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Abstract 

Although flood risk assessments are frequently associated with significant uncertainty, formal 

uncertainty analyses are the exception rather than the rule. We propose to separate two 

fundamentally different types of uncertainty in flood risk analyses: aleatory and epistemic 

uncertainty. Aleatory uncertainty refers to quantities that are inherently variable in time, space 

or populations of individuals or objects. Epistemic uncertainty results from incomplete 

knowledge and is related to our inability to understand, measure and describe the system 

under investigation. The separation between aleatory and epistemic uncertainty is exemplified 

for the flood risk analysis of the City of Cologne, Germany. This flood risk assessment 

consists of three modules, (1) flood frequency analysis, (2) inundation estimation, and (3) 

damage estimation. By the concept of parallel models, the epistemic uncertainty of each 

module is quantified. The epistemic uncertainty associated with the risk estimate is reduced 

by introducing additional information into the risk analysis. Finally, the contribution of 

different modules to the total uncertainty is quantified. The flood risk analysis results in a 

flood risk curve, representing aleatory uncertainty, and in associated uncertainty bounds, 

representing epistemic uncertainty. In this way, the separation reveals the uncertainty 

(epistemic) that can be reduced by more knowledge and the uncertainty (aleatory) that is not 

reducible. 
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1 Introduction 

Decisions on flood mitigation and risk management are usually based on flood risk 

assessments. Such assessments may be associated with significant uncertainty. For example, 

Merz et al. (2004) quantified the uncertainty associated with flood damage estimates at the 

micro-scale, and Apel et al. (2004, 2008) assessed the uncertainty of flood risk estimates for a 

river reach. It is widely acknowledged that risk analyses should try to indicate the reliability 

of the risk quantification. Palmer (2000) and Downton et al. (2005) show that information on 

the uncertainty is important for more informed decisions, since decision makers may have 

differing perspectives, different risk attitudes (risk-neutral, risk-averse) or cost-benefit ratios 

of precautionary measures.  

Furthermore, the available data do usually not suffice to validate flood risk assessments (Hall 

and Anderson, 2002). Events of large interest for a flood risk assessment, such as the 500-year 

flood and its consequences in terms of inundation areas and losses, may not have occurred 

during the available observation period. Or, events need to be assessed that are unrepeatable. 

An example is the failure of a dam. In such a case, the dam would either not be rebuilt, or it 

would be rebuilt with a much higher safety level. In such data-sparse situations, where the 

usual approaches for validation, i.e. comparing observed with simulated data, cannot be 

applied, formal uncertainty analyses are a means of better understanding the system under 

study. They force the analyst to consider a wider spectrum of assumptions. If the contribution 

of different uncertainty sources to the total uncertainty of the risk estimate can be quantified, 

additional resources can be used to effectively improve models, data or understanding. These 

resources will be allocated to the sources that dominate the overall uncertainty. In this way, 

uncertainty analysis is a guide for further information collection. 

Uncertainty analyses usually distinguish between different kinds of uncertainty (e.g., Haimes, 

1998, van Asselt and Rotmans, 2002, Helton and Oberkamp, 2004). In our view, a significant 

difference exists between aleatory and epistemic uncertainty. Aleatory uncertainty stems from 

variability of the process under study. It refers to quantities that are inherently variable in 

time, space, or populations of individuals or objects. Variability exists, for example, in the 

maximum runoff of a catchment in consecutive years, or in the infiltration capacity at 

different locations of a field. Aleatory uncertainty has also been termed (basic) variability, 

natural uncertainty, objective uncertainty, inherent variability, or (basic) randomness. 

Epistemic uncertainty results from incomplete knowledge about the system under study, e.g. a 
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lack of knowledge about quantities that have fixed, but poorly known values. Terms for 

epistemic uncertainty are subjective uncertainty, lack-of-knowledge, (limited-)knowledge 

uncertainty, ignorance or specification error. Epistemic uncertainty depends on our ability to 

understand, measure, and describe the system under study.  

In this paper the risk of the city of Cologne due to floods of the river Rhine is estimated. The 

maximum water level or discharge of the Rhine, for example in the next year, cannot be 

deterministically predicted due to the inherent variability of river flows. This variability can 

be described by a probability density function (pdf) of discharge based on observed runoff 

data. Since the observations represent a limited sample of the complete population, the choice 

of this frequency distribution and of its parameters is uncertain. This epistemic uncertainty is 

related to the available data and to our knowledge of the flood processes. It can be reduced, 

e.g. by sampling more data or by better understanding the flood processes in the catchment. 

This example illustrates the central issue in the differentiation between these two kinds on 

uncertainty. Epistemic uncertainty can be reduced whereas aleatory uncertainty is not 

reducible. As a consequence, many researchers argue that both types of uncertainty should be 

treated separately (e.g., Hoffman and Hammonds, 1994, Ferson and Ginzburg, 1996, Hora, 

1996, Parry, 1996, Haimes, 1998, Cullen and Frey, 1999, Hall, 2003, Helton and Oberkamp, 

2004, Merz and Thieken, 2005). The separation between these two kinds of uncertainty is 

particularly important in risk analyses, where aleatory uncertainty arises from the many 

possible failure scenarios that may occur, and epistemic uncertainty arises from a lack of 

knowledge with respect to the quantification of the frequency, evolution or consequences of 

failures. 

There is no clear-cut boundary between aleatory and epistemic uncertainty. One analyst may 

have a detailed understanding of the system and may model a certain parameter as 

deterministic. Another analyst may choose a probabilistic description of the same parameter, 

since he/she has not enough information or insight to derive a deterministic model. For 

instance, the influence of flow velocity on building damage is usually not considered in flood 

damage models. On the basis of a hydraulic model and a damage model that accounts for the 

effects of flow velocity on the damage, one could derive a deterministic model that mimics 

local variations in velocity and associated variations in building damage. If this is not given, a 

certain part of the variation in damage data is unexplained and may be represented by a 

random component. Hence, the differentiation between aleatory and epistemic uncertainty 
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depends on the context of the risk analysis, and is in most cases subjective. Although an 

objective differentiation would be preferable, model building is always a more or less 

subjective process.  

In this paper, it is proposed to separate aleatory and epistemic uncertainty in flood risk 

analyses. The separation between aleatory and epistemic uncertainty is exemplified for the 

flood risk analysis of the City of Cologne. This flood risk assessment consists of three 

modules, (1) flood frequency analysis, (2) inundation estimation, and (3) damage estimation. 

The main sources of uncertainty are considered and treated either as aleatory or epistemic 

uncertainty. This results in the flood risk curve for Cologne, representing aleatory uncertainty, 

and associated uncertainty bounds, representing epistemic uncertainty. In a further step, the 

epistemic uncertainty associated with the risk assessment is reduced by introducing additional 

information in the risk analysis. 

The paper extends former work published in Merz et al. (2002) and Merz and Thieken (2005). 

In particular, the flood risk and uncertainty analysis of Merz et al. (2002) is extended by 

considering a larger variety of uncertainty sources, such as the uncertainty due to non-

stationary flood data, and by demonstrating how epistemic uncertainty of the estimated flood 

risk is reduced by means of additional information. Merz and Thieken (2005) separate 

aleatory and epistemic uncertainty for flood frequency analysis. The current paper extends 

this approach to the complete risk assessment, including inundation and damage estimation.   

 

2 Study area Cologne/Rhine 

The city of Cologne is situated at the Rhine River in Germany (Fig. 1). The Rhine basin is 

densely populated with approx. 50 million people living in the catchment. Nine states share 

the Rhine basin, and the Rhine receives flow from the Aare, Neckar, Moselle, Main, and 

several other tributaries. It is among the rivers with the highest streamflow in Europe (mean 

discharge at Cologne, 1891-1998: 2062 m3/s) and one of the most important waterways in the 

world. The Rhine basin is divided in (1) the Alpine and High Rhine, a high mountain area 

partly covered by glaciers, (2) the Upper Rhine which flows through a lowland plain, (3) the 

Middle Rhine with meanders that have cut canyons of 200 to 300 m depth into the rocks, (4) 

the Lower Rhine, a typical lowland river, and (5) the Rhine Delta which is formed by Rhine 

branches. The flow regime of the Rhine River changes from the Alpine to the Rhine Delta: In 

the upper parts, the flow is dominated by snowmelt and precipitation runoff from the Alps in 
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the summer, whereas the annual average hydrograph of the Lower Rhine peaks in the winter 

due to precipitation runoff from the middle mountain ranges. 

 

 

Figure 1: Map of the River Rhine, its catchment and location of study area Cologne.  

 

Cologne is located at the Lower Rhine. At the gauge Cologne, the Rhine has a drainage area 

of 144232 km2. Floods in Cologne are caused by rainfall events with long duration, typically 

in the range of 10 to 20 days. Most of the floods are winter floods, caused by rather moderate 

rainfall. Cologne has a long experience with floods. Fig. 2 shows the systematic flood 

observations at gauge Cologne as well as historic flood records. Recent floods occurred in 

December 1993 and in January 1995. Both floods had a similar genesis. The Christmas flood 

of December 1993 was caused by high antecedent soil moisture due to a first sequence of 

rainfall events, abundant rainfall following in a second sequence and snow melt. In January 

1995, a similar effect was produced by melting snow and frozen soil in the uplands. Thus, 

heavy precipitation in the uplands of the Middle and Lower Rhine resulted in catastrophic 
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flooding (Disse and Engel, 2001, Pfister et al., 2004). The damages reported for Cologne 

amounted to €76.7 million and €33.2 million in 1993 and 1995, respectively (Vogt, 1995, 

Fink et al., 1996). 

 

 

Figure 2: Flood time series at gauge Cologne/Rhine. Top: Historical and systematic water 

level observations; Bottom: Systematic discharge observations, 1846-2004 (annual maximum 

flood AMS 1846-2004), solid line: filtered time series with Hamming filter (bandwidth 10 

years) 
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3 Outline of risk and uncertainty analysis 

Flood risk is defined as damage due to inundation that is exceeded by a given probability. The 

flood risk analysis in this paper has a modular structure and consists of three modules: (1) 

flood frequency analysis at gauge Cologne, (2) transformation of flood discharge values to 

inundated areas in the City of Cologne, and (3) estimation of the direct economic flood 

damages. The modules and the quantification of uncertainty are described in section 4. 

For the quantification of epistemic uncertainty the concept of parallel models is applied 

(Visser et al., 2000). We use the term model for a specific combination of model assumptions, 

structure (mathematical functions/algorithms) and parameters. For example, fitting a certain 

probability distribution function to two different historical periods yields different parameters 

sets and, consequently, two different models for flood quantile estimation. For each module a 

number of parallel models are used. Parallel models receive the same input and produce the 

same output variables. Each parallel model is regarded as a plausible description of the 

reality. If we had no epistemic uncertainty, we would apply just one model for each module, 

yielding one risk curve (probability of events with damage exceeding a certain value). 

Computing all parallel models simultaneously introduces epistemic uncertainty. The width of 

the model results is an uncertainty band that represents our incomplete knowledge.  

To obtain a best estimate for the flood risk, we weight the results of all parallel models. To 

this end, a weight was assigned to each plausible model. Where data were available, the 

weights were derived from the agreement between observation data and values of the 

theoretical model. The resulting risk curve is seen as best estimate, and represents aleatory 

uncertainty. The uncertainty bounds around the risk curve represent epistemic uncertainty. 

 

4 Risk and uncertainty analysis 

Table 1 lists the important source of epistemic uncertainty. In the following, the sources of 

uncertainty are discussed, and the main sources are considered in the risk analysis. 
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Table 1. Sources of epistemic uncertainty in the flood risk analysis 

Uncertainty source  Examples / remarks 

(1) Flood frequency analysis   

Assumptions of extreme value 
statistics  

Stationarity, homogeneity, independence  

Choice of sample Selection of time period; annual maximum series, 
peak-over-threshold, selection of ‘independent’ 
peaks  

Choice of distribution function  GEV, Pearson Type 3, Lognormal 

Choice of parameter estimation 
method  

Method of moments, L-moments, Maximum 
Likelihood  

Statistical inference uncertainty Uncertainty associated with fitting and 
extrapolating, based on the given data 

(2) Inundation estimation   

Use and extrapolation of rating curve 
as boundary condition for estimating 
inundation areas 

Negligence of flood routing processes in the river 
for Cologne; uncertainty of extrapolation to extreme 
discharge values  

DTM and representation of flood 
effecting urban structure 

Horizontal and vertical resolution, representation of 
linear elements (e.g. road embankments) with 
inundation constraining effects  

DFNK model: 0-dimensional 
hydraulic model for estimation of 
inundation areas 

Negligence of propagation of flow in inundation 
areas; danger of overestimation of flooded areas; 
disregard of breaching and failure processes  

HWSZ model: 2-dimensional 
hydraulic model without consideration 
of flood defence structures 

Omission of flood defences  

(3) Damage estimation   

Estimation of assets in flooded areas  Bias in spatial disaggregation; uncertainty of asset 
estimates derived from regional statistics   

Stage-damage functions  Transfer of damage functions derived  from other 
regions and other flood events; disregard of many 
damage influencing factors, such as flood 
experience, flood duration or flow velocity    

 

4.1 Flood frequency analysis 

The flood frequency analysis is based on the discharge observations at the gauge 

Cologne/Rhine. Discharge time series with mean daily streamflow data from 1846 to 2004 
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(159 years) was available. Older data were not taken into account since the quality of these 

data is not guaranteed. 

Flood frequency analysis presumes that the observed flood discharges come from a parent 

population and can be described by a probability distribution. This probability distribution 

represents aleatory uncertainty. Flood frequency analysis is usually associated with large 

epistemic uncertainty.  

Flood time series were derived from the available discharge data, i.e. from mean daily 

streamflow. Due to the large catchment and its slow response time, the difference between 

peak flows and maxima derived from mean daily flows is negligible. Firstly, for each 

hydrological year (from 1st November to 31st October), the maximum daily discharge was 

determined. This annual maximum series (AMS) is shown in Fig. 2. Secondly, three peak-

over-threshold (POT) time series were derived. The thresholds were set at such a value that, 

on average, one, two and three flood peaks per year exceeded this threshold, respectively. To 

outrule dependence between successive flood events, two flood peaks were considered 

independent if the time interval between them was at least 20 days. We followed Svensson et 

al. (2005) who used thresholds which depended on catchment size: 5 days for catchments 

< 45000 km², 10 days for catchments between 45000 and 100000 km², 20 days for catchments 

> 100000 km². 

As a first step, it was tested whether the derived flood time series fulfil the assumptions of 

extreme value statistics. Flood frequency analysis based on POT data requires the number of 

exceedences per unit time to be Poisson distributed and the time intervals between events to 

be exponentially distributed (von Storch and Zwiers, 1999). To test this assumption, the 

Kolmogorov-Smirnov goodness-of-fit test was applied. For a significance level of 5%, the 

hypothesis that the POT data follows a Poisson distribution was rejected for the three POT 

time series. AMS data is required to be independent. Applying Bartlett’s test of independence 

for a significance level of 5%, the hypothesis of independence could not be rejected. As a 

consequence of these first statistical tests, it was decided to consider AMS values only.  

Flood frequency analysis also assumes stationarity. The values are expected to fluctuate 

randomly around a constant mean. However, there is evidence for non-stationary flood 

behaviour in the Rhine catchment. Lammersen et al. (2002) analysed the effects of river 

training works and retention measures on the flood peaks. The construction of weirs along the 

Upper Rhine in the years 1955-77 accelerated the flood wave, leading to a higher probability 
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that the flood peak of the Rhine coincides with the peaks of its tributaries, such as the Neckar. 

To reduce the flood risk along the Rhine, extensive retention measures have been planned and 

partially implemented. Lammersen et al. (2002) analysed these effects and concluded that, on 

average, the river training works have increased the flood peaks at Cologne and the retention 

measures have decreased the peaks, however to a smaller extent. Pinter et al. (2006) identified 

statistically significant increases in flood magnitude and frequency at gauge Cologne during 

the 20th century. Their analysis proposed that river engineering works caused little of the 

observed increase, and that climate and land-use related effects were responsible for 

increasing floods. Flood-producing precipitation events and runoff yields have increased in 

parallel to the upward flood trend. Pfister et al. (2004) summarized the impacts of climate 

change and land-use change in the Rhine catchment. They found no evidence for the impact 

of land-use changes on flood discharge, although the Rhine catchment has experienced 

widespread land-use changes. Petrow and Merz (2009) performed a Germany-wide flood 

trend analysis covering 145 gauges in Germany. They detected increasing flood trends for the 

period 1951-2002 for a considerable fraction of gauges in West Germany during the winter 

season which is the dominant season for floods in Cologne. Petrow et al. (2009) analysed the 

links between atmospheric circulation patterns and floods and concluded that significantly 

increasing persistence of flood-prone circulation patterns intensified the flood hazard during 

the winter season in West Germany. 

Based on this evidence for an aggravated flood situation, AMS 1846-2004 was tested for an 

increasing trend by means of a resampling approach (Kundzewicz and Robson, 2004). The 

observed time series was resampled 1999 times, while the time history was destroyed: Each 

new time series contained the same values, however, the temporal order of the values was 

determined randomly. Using linear regression, a linear trend line was fitted to the observed 

time series and to each of the 1999 synthetic time series. Then it was tested, whether the slope 

of the observed time series deviates from the behaviour of the slope values of the synthetic 

time series. If there is no trend in the data (null hypothesis), the order of the data values 

should make little difference. If the observed slope lies somewhere in the middle of the 

generated values, it seems reasonable that the null hypothesis is correct (Kundzewicz and 

Robson, 2004). Since the hypothesis of no trend, versus the hypothesis of increasing trend, 

was rejected at the significance level of 5%, non-stationarity of AMS 1846-2004 has to be 

assumed.  
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This result leads to a dilemma: On the hand, flood frequency analysis benefits from longer 

time series; on the other hand, a very long time series may not be representative for the 

conditions for which the flood quantiles will be estimated. To account for this epistemic 

uncertainty due to non-stationarity, the flood frequency analysis was performed for two time 

periods: the complete period with reliable systematic discharge measurements (AMS 1846-

2004), and the last three decades (AMS 1975-2004). The selection of the last three decades 

was grounded on the observation of a tendency for increased floods during the last 30 years 

(see Fig. 2). 

A large source of epistemic uncertainty of flood frequency analysis arises due to the choice of 

the distribution function (e.g. Merz and Thieken, 2005). Often, different distribution functions 

agree well with the observed data, but give strongly differing extrapolation values. To take 

account of this uncertainty, seven distribution functions that are frequently used in flood 

frequency analysis were selected (e.g., Stedinger et al., 1992, Hosking and Wallis, 1997, 

Institute of Hydrology, 1999): GEV (Generalised Extreme Value), GL (General Logistic), 

LN3 (LogNormal 3-parameter-type), PE3 (Pearson type 3), GUM (Gumbel, GEV type 1), 

EXP (Exponential) and GP (Generalised Pareto). The parameters of the distributions were 

estimated by the method of L-moments given in Hosking and Wallis (1997).  

Fig. 3 shows the fitted distribution functions for the two selected time series. In addition, 

empirical probabilities based on five plotting position formulas are plotted in Fig. 3. These 

formulas, namely Weibull, Cunnane, Hazen, Gringorden, Blom, are often used in flood 

frequency analysis (Stedinger et al., 1992). The distribution functions span a wide range and 

illustrate the epistemic uncertainty that may result from the application of different statistical 

models. The selection of the time series also influences the flood quantiles. AMS 1975-2004 

results in higher quantiles than the longer time series.  

For each of the 14 models (2 periods x 7 distribution functions), the Kolmogorov-Smirnov 

goodness-of-fit test was applied at significance level 5%. The test was performed for each 

plotting position formula, however, the choice of the plotting position formula did not 

influence the test result. In one case (AMS 1846-2004, EXP) the test rejected the null 

hypothesis that the theoretical distribution represented the data. However, conventional 

goodness-of-fit tests essentially test the model adequacy of the central range of the sample 

and not the adequacy of the tail (El Adlouni et al., 2008). They are frequently not powerful 

enough to discriminate between different distributions and the choice of the distribution 

function should not rely completely on such tests (Bobee and Ashkar, 1988).  
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Fig. 3: Flood frequency curves and plotting positions for AMS 1846-2004 (left) and 

AMS 1975-2004 (right). Dotted lines illustrate +/- one standard deviation due to sampling 

uncertainty.  

 

To reduce the range of epistemic uncertainty and to reject less plausible models, additional 

information was taken into account. One source of information was an envelope curve which 

is shown in Fig. 4. This envelope curve is based on flood data for catchments in Europe 

(Stanescu, 2002), and additional data from recent floods in Germany (in 1997, 1999, 2002 and 

2005). The latter were provided by German Water Authorities. Fig. 4 shows also historic 

flood peaks in Cologne. The envelope curve may be considered as an upper limit for the 

specific discharge at Cologne, although it cannot be ruled out that a larger specific discharge 

could occur at Cologne. 
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Figure 4: Specific peak discharge as function of catchment area for floods in Europe (data 

from Stanescu, 2002) and in Germany (data from several water authorities). Triangles show 

the historic flood peaks in 1342, 1374 and 1497 at Cologne (data from Krahe, 1997). 

 

Besides the envelope curve, historical events were considered as further source of 

constraining uncertainty of the flood frequency curve. Krahe (1997) provides a list of 

historical floods in Cologne along with their water levels referred to the current gauge level. 

Floods in 1497, 1342 and 1374 clearly exceeded the largest flood events in the measured 

period. The discharges for these events were obtained using the current rating curve. Owing to 

the morphological and hydraulic changes in the river bed these discharges are very uncertain.  

In order to assign a return period to these historic events the data gaps between the historic 

events and the continuous measurements have to be filled. In DVWK (1999) it is assumed 

that the statistical properties of the continuously measured data are representative for the 

whole time period. Therefore, the data gaps are filled by G times the flood events in the 

observed discharge series that undershoot the lowest historic flood water level. The factor G 

is determined by (DVWK, 1999): 
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G = (N1 – M1)/(N2-M2) +1  

with:  

N1: Time period between the first historical event and the start of 

measurements  

M1: Number of historical events with water level ≥ HISTFLOODmin  

HISTFLOODmin: Lowest water level of historical event 

N2: Time period with measurements 

M2: Number of observed events with water level ≥ HISTFLOODmin 

Taking into account measurements from 1846 to 2004 , the first historical flood event in 1342 

and HISTFLOODmin of 9.73 m, a factor G = 4 results. Accounting only for the measurements 

from 1975 to 2004 and treating all other data like historic information results in a factor 

G = 25. The total composite data series of all historical floods, all measured floods that 

exceeded HISTFLOODmin and G-times all floods below HISTFLOODmin was then used to 

estimate the empirical probabilities of three highest historic events by different plotting-

position formulas (Weibull, Gringorden, Cunnane, Median, Blom and Hazen) given in 

Stedinger et al. (1992). The results are summarized in Tab. 2.  

Furthermore, another approach for estimating the 1000-year was applied. Since flood 

frequency analysis is very uncertain for high return periods, Kleeberg and Schumann (2001) 

proposed a standard procedure for estimating discharges of return periods of 1000 years and 

more. Based on data from 1169 discharge gauges, they recommended a Pearson type III 

distribution with a maximised skewness of 4, which was found to be exceeded at 11 of the 

analysed gauges, i.e. in only 1 % of the analysed data. Therefore, this procedure prevents an 

underestimation of the 1000-year (Kleeberg & Schumann, 2001). To include the 

characteristics of the observed discharge series, they proposed the following approach: 

HQt2 = MHQ + (HQt1 - MHQ) * kt2/kt1, 

where HQt2 is the annual flood with return period t2, MHQ is the mean annual flood based on 

the observed series, HQt1 is the 100-year-flood estimated by Pearson type III with statistical 

moments of the observed series, and kti is the parameter of the Pearson type III distribution 

with the maximised skewness of 4 and the exceedance probability according to t1 and t2. 

With this approach and the observed data series AMS 1846-2004 and AMS 1975-2004 the 
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1000-year flood at Cologne was estimated to be 15490 m³/s and 16090 m³/s, respectively 

(Tab. 2). 

 

Table 2: Estimation of extreme floods at Cologne/Rhine 

Return period [a]  

AMS 1846-2004 

Return period [a] 

AMS 1975-2004 

Discharge  

[m3/s]  

Data; method  

204 - 244 225 - 269 12380  Flood 1497; method of DVWK (1999)  

306 - 407 337 - 449 12440  Flood 1342; method of DVWK (1999)  

612 - 1222 674 - 1346 14680  Flood 1374; method of DVWK (1999)  

1000  --- 15490 Method of Kleeberg and Schumann (2001) 

for AMS 1846-2004 

--- 1000 16090 Method of Kleeberg and Schumann (2001) 

for AMS 1975-2004 

---  --- 17000  Envelope curve shown in Fig. 4  

 

Fig. 5 combines the estimates based on the systematic measurements (AMS 1846-2004, 

AMS 1975-2004) and on the additional information compiled in Table 2. Among the 14 

models (2 periods x 7 distribution functions), five models were discarded, either due to 

rejection by the Kolmogorow-Smirnow test (AMS 1846-2004, EXPON) or, more importantly, 

by comparing their plausibility with the plotting positions and with the additional information 

of Table 2. Although the information in Table 2 may only be considered as indirect evidence, 

it helps to constrain the uncertainty. The remaining nine flood frequency models were kept. 

They cannot be ruled out from the comparison with the systematic flood data and they fit 

plausibly to the indirect evidence of Table 2. To obtain a best estimate, a weighted average of 

all plausible models was calculated. The weights were chosen according to the likelihood 

value of each frequency curve, given the observed flood data. 
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Fig. 5: Flood frequency curves and additional information from Table 2. Black solid lines 

show the flood frequency models that are assumed to be plausible models, black dashed lines 

show discarded models, and the blue line shows the best estimate. The arrow indicates the 

value derived from the envelope curve, the blue triangles the method of Kleeberg and 

Schumann (2001), and the horizontal bars the three historical floods.  

 

There are other sources of epistemic uncertainty that are not considered in the further analysis, 

namely the sampling uncertainty and the choice of the parameter estimation method. The 

analysis of these uncertainties showed that they are of minor importance compared to the 

selection of the time period and distribution function. Fig. 3 illustrates sampling uncertainty 

which is considered by the variance of the flood quantile . According to Stedinger 

et al. (1992), it is assumed that  follows a normal distribution with mean  and variance 
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respectively,  is the kurtosis,C  is the coefficient of skewness, and XK SX
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T s

qq
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
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The observation that sampling uncertainty and choice of the parameter estimation method 

play a minor role is in line with Bardossy and Markovic (2002) who analysed the effects of 

different sources of epistemic uncertainty on the flood frequency for a number of gauges in 

the Rhine catchment.  

 

4.2 Inundation estimation 

For transforming flood discharges of certain return periods into inundated areas in the City of 

Cologne, two models were available. One model (in the following called DFNK) was 

developed by the authors on the basis of scenarios provided by MURL (2000; see Grünthal et 

al., 2006). The results of the second model (called HWSZ) were provided by the Flood 

Defence Centre of the City of Cologne. The HWSZ model was developed by the engineering 

company Rodriguez & Zeisler, Wiesbaden.  

The first and identical step of the two models is the transformation of river discharge values 

into water levels at the gauge Cologne. To this end, the rating curve for the gauge Cologne, 

provided by the Flood Defence Centre, was used. Since measured pairs of water level and 

discharge were only available up to a discharge of 10656 m³/s and a water level of 10.61 m, 

the rating curve was extrapolated to extreme water levels that were necessary for a thorough 

risk analysis. By the methods of least squares, the function  bahcQ 

cba ,,

was fitted to the 

measurements, where Q  is discharge,  is gauge water level, and are coefficients 

(Mosley and McKerchar, 1992). Data and function correspond very well. Since the original 

river valley around Cologne is a slowly rising U-shaped valley, the extrapolation was 

assumed to be a good approximation for the unmeasured range of discharges and water levels. 

h

The second step consisted in transforming water levels at gauge Cologne into inundation 

areas. For the DFNK model, water levels were overlaid with a digital elevation model (DEM) 

assuming the horizontal water surface to be perpendicular to the flow direction. A typical 

inundation scenario is shown in Fig. 6. This GIS-based approach builds on several 

assumptions and may yield unsatisfactory results, e.g., in case of high flow velocities and 

strong dynamic effects which may corrupt the assumption of horizontal water surface 
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perpendicular to the flow velocity. Frequently, the flood extent is overestimated for lowland 

rivers since the methodology does not take into account the available water volume in the 

river system and hydraulic conditions of the floodplain. An overestimation may also occur if 

local depressions that are not connected with the main river are not excluded. Further, it may 

be important that hydraulic controls in the floodplain, such as embankments and elevated 

roads, are represented in the DEM. The DFNK model is based on a 25 m DEM which does 

usually not include such hydraulic controls. However, the major flood defences (dikes and 

flood walls) were considered in the DFNK model. 

The second model HWSZ used FloodArea, a simplified 2-dimensional hydrodynamic model 

integrated in a GIS environment (Geomer, 2009). FloodArea simulates the propagation of 

flood water across the floodplain by using the Manning equation to calculate the flow 

between cells of an equidistant grid. It uses an explicit numerical scheme. To reduce the CPU 

time, FloodArea works with a time step adaptation, i.e. the time step is modified during the 

simulation depending on the current hydraulic gradients. The HWSZ model applied 

FloodArea on a very detailed Lidar-derived DEM with 5 m resolution including buildings and 

a digital model of the subway (Fig. 6). Further flow-influencing structures, such as culverts, 

were mapped and additionally included. Flood defences were not taken into consideration in 

the model. Inundation areas were assigned to certain river water levels by assuming a 

synthetic flood wave with a typical increase of discharge values for the Rhine River at 

Cologne.    
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Fig. 6: High resolution DEM underlying the hydraulic model HWSZ (left) and inundation 

scenario of the model DFNK for water level of 11.29 m at gauge Cologne (bottom). 

 

 

Fig. 7 plots the total inundated area as a function of the gauge water level. Large differences 

exist between the two models. Below a gauge water level of 12 m, the DFNK model yields 

smaller inundation extents. This can be explained by the consideration of major flood defence 

measures. Above 12 m, the situation is reversed. In this water level range, the flood defence 

measures are overtopped and assumed to fail, and they do not play any role in the calculation 

of the flood extent. Here, the coarseness of the DEM and the simplifying assumptions of the 

inundation estimation, in particular the negligence of the dynamic flow process, result in an 

overestimation of the flood extent of the DFNK model.  
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Fig. 7: Relationship between flooded area in Cologne as function of gauge water level for the 

two hydraulic models. The dotted lines represent the uncertainty band attached to the best 

estimate (DFNK for water levels below 12 m; HWSZ for water levels above 12 m). 

 

Unlike the approach for the flood frequency estimation, where a number of different models 

were appraised as plausible and were, hence, selected to represent the uncertainty, both 

hydraulic models have severe shortcomings. On the one hand, the GIS-based DFNK model 

uses a coarse DEM and overestimates the flood extent for river water levels above approx. 12 

m. On the other hand, the HWSZ model does not consider flood defences and leads to an 

overestimation for water levels below approx. 12 m. Therefore, the estimate for the module 

inundation estimation was decided to be a mixture of both models: for water levels below 12 

m, DFNK was used; for levels above 12 m, HWSZ was used. In addition, an uncertainty band 

was assigned to this best estimate to represent epistemic uncertainty. Below 12 m river water 

level, the inundation extent is limited by the flood defences. Therefore, the uncertainty of the 

crude DFNK model should be rather low. Above 12 m, the 2-dimensional HWSZ model, 

based on very detailed topographical information, should deliver a good representation of the 

true inundation extent with rather low uncertainty.    

Although the DFNK model considers the effect of major defence systems, the failure of flood 

defences is taken into account in a simplified way, namely by assuming that flood defences do 

not fail for water levels below their crest, and do fail completely for water levels above their 

crest. Failure of defences is usually not such a distinct threshold process. For example, dikes 
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may fail by piping in the dike foundation at river water levels much below the dike crest. 

Recently, progress has been made in considering defence failure by means of fragility curves 

which give the probability of failure for a specific defence system as function of the system 

load (e.g. Gouldby et al., 2008). We did not explicitly consider defence failure, since the 

defence systems in Cologne were very well maintained, and we expected that failure 

probability at water levels below the crest was small. However, in determining the uncertainty 

bounds of the inundation model, this negligence was implicitly accounted for. 

4.3 Damage estimation 

In this study, damage estimation is restricted to direct financial damage at residential 

buildings. The damage estimation consists of two steps, (1) assessing the property values that 

are affected by a given inundation scenario, and (2) estimating the damage ratio. The damage 

ratio is the flood damage related to the total building value. To account for epistemic 

uncertainty, different damage ratio models were applied. No data were available for the 

assessment of the uncertainty of the assets. Therefore, this source of uncertainty had to be 

neglected. A rough comparison of asset assessment methods from the insurance industry and 

from governmental guidelines revealed that a factor of 2 might occur during asset estimations. 

In total, six different models – three depth-damage-functions as well as three variants of the 

Flood Loss Estimation MOdel for the private sector FLEMO – were considered as candidates 

for damage estimation. All models have in common that they are meso-scale models, i.e. 

damage is not estimated for single buildings, but for land cover units that represent settlement 

areas. To estimate property values, the total asset value of all residential buildings in Cologne 

was taken from Kleist et al. (2006). Since only the total sum was provided, the assets were 

disaggregated on the basis of the CORINE land cover data 2000 by means of a dasymetric 

mapping approach that is outlined in Thieken et al. (2006). A damage ratio was determined 

for each inundated grid cell. Then, each ratio was multiplied by the specific asset value that 

was assigned to the corresponding grid cell. 

Three different depth-damage functions were used, which have been applied in flood action 

plans or risk mapping projects in Germany. In the first model (MURL, 2000), the damage 

ratio to buildings is given by a linear function y = 0.02x where y is the damage ratio and x the 

water level given in meter. For water levels of more than 5 m the damage ratio is set to 10 %. 

In the second model (ICPR, 2001), damage of residential buildings is estimated by the 
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relation y = (2x² + 2x)/100, where y is the damage ratio and x is the water level given in 

meter. For some flood action plans in Germany, a third function has been used:  

y = (27 √x)/100, where y is the damage ratio and x is the water level given in meter 

(HYDROTEC, 2001). 

Although such depth-damage functions are the standard approach to assessing urban flood 

damage, estimations based on depth-damage functions may have a large uncertainty since 

water depth and building/land use only explain a part of the data variance (Merz et al., 2004). 

Therefore, the rule-based Flood Loss Estimation MOdel for the private sector FLEMO that 

accounts for more damage-influencing factors was developed. The model is based on a survey 

of 1697 private households that were affected by a flood in August 2002. In FLEMO, damage 

ratios were derived for five classes of inundation depths, three building types and two 

categories of building quality. In an additional modelling step (termed FLEMO+), the 

influence of the contamination of the floodwater and the precaution of private households are 

considered by scaling factors (Büchele et al., 2006). In addition, a scaling procedure was 

developed for model applications on the meso-scale (Thieken et al., 2008): By means of 

census data and cluster analysis the mean building composition and the mean building quality 

were derived per postal zone (and per municipality) in Germany. For each postal zone in 

Cologne, a mean damage model was set up by weighting the damage ratios of the three 

building types by the mean percentages of these building types in each zone considering all 

water level classes as well as the mean building quality in the zone under study.  

The model was used in this study in three different ways: First, the meso-scale model FLEMO 

was used in its first model stage as described above. In the second and third variant, the 

effects of contamination and precaution were considered by a best case and a worse case. In 

the best case, very good precaution and no contamination of the floodwater were assumed 

(FLEMO+ P2C0), resulting in a scaling factor of 0.41. No precaution in combination with 

heavy contamination (FLEMO+ P0C2) and a scaling factor of 1.58 were used in the worst-

case scenario. 

Fig. 8 illustrates the differences of the six damage models for the inundation scenarios 

simulated by the HWSZ model. The variants of the new model FLEMO are within the range 

of the other three damage functions. However, the advantage is that FLEMO takes into 

account the building characteristics of the area under investigation. The six damage models 

span an unrealistically broad range. Especially for rather frequent floods (return period 
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smaller approx. 10 years; river water level smaller approx. 9.5 m), four damage models yield 

very high damage in the order of magnitude of €100 million. Therefore, it was assumed that 

these four models were not plausible and were discarded. One model from the FLEMO family 

as well as the model from MURL (2000) were kept in the further analysis. There were 

additional arguments for these two models. The MURL model was deemed appropriate, since 

it is a damage model that was specifically developed for the Lower Rhine area. The decision 

to use one FLEMO model was also based on the fact that FLEMO uses more information on 

the damage situation than the depth-damage functions – especially about contamination and 

private precaution. Among the three FLEMO variants, the version FLEMO+ (P2C0) seemed 

the most appropriate for the application in Cologne. The high level of private precaution 

became evident during the flood in January 1995. Despite of the fact that the flood reached a 

very similar water level to the flood in 1993, the total amount of damage was cut down by 

almost 50%. Owing to continuous risk awareness campaigns, it has to be assumed that flood 

awareness is high. The flood authorities of the City of Cologne are well-known in Germany 

for their many activities to increase flood awareness and flood prevention in Cologne. 

Further, there is a citizens’ initiative (Bürgerinitiative Hochwasser Köln-Rodenkirchen), 

which is also very active in distributing information on floods and in strengthening people’s 

preparedness.  
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Fig. 8: Damage to residential properties as function of gauge water level for the HWSZ model 

and six damage models. The two lower damage functions (FLEMO+ P2C0, MURL) were 

rated as plausible damage models. 

 

4.4 Result: Risk curve and uncertainty bounds 

In the next step all parallel models of the three modules, which were considered to be 

plausible descriptions, were combined. In total, 36 models resulted from this combination (9 

flood frequency curves x 2 inundation extent models x 2 damage models). Each model 

provides the flood damage for return periods from T = 10 to T = 1000 years. The results of the 

36 models are plotted in Fig. 9 (also called spaghetti diagrams, Visser et al., 2000).  

 

Fig. 9: Risk curve (blue solid) for the City of Cologne and associated uncertainty (black 

dotted), using 36 models (left). Same for 156 models including non-plausible models (right). 

The points show approximate estimates of the flood damages that occurred in 1993 (€76.7 

million) and 1995 (€33.2 million). 

 

Besides the uncertainty range provided by the combination of plausible models, Fig. 9 shows 

also the best estimate risk curve. It is a combination of the best estimate models of the three 

modules. For the flood frequency module, the best estimate was obtained by weighting all 

plausible models. The weights were chosen according to the likelihood value of each 

frequency curve, given the observation flood data. Since there were no data on inundation 
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extent and very scarce data on damages for past floods, the weights for the plausible models 

of the modules inundation estimation and damage estimation had to be assigned by expert 

judgement. Taking into account the shortcomings of the two inundation models in different 

water level ranges, the model weights of the inundation models were linked to the water level. 

For the damage estimation both models deemed plausible obtained equal weight. The best 

estimate risk curve represents aleatory uncertainty, whereas the range of parallel models 

around the risk curve represents epistemic uncertainty.  

As it is usually the case in flood risk assessments, there were not much data available to 

assess the plausibility of the risk estimates. The only available information on flood damage 

in Cologne were the very rough estimates of the direct damage for the floods in 1993 and 

1995. The best estimate risk curve is between these damage estimates, indicating that the risk 

estimate is plausible, at least for return periods around 50 years. The uncertainty range is 

rather large. For example, for the 100-year flood, the maximum uncertainty ranges from €40 

million to more than €200 million. Fig. 9 also illustrates the effect of discarding non-plausible 

models. The additional information that was introduced in the flood frequency estimation and 

the exclusion of damage models that yielded unrealistically high damages (1) provided a 

plausible risk curve and (2) narrowed considerably the uncertainty range.  

4.5 Relative role of uncertainty sources 

When different modules are combined into an overall result, it would be good to have 

information on the relative role of the different uncertainty sources. The concept of parallel 

models provides a simple way to quantify the relative role (Visser et al., 2000). Our risk 

estimates are composed of three modules. The contribution of a module to the maximum 

uncertainty range of the complete chain of modules as function of return period 

i

TcMUR , T  is 

calculated as follows (procedure slightly modified from Visser et al., 2000): 

1. We calculate TcMUR , whereas all modules take into account all models that are 

considered as plausible description. For a specific return period T the maximum 

uncertainty range is given by subtracting the minimum from the maximum value. 

2. We calculate the reduced uncertainty range TiUR , , by using for module i the best 

estimate model, while all other modules are in full operation. The difference between 

TcMUR , and TiUR , may be seen as the uncertainty, caused by the module that was set to 
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3. We repeat step 2 for all modules. 

Fig. 10 shows the result of this procedure applied to the three modules of the flood risk 

analysis of the City of Cologne. It is obvious that the damage module contributes a small 

share to the total uncertainty. In addition, this share is almost constant throughout the 

considered range of return periods. Of more importance for the total epistemic uncertainty are 

the modules flood frequency estimation and inundation estimation. Their shares are changing 

across the return period range. For return periods below 80 years the uncertainty of the 

inundation estimation contributes the largest share to the total uncertainty, whereas above 

80 years, the total uncertainty is dominated by the uncertainty of the flood frequency analysis.  

 

Fig. 10: Relative contribution of the three modules to the total maximum uncertainty range as 

function of return period. 

 

5 Discussion and conclusions 

Traditional validation approaches are based on the comparison of simulation results with 

observations. Flood risk analyses belong to those situations, where observations are not 

available to apply traditional validation approaches. Either the important events of a risk 

analysis, i.e., events with very small exceedance probabilities, have not occurred during the 

observation period. Or, if they occurred, information on such events is crude due to the 
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difficulties to measure extremes, or the system likely has changed so that past extremes may 

only be partially representative for the situation for which the risk analysis is performed. 

Further, it has been shown that best estimates, i.e., estimates that are based on judgement and 

do not consider uncertainty aspects, may not really be good. There is a clear tendency (of 

experts and laypersons) to overestimate their knowledge (Hammitt and Shlyakhter, 1999). 

Given these problems of validation and over-confidence, an uncertainty analysis may improve 

a flood risk analysis. It identifies weak points in the risk analysis (e.g., which assumptions 

dominate the result?), and guides efforts for assembling further information and improving 

the risk analysis (e.g., what are the most valuable data for constraining uncertainty?).  

We propose to distinguish between aleatory and epistemic uncertainty when performing a 

flood risk assessment. The risk curve, i.e., flood damage versus probability, represents 

aleatory uncertainty, and the uncertainty bounds around the risk curve represent epistemic 

uncertainty. The distinction between these two types of uncertainty reveals the part of the 

uncertainty that can be reduced from the non-reducible (aleatory) part. A difficulty with this 

approach is the need to classify uncertainty sources as aleatory or epistemic. This paper 

considered the occurrence of flood peaks as random (aleatory) process; all other uncertainties 

were classified as epistemic. This decision was based on the expected dominance of this 

random influence compared to other random effects. Additional aleatory elements could have 

been included in the risk analysis. For example, the damage to a certain building in a given 

flood situation is affected by many influences. A large floating object, such as a car or a tree 

trunk, may severely damage one house and may, by accident, spare the adjacent building. 

Currents and high flow velocity areas may occur very localized and may scour the foundation 

of one building leading to severe structural damage or total collapse, whereas a neighbouring 

building may only be inundated. Fast and effective help by disaster management and 

neighbours may secure a building against water inflow and may prevent large damage, 

whereas in a similar flood this external help may not be available. Such spatial-temporal 

variations in damage patterns contain large random influences, and, as a consequence, could 

be modelled as aleatory uncertainty. However, the damage module in this study does not 

assess flood damage at the micro-scale, i.e., the scale of single buildings, but at the scale of 

the (large) community Cologne. The aim is to estimate the mean damage for Cologne for the 

studied inundation scenarios. Hence, a large part of the randomness is expected to be 

cancelled out. However, the variation in the damage values, estimated by the City of Cologne 

for the 1993 and 1995 floods, shows that also at that scale some randomness occurs, since 
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there was no deterministic model available that explains this variation. Concerning the 

inundation module, we were interested in an average inundation scenario for Cologne given a 

certain flood peak at gauge Cologne. Similarly to the damage module, the aim was not to 

model the range of possible inundation scenarios, influenced by random, mostly local effects, 

but to obtain inundation scenario that are realistic at the scale of the municipality Cologne.  

Aleatory uncertainty was represented by the usual probabilistic approach, namely, the pdf of 

flood peaks. Traditionally, probability theory has also been used to describe epistemic 

uncertainty (Watson, 1994), however, with a different interpretation: probability distributions 

for quantities that are supposed to be inherently random represent the relative frequency of 

values from a specified interval, whereas probability distributions for quantities that are 

associated with epistemic uncertainty represent the degree of belief or knowledge that a value 

is within a specified interval. The appropriateness of probability distributions for describing 

epistemic uncertainty has been questioned. Ferson and Ginzburg (1996), Hall (2003), and 

Helton and Oberkamp (2004) discuss this issue in detail and provide examples how the 

representation of epistemic uncertainty by a probability distribution may lead to erroneous 

conclusions. All sources of epistemic uncertainty that were considered in this paper were 

represented by different models. In that way, a clear separation of both types of uncertainty 

was maintained.    

In the course of such an analysis, it has to be decided which epistemic uncertainty sources are 

included and which are neglected. Again, this is no clear-cut decision. There are many 

uncertainty sources with different relevance to the total epistemic uncertainty. In order to 

decide objectively about the inclusion or negligence of uncertainty sources, their contribution 

to the overall uncertainty must be known. Since this is not the case, this decision has to be 

based on expert judgement. The approach taken in this paper follows the idea of including all 

available models that are seen as plausible representation of the process under study. Only in 

cases where the contribution to the total uncertainty is expected to be of minor relevance this 

uncertainty source is neglected. One example is the uncertainty due to different parameter 

estimation methods of flood frequency analysis.  

This approach of including many models is not always feasible, due to the requirements for 

CPU time, data, pre-processing, model setup and calibration. This study used rather simple 

models in order to increase the number of models considered. The opposite approach is to use 

sophisticated models, and as compromise, to vastly reduce the number of models, or in the 
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extreme case, to forego uncertainty considerations completely. We tried to apply models of 

comparable complexity at each of the three modules, i.e. models of low complexity with 

reduced demand for data and resources for implementing and running them. The decision on 

the model complexity depends strongly on the context of the flood risk analysis. We 

acknowledge that in many applications more sophisticated models are required. However, 

they do not always warrant better results. We feel that in many cases very sophisticated 

process models are applied to situations whereas the available data do not justify the detail. 

An example is a river dyke breach scenario with a 2-dimensional hydrodynamic model when 

there is very scarce knowledge on the boundary conditions of the inundation process, such as 

breach location and time, or breach mechanism. 

The uncertainty bounds for the flooding risk of Cologne are quite large, but should be a 

realistic representation of the reliability of flood risk assessments. The inclusion of additional 

evidence, such as the envelope curve, reduced considerably the epistemic uncertainty. This 

reduction demonstrates the potential of including additional evidence for improving risk 

analyses. The usage of indirect evidence in flood risk analysis is the rule, rather than the 

exception. An advantage of an uncertainty analysis is that the analyst formalises the use of 

indirect evidence. Together with a systematic study of the contribution of different 

uncertainty sources to the overall uncertainty, such an uncertainty analysis helps to 

distinguish what is known from what is assumed. 
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