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Abstract. A research project is introduced in which a mod-
elling system is being developed to quantify risks of extreme
flooding in large river basins. In the system, computer mod-
els and modules are coupled to simulate the functional chain:
hydrology – hydraulics – polder diversion – dyke failure –
flooding – damage estimate – risk assessment. In order to re-
duce uncertainty in flood frequency analyses, data sets are
complimented with information from historical chronicles
and artwork. Probable maximum precipitation and discharge
are calculated to indicate upper bounds of meteorological and
hydrological extremes. Uncertainty analysis is investigated
for different degrees of model complexity and compared at
different basin scales.

1 Introduction

Worldwide there is a continuous increase in damages caused
by extreme natural events. In part this is due to the fact that
human society is becoming increasingly vulnerable to the ef-
fects of these events (Munich Re Group, 2005). In addition,
it is presumed that climatic change will intensify and increase
the magnitude and frequency of climate-dependent catas-
trophic events. Apart from naturally occurring extremes, an-
thropogenic developments are also increasing the potential
for damages (e.g. riverside settlements).

Due to the flood damages in August 2002 in the Elbe river
basin in Germany and the Czech Republic public awareness
for the improvement of the provision and management of
such emergencies has risen. This gave impetus to establish
a junior research team at GeoForschungsZentrum in Pots-
dam in cooperation with the University of Karlsruhe (within
the network CEDIM – Center for Disaster Management and
Risk Reduction Technology) dedicated to research of ex-
treme flood events in large river basins.
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(kel@gfz-potsdam.de)

The visionary goal to be reached at the completion of the
research is:

– Development of a modelling system allowing the im-
plementation and interchangeability of hydrological and
hydraulic processes of varying degrees of complexity. . .

– . . . for the provisionary management of extreme flood
events in large river basins. . .

– . . . using a computer-automated methodology that is
easily and flexibly transferable to basins of different
(macro)scales.

A modelling system is required which couples all neces-
sary models and modules together into one integrated sys-
tem, to ensure that the most important components of the
hydrological cycle causing extreme floods are included in
the simulations. The main components include precipitation,
runoff generation and routing. The latter can be greatly af-
fected by polder diversions and dike breaches. Hence, their
impact must be incorporated.

An important question in developing such a modelling
system is how complex should the description of the hydro-
logical and hydraulic processes be in order to retain both
good accuracy and high predictive power in the system’s
state variables. More complexity may lead to higher accu-
racy since more processes are represented to reflect reality.
Using models for risk assessment Cox (1999) shows that
greater complexity leads to more certainty in risk estimates
but also states that the additional complexity included in
the model must allow additional relevant observations to be
incorporated. The downside is that such complex systems
become over-parameterised (or overly sensitive as stated
by Snowling and Kramer, 2001) making validations and
predictions of other flood events difficult. Hence, an aim of
the project is to answer the question:
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Figure 1: Concept for the research project.

Other components may be implemented into the 
system such as a damage estimator module and an 
uncertainty analysis toolbox. Databases and a 
library of GIS (Geographical Information System) 
functions are accessible by the system and results 
are displayed using an IMS (Internet Map Server). 

Data is required as input to run the modelling 
system, which needs to be collected, homogenised 
and regionalised from point samples to area 
descriptions. Estimates of the statistical 
uncertainty in the data and parameter values are 
required for an uncertainty analysis. The 
modelling system can then be calibrated globally 
with reasonable “certainty” for events with return 
periods less than 100 years. Data sets longer than 
one century are rare and uncertainty increases 
when extrapolating the discharges for return 
periods of 250 or 500 years from these data sets. 
To gain more certainty and to narrow confidence 
intervals the interpolated values are to be 
complimented with historical data. Chronicles 
may provide insight on discharge and 
precipitation. Artworks may additionally provide 
estimates of water levels at certain locations for 
corresponding discharges from documented 
meteorological conditions. Weather generators 
may (time permitting) also be used to produce 
synthetic data to fill data gaps in time series and to 
imitate extreme weather conditions by 
superimposing extreme meteorological variables. 
These data will also provide a data set that can be 
used for the validation of the modelling system for 
extreme flooding events (T > 100 years). 

Superimposing the extreme values of 
meteorological variables also serves as a basis for 

the calculation of the probable maximum 
precipitation (PMP) of a subbasin. Together with 
extreme hydrological factors such as very high 
antecedent soil moistures the probable maximum 
flood (PMF) can be simulated. This will set the 
upper limit of flooding possible in the basin. 

Once the modelling system has been set up a 
Monte Carlo Analysis (MOCA) can then be 
carried out to determine probability distributions 
of hydrological output variables, such as 
discharges and water levels, for certain return 
periods. These output distributions are obtained 
when parameters and input data of the modelling 
system are varied according to specific probability 
distributions within their uncertainty limits. Only 
those parameters and data will be used for the 
MOCA which are most sensitive to the output 
variables. This is determined by running a 
sensitivity analysis (SENA) of the system. 

The probability of occurrence calculated from the 
MOCA together with the intensity of the event 
(return period) establishes the hazard induced by 
the flood event (see Figure 2). Using land-use 
information and damage costs as functions of 
water depth and perhaps other factors (i.e. flow 
velocities) the vulnerability of certain land-use 
types that are exposed to the flood and their 
susceptibility to damage by the flooding can be 
assessed. Both hazard and vulnerability are 
combined to calculate risk and can be used to 
establish risk maps. Once areas of exceptionally 
high risk (“hot spots”) have been identified 
scenarios can be run to test various management 
concepts for flood mitigation. 

 

Fig. 1. Concept for the research project.

How complex must the modelling system be to ensure good
accuracy and predictability of the simulation results?

Lindenschmidt et al. (accepted) found that the relationship
of accuracy and predictive ability with model complexity
may also change at different scales. Models of smaller
scale require a more detailed description of the processes
to accurately simulate the state of the modelled area for a
given time frame. Sivapalan (2003) mentions that increased
complexity is required to capture the hydrological response
at the hillslope scale compared to the catchment scale.
For example, Butts et al. (2004) and Perrin et al. (2001)
found that hydrological variables modelled for large river
basins were more accurately simulated using simpler pro-
cess descriptions. van der Linden and Woo (2003), who
applied models with increasing complexity to simulate
hydrological conditions in subarctic catchments, also found
that with decreasing temporal and spatial scale, process
representation needs to be more complex. Hence, an addi-
tional question that will be pursued in this research project is:

How does the complexity – uncertainty relationship of the
modelling exercise change when the modelling system is
applied to different macro-scales (e.g. Elbe basin and Mulde
subbasin)?

An important prerequisite for developing provisionary
management concepts for the mitigation of extreme flood
events is to identify areas of potentially high risk to such
events. Risk maps are extremely useful, however method-
ologies for very large river basins are still rare. Kron
and Willems (2002) identify eight independent regional
loss accumulation zones in Germany in which probable
maximum losses are calculated for five different flood

scenarios corresponding to return periods ranging from 10
to 200 years. Zoning is carried out, not of rivers alone,
but of entire large catchment areas. Similar efforts for
Germany have been carried out by Kleeberg (2001), who
concentrated the zoning to the flood regions along rivers
and who implemented the method in the software package
ZÜRS (Zoning System for Floods, Backwater and Heavy
Rains). Rodda and Berger (2002) established differentiated
risk zones in the flooded areas near the river itself, and
Hall et al. (2003) and Sayers et al. (2002) have extended
this approach to include the probabilities of dike failures.
The implementation of dike fragility curves has also found
application in the USA (USACE, 1996, 1999). These
methods provide a rough orientation of where “hot spots”
occur in terms of flood risk on very large (nationwide)
scales. These have their justification for high-level strategic
planning for entire countries and provide information on a
scale that is valuable for re-insurance companies, which base
their policies on probable maximum loss estimates. The
downside of these methods is that the spatial resolution is
generally too coarse and the results not differentiated enough
to be applicable for the development of mitigation concepts.
Hence, an additional aim of this project is to investigate:

How much explanatory power is forgone in making reason-
able risk assessments for the development of provisionary
management concepts when applying the modelling system
methodology to larger scales? How can explanatory power
be improved for the largest basins?

2 Methodology

The concept of the research project is illustrated in Fig. 1. An
aim of the project is to develop a modelling system whose
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Figure 2: Flood risk as interaction of hazard and vulnerability (sensu Merz and Thieken, 2004)

3. MODEL COMPLEXITY AND 
UNCERTAINTY 

One aspect of the project is to model the 
numerous hydrological and hydraulic processes 
with varying degrees of complexity. The aim is to 
determine how complex a model setup must be in 
order to obtain the required accuracy of the results 
(how well do simulations and data coincide).  

Table 1 shows various methods corresponding to 
the simulation of selected components of the 
hydrological cycle with different complexity 
levels. Several complexity mixes can also be 
tested for accuracy by combining processes of 
different complexity from each hydrological 
component. The discretization of the catchment 
area can also be carried out with varying degrees 
of resolution (see Table 2). This may range from a 
very coarse (low complexity) to a very fine (high 
complexity) discretization: 

• lumped parameters for each subbasin, an 
approach found for example in the HEC-1 
model (HEC, 1998); 

• landscape units in which discretized units are 
derived from lateral flow characteristics in the 
surface areas (Güntner and Bronstert, 2004);  

• hydrological response units in which units are 
discretized according to related 
geomorphologic characteristics (Flügel, 1995; 
Krause, in preparation);  

• grid cells, as used for example in the WaSiM-
ETH model (Schulla, 1997). 

Snowling and Kramer (2001) proposed a 
hypothesis in which model sensitivity and error, 
which constitutes model uncertainty, is related to 
the model’s complexity level (see Figure 3). 
“Model sensitivity increases with model 
complexity due to the larger number of degrees of 
freedom and the structure of the interactions 
between parameters and state variables. Modelling 
error decreases with increasing model complexity 
as the more complex models are able to better 
simulate reality with more processes included and 
fewer simplifying assumptions” (Snowling and 
Kramer, 2001, p. 21). “Increased complexity 
means that more processes will be represented in 
the system potentially reducing the model error 
(deviations between measurement samples and 
simulation results). The downside is that 
increasing the model complexity increases the 
number of degrees of freedom within the model 
(more parameters and variables) which can be  

Table 1: Processes of different complexity levels 

Fig. 2. Flood risk as interaction of hazard and vulnerability (sensu Merz and Thieken, 2004).

core consists of the coupling of four models. The runoff gen-
eration components describe the precipitation and snowmelt
runoff on the land surfaces. As flooding events become
more extreme hydrograph routing of the generated runoff be-
comes increasingly important, especially in the lowland river
reaches (hydrodynamic module). A unique feature of this
modelling system is the incorporation of a dike breach mod-
ule. This component calculates the probability of a dike fail-
ure depending on the condition and type of dike and on the
hydraulic variables in the river, such as water level and water
velocity in the main channel. In the event of a dike breach
a dispersion model is executed to simulate the movement of
water from the breach area into the hinterland. This model
may also be used to simulate the movement of water through
a polder system. Since the dispersed water also affects the
hydraulics in the river, there is an interactive linkage between
the dispersion and routing components.

Other components may be implemented into the system
such as a damage estimator module and an uncertainty anal-
ysis toolbox. Databases and a library of GIS (Geographical
Information System) functions are accessible by the system
and results are displayed using an IMS (Internet Map Server).

Data is required as input to run the modelling system,
which needs to be collected, homogenised and regionalised
from point samples to area descriptions. Estimates of the
statistical uncertainty in the data and parameter values are
required for an uncertainty analysis. The modelling system
can then be calibrated globally with reasonable “certainty”
for events with return periods less than 100 years. Data sets
longer than one century are rare and uncertainty increases
when extrapolating the discharges for return periods of 250
or 500 years from these data sets. To gain more certainty and
to narrow confidence intervals the interpolated values are to
be complimented with historical data. Chronicles may pro-
vide insight on discharge and precipitation. Artworks may
additionally provide estimates of water levels at certain lo-
cations for corresponding discharges from documented me-
teorological conditions. Weather generators may (time per-

mitting) also be used to produce synthetic data to fill data
gaps in time series and to imitate extreme weather conditions
by superimposing extreme meteorological variables. These
data will also provide a data set that can be used for the val-
idation of the modelling system for extreme flooding events
(T >100 years).

Superimposing the extreme values of meteorological vari-
ables also serves as a basis for the calculation of the probable
maximum precipitation (PMP) of a subbasin. Together with
extreme hydrological factors such as very high antecedent
soil moistures the probable maximum flood (PMF) can be
simulated. This will set the upper limit of flooding possible
in the basin.

Once the modelling system has been set up a Monte Carlo
Analysis (MOCA) can then be carried out to determine prob-
ability distributions of hydrological output variables, such as
discharges and water levels, for certain return periods. These
output distributions are obtained when parameters and input
data of the modelling system are varied according to specific
probability distributions within their uncertainty limits. Only
those parameters and data will be used for the MOCA which
are most sensitive to the output variables. This is determined
by running a sensitivity analysis (SENA) of the system.

The probability of occurrence calculated from the MOCA
together with the intensity of the event (return period) es-
tablishes the hazard induced by the flood event (see Fig. 2).
Using land-use information and damage costs as functions
of water depth and perhaps other factors (i.e. flow velocities)
the vulnerability of certain land-use types that are exposed to
the flood and their susceptibility to damage by the flooding
can be assessed. Both hazard and vulnerability are combined
to calculate risk and can be used to establish risk maps. Once
areas of exceptionally high risk (“hot spots”) have been iden-
tified scenarios can be run to test various management con-
cepts for flood mitigation.
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Lindenschmidt and Hesse (submitted) stating that 
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and increased model complexity is required to 
obtain the same reduction in model error. 
Additional processes which may be dampened or 
have less impact at the large scale need now to be 
included in the small-scale model description to 
achieve better accuracy in model output. This 
increase in complexity also increases the overall 
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3 Model complexity and uncertainty

One aspect of the project is to model the numerous hydro-
logical and hydraulic processes with varying degrees of com-
plexity. The aim is to determine how complex a model setup
must be in order to obtain the required accuracy of the results
(how well do simulations and data coincide).

Table 1 shows various methods corresponding to the simu-
lation of selected components of the hydrological cycle with
different complexity levels. Several complexity mixes can
also be tested for accuracy by combining processes of differ-
ent complexity from each hydrological component. The dis-
cretization of the catchment area can also be carried out with
varying degrees of resolution (see Table 2). This may range
from a very coarse (low complexity) to a very fine (high com-
plexity) discretization:

– lumped parameters for each subbasin, an approach
found for example in the HEC-1 model (HEC, 1998);

– landscape units in which discretized units are derived
from lateral flow characteristics in the surface areas
(Güntner and Bronstert, 2004);

– hydrological response units in which units are dis-
cretized according to related geomorphologic character-
istics (Fl̈ugel, 1995);

– grid cells, as used for example in the WaSiM-ETH
model (Schulla, 1997).

Snowling and Kramer (2001) proposed a hypothesis in which
model sensitivity and error, which constitutes model uncer-
tainty, is related to the model’s complexity level (see Fig. 3).
“Model sensitivity increases with model complexity due to
the larger number of degrees of freedom and the structure
of the interactions between parameters and state variables.
Modelling error decreases with increasing model complexity
as the more complex models are able to better simulate real-
ity with more processes included and fewer simplifying as-
sumptions” (Snowling and Kramer, 2001, p. 21). “Increased
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complexity means that more processes will be represented
in the system potentially reducing the model error (devia-
tions between measurement samples and simulation results).
The downside is that increasing the model complexity in-
creases the number of degrees of freedom within the model
(more parameters and variables) which can be expressed as
the total increase in model sensitivity (the change in out-
put results due to a percentage change in input data such
as parameter settings and initial and boundary conditions).
Over-parameterization makes calibration more difficult and
reduces the predictive power of the model (if the model es-
sentially needs to be re-calibrated for any slight changes in
the initial and boundary conditions it has lost its capability as
a predictive tool)” (Lindenschmidt, accepted).

Snowling and Kramer (2001) confirmed their hypothesis
on a sorption model for radioactive zinc onto sediments in so-
lution (LeBeuf, 1992; cited in Snowling and Kramer, 2001).
In a second model in which the transport of a groundwater
tracer plume was simulated, sensitivity does increase with
increasing complexity but no relation was evident between
error and complexity. The hypothesis has also been tested
and confirmed using a water quality model developed for the
Saale river (Lindenschmidt, submitted) and a lock-and-weir
system on the same river (Lindenschmidt et al., accepted).

Ideally, the best model is one in which both sensitivity and
error are minimised. Here, a utility function may be imple-
mented to evaluate which complexity is best suited for the
characteristics of the study site.

A second hypothesis has been proposed by Lindenschmidt
et al. (accepted) stating that there will be a shift in the error
and sensitivity curves when implementing the same model
for studies of different scale (see Fig. 4). For example, when
reducing both the temporal and spatial scales, processes be-
come more dynamic and quick-lived (Blöschl and Sivapalan,
1995) and increased model complexity is required to ob-
tain the same reduction in model error. Additional processes
which may be dampened or have less impact at the large scale
need now to be included in the small-scale model description
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Table 1. Processes of different complexity levels.

 

 

Figure 2: Flood risk as interaction of hazard and vulnerability (sensu Merz and Thieken, 2004)
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to achieve better accuracy in model output. This increase in
complexity also increases the overall model sensitivity since
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