I 
−𝟏

  𝛄v
t-1

−  𝐅𝐞𝐱𝐭(vt-1
)     (10) 

The parameter γ can also be considered as viscosity parameter and makes the snake harder to deform. 

Other approaches to solve the Euler equations are for instance the Finite-Element-Method [4] and the dynamic 

programming method [5]. 

2.2. Balloon Snakes 

According to [6] the closed, traditional snake has a low capture range if edges are not close enough to the initial 

contour and the snake tends to shrink in itself if the contour is not subjected to any counterbalancing forces. This 

property is strongly related to the choice of the parameter γ which directly influences capture range and speed. 

The balloon model increases the capture capability and speed by normalising the external force and extending it 

to 

𝐅ext (v) = k1 𝐧(v) −  k 
𝐅ext (v)

 𝐅ext (v) 
     (11) 

where 𝐧 is the unit vector perpendicular to the curve, k1 is the amplitude of the force and k is the substituted 

time step [6]. The first term of (11) inflates or deflates the snake like a balloon depending on the choice of k1. 

The second term of (11) provides constant curve evolving speed depending on the choice of k. According to [1] 

closed balloon snakes may not move into boundary concavities depending on the set of  k1 if they are inflated or 

deflated in the wrong direction as only the magnitudes of the forces are changed and not the directions. 

  



 

  

2.3. Gradient Vector Field Snakes 

To enhance capture capability for distant edges and boundary concavities, [7] proposes a new external force 

formulation called Gradient Vector Flow (GVF) field and the respective snake GVF-snake.   

The external force 𝐅ext (v) is substituted by defining GVF field as a field v(x,y) = [u(x,y),v(x,y)]  that minimizes 

the energy functional 

ℇ =   μ  (
∂u

∂x
)2 + (

∂u

∂y
)2 + (

∂v

∂x
)2 + (

∂v

∂y
)2 +  ∇f 2 v -  ∇f 

2
dxdy  (12) 

where ∇f  is the gradient of an edge map f, μ is a noise related regularisation parameter and 
∂u

∂x

2
+ 

∂u

∂y

2
+  

∂v

∂x

2
+

 
∂v

∂y

2
 is the squared magnitude of the gradient of the optical flow velocity according to [8]. If  ∇f  gets smaller in 

nearly homogenous regions or distant from edges, the optical flow term dominates the integrand yielding a 

smooth field and vice versa.   

The GVF field can be found by solving the Euler equations 

μ Δ v −  ∇f 2 v -  ∇f =  0        (13) 

where Δ denotes the Laplace operator with Δ =  
∂2

∂x2 +  
∂2

∂y2  in the 2D case. Equations (12) and (13) can be 

solved by treating u and v as functions of time and solving the generalized diffusion equation 

μ Δ v −  ∇f 2 v -  ∇f =  0 =  
∂v

∂t
       (14) 

With regard to [9] forcing the snake into long indentations is still difficult. This is caused by excessive 

smoothing of the fields near the boundaries with respect to μ. As an extended approach for GVF-snakes to 

overcome the indentations problem the Generalized Gradient Vector Flow (GGVF) were proposed where both μ 
and  ∇f 2 were substituted to g( ∇f ) and h( ∇f ) in the following equations 

g( ∇f ) Δ v  − h( ∇f )  v -  ∇f =  
∂v

∂t
       (15) 

g( ∇f )  =  e
− ∇f 

K          (16) 

h  ∇f  =  1 −  g( ∇f )         (17) 

where K determines the degree of trade-off between field smoothness and gradient conformity [9].  g(∙)  is a 

weighting function for a smoothly varying vector field. h ∙  is a weighting function which balances the data 

related  ∇f . 

  



 

  

2.4. Vector Field Convolution Snakes 

In accordance to [2,9] the GGVF-snake improves the ability to capture narrow boundary concavities, but is still 

sensitive to its parameters and to impulse noise and lacks of computational cost. In [2] a new edge-based static 

external force is proposed called Vector Field Convolution (VFC). The basic idea behind VFC-snakes is to 

convolve a specific vector field kernel with the edge map derived from the image, whereas the vector field 

strongly forces the snake towards the edges.  

The vector field kernel 𝐤(v)  is defined by the equation 

  𝐤(v)  =  mn (v)
- v

 v 
      (18) 

where mn(v) is the vector magnitude function of the vector at (x,y) and 
- v

 v 
 is the unit vector pointing to the 

kernel origin at (0,0) as the centre of the kernel.  The magnitude function incorporates the distance from the 

origin and decreases the influence of edges if the edge elements are further away. This property is fulfilled by 

the given equations 

m1 v = ( v +  ε)−γ      (19) 

m2 v = e
(
− v 

2

δ
2 )

      (20) 

where γ and δ are used to control the decrease of ROI influence and ε denotes a small positive constant to 

prevent division by zero at the origin [2].  

The VFC external force is computed by convolving the edge map with the vector field kernel given by the 

equation 

𝐅vfc = f v ⨂ 𝐤(v)       (21) 

where f v  is the edge map.  To support also the detection of weak edges, a mixed VFC-field was proposed by 

[2] given by the equation 

𝐅ext (v) = 𝐅mix (v) =  
∇𝐟,  ∇𝐟 > 𝜙

𝐅vfc ,  ∇𝐟 ≤ 𝜙
      (22) 

where ϕ is a smoothing parameter like μ of GVF and ∇𝐟 denotes the gradient of an edge map. As a result the 

mixed VFC-field can be considered as the standard external force mixed with the VFC-field in homogenous 

regions depending on ϕ.  



 

  

3. Extending the capture abilities and speed of VFC-snakes  

3.1. The new Alternating Vector Field Convolution Snakes (AVFC) 

With regard to [2], the VFC-snakes have better capture capabilities, are more robust to noise, are flexible when 

tailoring the force field and concurrently reduce computational cost for approximating the desired ROI. For the 

examples published in literature this assumption should be supported. But also in some specific cases for 

instance approximating a simple circle starting from inside the circle balloon snakes converge faster with the 

ROI. This follows from increased computational cost if large images are convolved with the filter kernel (21) 

independent of the method used for convolving the image.  

According to [10], where GVF-snakes are extended with specific balloon forces to increase convergence speed, 

an extended approach for VFC-snakes is contributed in the following. 

The convergence speed of snakes at the beginning of an iterative computation is dependent on the magnitudes of 

the vector fields used and is usually rather low. This could be improved by applying additional balloon forces on 

VFC-snakes, which concurrently restricts the snake approach to a closed loop.  

To avoid distortions of the VFC curve evolution, it is important to dynamically adjust the balloon extension with 

regard to the current deform iteration which gives the following equation for the snaxels based on (10) to 

v
t

=   𝐀 +  γI 
−𝟏

  γv
t-1

+  
k1  

 i
 𝐧(𝐯) −  k 

𝐅mix (𝐯)

 𝐅mix (𝐯) 
     (23) 

Depending on the choice of k1the snake can be now inflated or deflated with respect to both the current deform 

iteration i and snake iteration t and, consequently, may simultaneously converge faster. The choice of k1  in 

equation (23) directly influences the behavior of the snake and always requires an user interaction. This is an 

undesirable property if the edge detection method is to work automatically. The decision on whether the snake 

needs to be inflated starting from the inner image centre towards the edges or deflated vice versa is also 

complex. To minimize the decision process, the use of Multi Resolution Analysis (MRA) and an alternating 

balloon force is suggested.  

To prevent balloon forces producing unpredictable results [11], the snake should be inflated in the first and 

coarsest resolution starting from the centre to extract the inner shape. In the next resolution level the snake 

should start from the previous snake curve and then be deflated towards the image centre and so on.  

This alternating approach concurrently respects possible shifts of real edges caused by resampling methods 

within the MRA and increases the speed of the whole edge detection process [12]. Defining resj with j Є [0,N] 

as the square root of the image size respecting MRA level j where 0 denotes the highest level and N the lowest 

level considered as the original image the equation (23) changes to 

v
t,j

=   𝐀𝐣 +  γ𝐈𝐣 
−𝟏

  γv
t-1,j

+ 
 −1j  k1  res 0

res j    ij
 𝐧j(𝐯) −  k 

𝐅mix j
(𝐯)

 𝐅mix j
(𝐯) 

    (24) 

Thus, the edge detection speed in the original image resolution increases by the initial contour estimation 

gathered from higher MRA-levels. This property is essential for large images.  



 

  

To avoid computation time intensive inversion of matrix  𝐀 +  γI   which size depends on the number of 

snaxels, [12] proposed a method to subdivide this matrix into 4 pieces. The solution for all pieces can be 

computed by using an optimized Cholesky decomposition. The speed limitation to this approach is the use of 

for-loops which slow the edge detection process for large images and can concurrently override available 

computer memory unless for-loops are usually consecutively saved in local memory. 

Based on [6] the inversion of matrix  𝐀 +  γI   can be completely avoided. 𝐀v
t
  is approximated by 𝐀v

t-1
 which 

then gives the equation for the extended and mixed VFC-snake and is addressed as Alternating Vector Field 

Convolution Snakes (AVFC). The related equation is given to: 

 v
t,j

=  −
𝟏

γ
((𝐀𝐣 +  γ𝐈𝐣)v

t-1,j
 +  

 −1j  k1  res 0

res j    ij
 𝐧j(𝐯) −  k 

𝐅mix j
(𝐯)

 𝐅mix j
(𝐯) 

)   (25) 

The AVFC can be imagined as a slowly growing and pulsating figure in 2D or bubble in 3D which delineates 

the region of interests. Curve evolving properties such as curvature, stiffness etc. can also be considered and will 

lead to parameterizations of e.g. α with respect to time t and resj.  

3.2. The new Yukawa Alternating Vector Field Convolution Snakes (YAVFC) 

According to [2] the capture capability of a snake algorithm depends on the magnitude functions given by 

equations (19) and (20). As the basic property of the magnitude functions is to strongly decrease the magnitude 

with respect to the distance to the centre, any function which fulfills this requirement can be used.  

This is also fulfilled by the distance function based on the famous Yukawa Potential [13], which is related to the 

forces in equal charged particles. Those forces well-known as Strong Forces belong to the elementary forces 

considered in Nuclear Physics. As a special case of the Yukawa Potential the magnitude function 

mYuk  v =
e− p   v 

 v  + ε1
        (26) 

fulfils the requirements for a force field to move free particles towards the edges where p is a small geometry 

factor and ε1 is a small, positive constant to prevent division by zero at the origin. Substituting the vector field 

kernel based on the equations (19 or 20) with equation (26) gives a new external force called Strong Force or 

Yukawa Force.  

The related Active Contour is addressed as Yukawa Alternating Vector Field Convolution Snake (YAVFC), 

belongs to the AVFC snakes and is based on the equation 

 v
t,j

=  −
𝟏

γ
((𝐀𝐣 +  γ𝐈𝐣)v

t-1,j
 +   

 −1j  k1  res 0

res j    ij
 𝐧j(𝐯) −  k 

fj v ⨂ 
- v

 v 
𝟐

e p  v  + ε2

 fj v ⨂ 
- v

 v 
𝟐

e p  v  + ε2

 

)  (27) 

where ε2 is a small, positive constant to prevent division by zero at the origin. Concerning the property of the 

VFC external force to be a vector field with a negative divergence or a sink which is the underlying idea of 

VFC-snakes to force free particles towards the edges, this principle is similar for the YAVFC-snakes.  



 

  

With regard to the associativity and differentiation rules for partial derivatives of the convolution the divergence 

of YAVFC external force ∇ F
YAVFCj

 v   is given by the following equation 

∇ F
YAVFCj

 v =  ∇   fj v  ⨂
- v

j

 v
j
 
𝟐

e
 p  v

j
 
 + ε2

  =  
- fj v 

 v
j
 
𝟐

e
 p  v

j
 
+ ε2 

 ⨂ ∇  v
j
 =  

- fj v
j
 

 v
j
 
𝟐

e
 p  v

j
 
 + ε2

 tr I  (28) 

where ∇  denotes the divergence, ⨂  the convolution,  fj v  the MRA edge map and tr 𝐈   the trace of a 

dimension related identity matrix. Assuming non negative values for the edge map fj v , this new external force 

fulfils the basic requirements of being a sink for edges.  

With regard to (28) it is also possible to increase the influence of weak edges by multiplying the edge map with 

non-linear platykurtic, intensity related functions or to increase the influence of strong edges by multiplying the 

edge map with non-linear leptokurtic, intensity related functions. The direct use of the Yukawa Force (26) by 

multiplying with the gradient of an edge map can be considered as another approach to enhance the edge 

detection algorithms based on usual snake methods.  

3.3. Noise removal 

In specific cases remaining impulse noise still distorts the edge detection and should be removed. Usually, a 

linear filter, for instance a Gaussian Filter or a non-linear filter, for instance the Median Filter is applied on the 

image to reduce remaining noise. The linear filter class reduces noise, but the blurring and smoothing of the 

edges can hinder the precise localization of edges if the edges are rather thin. The non-linear filter class reduces 

noise better, but shifts the edges somehow depending on the edge itself and the filter width. Those properties are 

quite complex to model and even not useful for an effective edge detection method based on snakes.  

Another way to minimize noise in images is proposed in [14,15]. Based on [14,15] adaptive, data-driven Coiflet 

hard-thresholds are applied on the image with respect to the BayesShrink rules. By [16] this method shall not 

distort edges, shall not produce grainier filter results and seems to be suitable for image denoising.  

3.4. Edge map 

In [2] an edge map of a gray-level image is computed e.g. as the negative, squared norm of a Gaussian filtered 

image (3) or as inverse of the intensity function (2) for 1-Bit-images. The edge map is widely used as input for 

the most snake approaches. With regard to  [17,18,19] a good edge detector must detect and localize edges and 

shall only allow single edge responses. These properties are given by the Canny edge detection method [17,19] 

and therefore, this method was applied to compute an edge map of an image.  

In some specific cases the canny filter tended to overestimate heterogeneous image regions as edges across a 

real edge depending on the choice of the hysteresis thresholds and the noise parameter σ. Reasoned by this 

property morphological dilations with small, rectangular discs as structuring elements were applied. The dilation 

closes small gaps along and across the edges with respect to the disc size [20]. 



 

  

3.5. Speed issues 

[12] propose specific approaches to speed up snakes by, for example parallelization of computing processes, 

MRA and specific decompositions to invert the pentadiagonal matrix 𝐀 +  γI . [2] suggests to use the Fast 

Fourier Transform (FFT) for the convolution of the VFC filter kernel with the edge map instead of linear 

convolution. Extending this approach it is possible to generally substitute discrete linear convolution with FFT 

in all snake methods [21]. This can also increase the computing speed of gradients, edge maps etc. Reducing the 

calculation time is essential for e.g. motion tracking, so it is also important to break the snake deformations and 

iterations if a certain threshold has been reached. Such a threshold is usually related to the difference or rate of 

change between the i-th and the (i-1)-th deformation or iteration.  

Setting ∆v
t
 =  v

t
−  v

t-1
 as the difference between the deformation results in the following equation for an 

reliable threshold to  

 ∆vt
T[diag I 

T
, diag I 

T
]  

≥ threshold, continue
< 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑏𝑟𝑒𝑎𝑘      

   (29) 

Equation (29) can also be used when iterating each snake, not only when deforming it. The prior equation is 

similar to the convergence criterion proposed by [1] which is related to the Courant-Friedrichs-Lewy step-size 

restriction depending on the threshold chosen e.g. in (29). Another method to define the threshold for the 

iterations is the use of the change rate of the surrounded polygonal area by the snake. If the number of snaxels 

do not change significantly within the iterations, it is also not necessary to compute matrix 𝐀 +  γI  (25, 27) 

again, because it has not changed. 

  



 

  

4. Results 

4.1. Quality 

To test and to evaluate different snake approaches, 8-Bit rectangular, real and artificial sample images with 

different image sizes were chosen. Sample 1 was a 128 x 128 pixel sized part of a remotely sensed image (Fig. 1 

a). Sample 2 and 5 were 256 x 256 pixel sized form primitives (Fig. 1 b and e). Sample 3 was a 64 x 64 pixel 

sized part of a remotely sensed image (Fig. 1 c). Sample 4 was a 128 x 128 pixel sized magnetic resonance 

image of the left ventricle of a human heart (Fig. 1 d). 

     
a) b) c) d) e) 

     
f) g) h) i) j) 

     
k) l) m) n) o) 

Fig.  1 Sample images (a-e), edge maps (f-j), gradient fields of classic and Balloon snakes (k-o) 

At first all images were Coiflet based BayesShrink hard-thresholded to reduce noise. Subsequent to the image 

denoising the edge maps were computed by applying the canny algorithm (Fig. 1 f-j). To remove small 

junctions and gaps in near to strong edges, morphological dilations with 2x2 rectangular discs as structuring 

elements were applied on the edge maps.   

In a next step remaining impulse noise was minimized by convolving the edge maps with a linear 2D-Gaussian 

filter kernel.  To enable mixed external force fields (22), the gradients of the edge maps were additionally 

computed (Fig. 1 k-o). 

Then, small, centered circles were used as initial contours for different snake algorithms in different images 

(Fig. 2 a-e) which is similar to the initializations published in literature. Starting from initial contours each snake 

was deformed 5 times within 500 iterations with the same parameter sets to ensure comparability.  

The external forces of the different snake approaches were computed in relation to their corresponding snake 

equations given before.  



 

  

According to [2] classic and Balloon snakes need sometimes initial contours relatively near the target contour to 

converge. This property was also observed and hence, they were not compared, as these approaches had to have 

other initial conditions such as GVF-snakes or did not converge based on the given initial contour in time.  It 

follows from this that the GVF, the VFC, the AVFC and the YAVFC snakes were compared (Fig. 2).  

     
a) b) c) d) e) 

     
f) g) h) i) j) 

     
k) l) m) n) o) 

     
p) q) r) s) t) 

     
u) v) w) x) y) 
Fig.  2 Initial contours on false colour sample images (a-e), results of GVF-snake (f-j), results of VFC-snake(k-o), results of AVFC-snake (p-t), 

results of YAVFC-snake(u-y) 

With regard to the results given in (Fig. 2 f-j), the GVF-snakes were not able to converge completely with 

simple figures (Fig.2 g and j) conditioned by the amount of iterations used. This was also shown by [2] and can 

be supported.  



 

It’s also noticeable, that GVF-snakes tend to overestimate weak edges (Fig. 2 f,h,i) and hence, despite their 

smoothing abilities the GVF snakes in the original formulation may only have specific use.  

VFC-snakes (Fig. 2 k-o) contribute better results in comparison to GVF-snakes with regard to given form 

primitives (Fig. 2 l and o) and enhance edge detection in specific samples (Fig. 2 k).  Conditioned by the amount 

of iterations, VFC-snakes expand and move faster into concavities (Fig. 2 o) or in general towards boundaries 

(Fig. 2 m and n). They are flexible in usage and can be better adjusted than GVF-snakes. Therefore, they are 

useful in a broader environment, but have to be finely adjusted.  

In relation to the results (Fig. 2 p-y) AVFC- and YAVFC snakes provided the best results and were able to 

capture all ROI independent of the given samples. This is caused for both the AVFC- and the YAVFC-snakes 

by the oscillations of parameters and different forces, but also conditioned by the Multi Resolution Analysis 

approach.  

Comparing the AVFC- with the YAVFC-snake, it can be assumed that the YAVFC-snake is more dependent on 

parameterizations, but produces smoother results and tends to move the snake more towards strong edges 

compared to the AVFC-snake. In contradiction to the YAVFC snake the AVFC-snake provides better results 

with regard to edges near the ROI. Concerning those results and the overall capture quality, the use of the new 

AVFC-snake and its derivative YAVFC-snake based on a completely new Force called Strong or Yukawa Force 

is suggestible for a broader range of applications. 

4.2. Speed 

To enable a broad range of applications, the convergence speed must also be considered.  This is also a quality 

criterion.  

In relation to given samples AVFC and YAVFC snakes converge much faster on average (10 trials per sample) 

than GVF- and VFC-snakes (Table 1). This property is strongly related to the size of the image i.e. the scalar 

field. In some specific cases YAVFC-snake outperforms the AVFC-snake. For small image sizes VFC-snakes 

are also very fast, which is conditioned by the amount of computations in relation to YAVFC and AVFC 

snakes. This advantage is relevant until images are very small. In summary, AVFC and YAVFC snakes are 

more than 400 times faster than GVF and VFC-snakes and should be applied for most edge detection cases. This 

benefit will be enforced with increasing image size. 

Table 1: Runtime for different Active Contour approaches 

 Sample 1 on 

average in 

seconds 

Sample 2 on 

average in 

seconds 

Sample 3 on 

average in 

seconds 

Sample 4  on 

average in 

seconds 

Sample 5 in on 

average 

seconds 

Total average 

time 

consumption in 

seconds 

Rectangular 

sample size 

128 256 64 128 256  

GVF 76.5 350.2 18.1 92.9 399.9 937.5 

VFC 98.6 592.5 1.1 67.4 523.9 1283.5 

AVFC 0.4 0.61 0.5 0.3 0.3 2.3 

YAVFC 0.1 0.59 0.4 0.3 0.6 2 

*all results were achieved on a Intel Core2Duo L7500 X61s ThinkPad with 4 GB RAM within MS Windows Vista X64 

Business and Interactive Data Language (IDL) 6.4 x64 

 



 

With regard to the suggestion of [2] to use complex FFT for the convolution instead of discrete convolution, it is 

also necessary to test the proposed speed and to compare it.  

To compare linear convolution with FFT convolution, averaged trials (100 trials for each case) for different 

matrix and kernel sizes were computed with regard to the convolution method (Table 2).   

Table 2: Runtime for different convolution approaches 

Matrix – size in both 

directions 

Kernel – size in both 

directions 

Linear convolution 

on average in seconds 

FFT convolution on 

average in seconds 

Ratio - FFT / Linear 

on average 

32 32 0.0166 0.0003 60 

64 64 0.2520 0.0008 300 

128 128 3.9351 0.0033 1300 

128 3 0.0395 Not measureable Not measureable 

256 3 0.6247 0.0002 3000 

512 3 10.1722 0.0003 32485 

*all results were achieved on a Intel Core2Duo L7500 X61s ThinkPad with 4 GB RAM within MS Windows Vista X64 

Business and Interactive Data Language (IDL) 6.4 x64 

 

According to [21] convolution speed of FFT is significantly higher than linear convolution at each tested matrix 

and kernel size (Table 2). From this it follows that the convolution of matrices e.g. for the computation of 

external forces, gradients etc. will be faster by using FFT.  

4.3. Implementation 

All the methods described before are fully implemented in Interactive Data Language (IDL) which offers a 

broad range for applications. All IDL implementations of above algorithms work autonomously and 

automatically. They are cross-platform useable by the existing IDL runtime environment. 

5. Conclusions 

In previous chapters new methods based on new approaches and based on a new force were introduced and 

compared to usual methods.  With regard to the results gathered the AVFC and the YAVFC snake outperform 

considered methods in terms of speed and quality. These properties are 

evident and the results can be repeated. According to this a recommendation of proposed new approaches will 

be concluded. In a next step it may be necessary to transform the proposed closed snake approaches into open-

ended to enable a broader set of applications. 
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