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Abstract: 29 

A probabilistic regional envelope curve (PREC) assigns a recurrence interval to a regional 30 

envelope curve. A central point of this method is the determination of homogeneous regions 31 

according to the index flood hypothesis. A flood discharge associated with the recurrence 32 

interval (PREC flood quantile) is estimated for each gauge of a homogeneous region. In this 33 

study, the influence of two pooling methods on PREC for a large group of catchments located 34 
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in the south-east of Germany is investigated. Firstly, using cluster analysis, fixed 35 

homogeneous regions are derived. Secondly, the Region of Influence (RoI) approach is 36 

combined with PREC. The sensitivity of PREC flood quantiles with respect to pooling groups 37 

is evaluated. Different candidate sets of catchment descriptors are used to derive pooling 38 

groups for both pooling methods. Each pooling group is checked by a homogeneity test. 39 

PRECs are then constructed for all homogeneous regions. The ensemble of PREC realisations 40 

reveals the sensitivity of the PREC flood quantiles. A comparison with the traditional index 41 

flood method ascertains the suitability of the pooling methods. A leave-one-out jackknifing 42 

procedure points out a similar performance of cluster analysis and RoI. Furthermore, a 43 

comparison of different degrees of heterogeneity for deriving pooling groups reveals that the 44 

performance of PREC for ungauged catchments decreases in more heterogeneous pooling 45 

groups.  46 

 47 

Keywords: Probabilistic regional envelope curves, Pooling methods, Region of Influence, 48 
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 50 

1 Introduction 51 

For flood risk analyses and estimations of design floods it is fundamental to accurately 52 

quantify the discharges of rare events, i.e. flood events with recurrence intervals of 100 years 53 

or more. The well-established methods of flood frequency analysis (FFA) are hampered by 54 

the uncertainty that occurs particularly for estimates of high recurrence intervals due to 55 

limited observation data (e.g. Robson and Reed, 1999; Merz and Thieken, 2005). Regional 56 

Flood Frequency Analysis (RFFA) is widely employed in the estimation of design floods 57 

when dealing with data record lengths that are too short compared to the recurrence interval of 58 
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interest (e.g. Hosking and Wallis, 1997). Still, most methods of FFA and RFFA do not 59 

consider an upper bound of the flood discharges. 60 

Regional envelope curves (RECs) are a traditional, deterministic method for representing the 61 

upper bound of the maximum floods observed in a distinct region. A REC bounds the largest 62 

floods of each gauge, termed floods of record, of a region. Since their first introduction 63 

(Jarvis, 1925), RECs have been applied to different regions and scales. Traditionally, they 64 

refer to administrative units (e.g. China and USA (Costa, 1987), Europe and World (Herschy, 65 

2002)). RECs have also been constructed for hydro-meteorological regions with different 66 

climatic conditions and, consequently, different flood regimes (e.g. 17 regions in the USA 67 

(Crippen and Bue, 1977); north-western and western Greece (Mimikou, 1984)).  68 

A main criticism on RECs relates to their deterministic view and their need to be checked 69 

routinely for being exceeded by recent events (e.g. Crippen and Bue, 1977; Castellarin et al., 70 

2005). The applicability of RECs to engineering problems, such as flood design, is limited by 71 

the lack of an exceedance probability (or a recurrence interval) that can be assigned to the 72 

envelope curves. To overcome this deficiency, Castellarin et al. (2005, 2007), Castellarin 73 

(2007), and Vogel et al. (2007) proposed a probabilistic interpretation of RECs which, besides 74 

the magnitude, also considers the frequency of a REC.  75 

Probabilistic regional envelope curves (PRECs) are based on the well-known index flood 76 

method (Dalrymple, 1960), which is often applied in flood regionalisation studies (e.g. 77 

GREHYS, 1996; Hosking and Wallis, 1997; Robson and Reed, 1999). Only if a region is 78 

homogeneous as defined by the index flood hypothesis, a PREC can be constructed and an 79 

exceedance probability can be assigned to the curve. A flood discharge associated with the 80 

exceedance probability, termed PREC flood quantile, was derived for each site of a 81 

homogeneous region. 82 

According to Castellarin et al. (2005), the estimation of the exceedance probability of a PREC 83 

further requires the evaluation of the overall sample years of the underlying data which in turn 84 
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depends on the intersite or cross correlation amongst the annual maximum series (AMS) of 85 

flood flows observed at different gauges. It is important to emphasise that the exceedance 86 

probability of a PREC always differs from zero which highlights the difference between 87 

PRECs and Probable Maximum Floods. A PREC provides one recurrence interval without an 88 

extrapolation and, in principle, enables one to estimate the design flood at ungauged sites as a 89 

function of the drainage area (e.g. Castellarin, 2007) or of a set of suitable physiographic and 90 

climatic catchment descriptors (e.g. Castellarin et al., 2007). PRECs should be seen as 91 

complements to RFFA. They can provide additional information on plausible values of 92 

extreme floods and the corresponding exceedance probability in gauged and ungauged basins. 93 

A leave-one-out jackknifing approach has shown that PREC flood quantiles have a similar 94 

reliability as the traditional index flood method (Castellarin, 2007).  95 

Similarly to RFFA, the construction of a PREC requires the identification of hydrologically 96 

homogeneous regions or pooling groups (GREHYS, 1996; Castellarin et al., 2001). 97 

Catchments with similar hydrological behaviour can be classified into one group, and the 98 

hydrometric information collected at all gauges that belong to the pooling group can be used 99 

to improve the accuracy of the design flood estimates for all gauges of the group. The 100 

homogeneity of a pooling group can be assessed by statistical tests (e.g. Viglione et al., 2007; 101 

Castellarin et al., 2008). 102 

The requirement of homogeneity and the need for sufficient data within a group are often 103 

conflictive. On the one hand, a larger number of observations reduces the uncertainty in 104 

estimating high recurrence intervals (Robson and Reed, 1999). On the other hand, a larger 105 

number of gauges in the pooling group generally results in a higher hydrological 106 

heterogeneity of the group. Several studies highlight the relevance of regional homogeneity 107 

for RFFA (e.g. Lettenmaier et al., 1987; Stedinger and Lu, 1995) and, more recently, for 108 

PRECs (Castellarin, 2007). Therefore, an appropriate classification technique is required for 109 

the identification of pooling groups.  110 
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Flood regionalisation studies propose two approaches for deriving pooling groups: the 111 

delineation of a subdivision of the study area into fixed homogeneous regions and the 112 

neighbourhood approach or Region of Influence approach (RoI) (Burn, 1990; GREHYS, 113 

1996; Ouarda et al., 2001). In fixed homogeneous regions, each gauging station definitely 114 

belongs to one and only one region. A traditional approach to identify fixed homogeneous 115 

regions is a separation in administrative units, where all gauging stations are geographically 116 

connected, e.g. in adjacent sub-catchments. This method has been replaced by others that 117 

enhance the hydrological similarity within a fixed region (Acreman and Sinclair, 1986). 118 

Cluster analysis is an objective procedure that can be applied to subdivide the study area into 119 

clusters of catchments (fixed regions) on the basis of a suitable set of climatic and 120 

physiographic catchment descriptors (predictor variables). The goal of the procedure is to 121 

maximise the similarity within a cluster and the dissimilarity between the clusters (e.g. 122 

Mosley, 1981). The catchments of one cluster are not necessarily geographically connected.  123 

The RoI approach identifies a pooling group separately for each gauging station (site of 124 

interest) without explicit spatial connection within the RoI (Burn, 1990). Gauging stations for 125 

a RoI are selected according to their similarity to the site of interest using a suitable set of 126 

predictor variables (Zrinji and Burn, 1994). In a hybrid RoI approach, the RoI is derived by 127 

considering the geographical distance between the sites in addition to the predictor variables 128 

(Eng et al., 2007).  129 

Up to now, PRECs were applied in northern Italy with a relatively limited number of gauging 130 

stations grouped into three different fixed homogeneous regions (Castellarin, 2007). This 131 

paper presents the application of the PREC approach in Germany, considering a rather large 132 

number of sites. The main aim of the study is to verify, whether the utilisation of the RoI 133 

approach in the formation of homogeneous pooling groups may improve the reliability of the 134 

design flood estimates that can be retrieved from PRECs for ungauged sites. To address this 135 

issue, we construct PRECs for the study area using fixed homogeneous regions and RoIs. In 136 
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particular, we form several PRECs for each gauging site on the basis of the data collected in 137 

homogeneous fixed regions and RoIs with different sizes and catchment descriptors. A 138 

sensitivity analysis enables us to consider the sensitivity of PREC flood quantiles to different 139 

constitutions of the pooling group. By means of “leave-one-out” cross-validation procedure, 140 

we simulate the ungauged conditions at all considered sites during the construction of each 141 

PREC as proposed by Castellarin (2007). All flood estimates are compared with the 142 

corresponding estimates (i.e. flood quantiles associated with the same values of the recurrence 143 

interval) obtained by applying a traditional regionalisation approach. The comparison enables 144 

us to better understand and quantify (1) the suitability of the two different pooling methods 145 

(i.e. cluster analysis and RoI) in the context of probabilistic regional envelope curves, and (2) 146 

the accuracy of flood quantiles retrieved from PRECs for ungauged basins. 147 

 148 

2 Methods 149 

Since the construction of pooling groups is a prerequisite for the application of PREC, it is 150 

advisable to quantify the sensitivity of PREC to the formation of pooling groups. For both 151 

pooling methods (cluster analysis and RoI), the sensitivity of PREC results was determined by 152 

considering several variations of pooling groups derived in a three-step-procedure.  153 

 154 

1. Formation of candidate sets of catchment descriptors. 155 

2. Construction of homogeneous regions using two pooling methods. 156 

3. Test on homogeneity of each pooling group. 157 

 158 

Finally a specific PREC was constructed for each homogeneous region. To compare the 159 

different results some performance measures were analysed. Each step of the procedure is 160 

described in the remainder of this section. 161 
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 162 

2.1 Candidate set of catchment descriptors 163 

Different catchment descriptors were used as predictor variables to derive homogeneous 164 

regions. In a first step all catchment descriptors were standardised to a mean value of zero and 165 

a standard deviation of one. This standardisation allows a comparison between the predictor 166 

variables and avoids the influence of different value scales (see e.g. Nathan and McMahon, 167 

1990).  168 

The catchment descriptors were combined by summing up the standardised values for each 169 

site. This approach is only applicable, if all standardised variables have a positive correlation 170 

with the unit index flood, i.e. the index flood normalised by the catchment size. In order to get 171 

only positive correlations, standardised variables with a negative correlation to the unit index 172 

flood were multiplied with -1. This implies, for instance, that the fraction of the area, which is 173 

not covered by arable land, was used instead of the fraction of arable land for selecting 174 

candidate sets of catchment descriptors.  175 

A full enumeration approach was used to consider all possible subsets of the catchment 176 

descriptors with one to three predictor variables. A larger number of catchment descriptors 177 

within one candidate set could provide small additional information, but could also lead to 178 

multi-collinearity (Merz and Blöschl, 2005). Thus variants with more than three predictor 179 

variables were not taken into account.  180 

With regard to the selection of suitable sets of predictor variables, it is worth noting that we 181 

were interested in assessing the sensitivity of PRECs and of flood quantiles derived from 182 

these PRECs with respect to different pooling groups. To this aim, we looked for several good 183 

combinations of predictor variables rather than the optimal set. It was assumed that, next to 184 

the best subset of catchment descriptors, other ‘good subsets’ have a similar explained 185 

variance. Since PREC is based on the assumption of a scaling of the index flood (mean of the 186 

annual maxima series), it seemed reasonable to perform a preliminary identification of 187 
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candidate sets of catchment descriptors by looking at the explained variance of the empirical 188 

index flood values. Therefore, candidate sets of catchment descriptors were identified on the 189 

basis of this criterion.  190 

The correlation coefficient between a subset of catchment descriptors and the unit index flood 191 

was used as goodness-of-fit criterion, as in other studies (e.g. Burn, 1990; Uhlenbrook et al., 192 

2000) under the assumption that a high correlation is a good indicator for a sufficient 193 

explained variance of the selected subset (Merz and Blöschl, 2004).  194 

All subsets of catchment descriptors were selected that showed a correlation coefficient of 195 

more than 0.60. This threshold was assumed as sufficient, because the correlation coefficient 196 

was only used for a pre-selection of subsets of catchment descriptors.  197 

All selected subsets were checked for multi-collinearity between the catchment descriptors 198 

using the variance inflation factor (VIF) (Hirsch et al., 1992) (Eq. (1)).  199 

21
1

k
k r

VIF
−

=   (1) 200 

rk
2 stands for a multiple correlation coefficient, which was calculated by a regression of 201 

variable k using all other variables as predictor variables. To avoid multi-collinearity, all 202 

subsets with VIF > 5 were omitted. Montgomery et al. (2001) and Eng et al. (2005) 203 

recommended a threshold between 5 and 10. 204 

 205 

2.2 Formation of homogeneous regions 206 

To assess the influence of homogeneous regions on PREC, two different approaches for the 207 

derivation of pooling groups were applied. These methods were fixed homogeneous regions 208 

derived by a cluster analysis and the Region of Influence (RoI) method. To ensure an 209 

appropriate comparison of both methods, the same candidate sets of catchment descriptors 210 

were used.  211 
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 212 

Fixed homogeneous regions using cluster analysis 213 

Fixed homogeneous regions were derived by cluster analysis with the K-means algorithm, 214 

which had already been used in flood frequency analysis (e.g. Burn, 1989; Burn and Goel, 215 

2000) and very recently in a flood seasonality study (Beurton and Thieken, 2009). The cluster 216 

analysis was performed allowing three to seven clusters, and was therefore applied five times 217 

to each subset of predictor variables. The different number of clusters considers the trade-off 218 

between the homogeneity within a cluster and the number of sites within one group. 219 

 220 

Region of Influence (RoI) 221 

The approach “Region of Influence” (Burn, 1990) constructs an individual region (group of 222 

gauging sites) for each gauge by finding stations that are similar to the characteristics of the 223 

station under study (site of interest). The RoI was determined by the similarity of gauging 224 

stations in the physiographical space of the selected catchment descriptors. Similarity was 225 

assessed by the Euclidean distance between each site and the site of interest in the 226 

physiographical space. The Euclidean distance has been used in several RoI approaches (e.g. 227 

Zrinji and Burn, 1994; Castellarin et al., 2001; Gaál et al., 2008), although other similarity 228 

measures are possible (see e.g. Cunderlik and Burn, 2006). 229 

All gauging stations which are closer to the site of interest than a specific threshold of the 230 

Euclidean distance in the physiographical space were assigned to the RoI of the site of 231 

interest. The higher the threshold, the larger is the number of sites within a region (Burn, 232 

1990). Different similarity measure thresholds to derive RoIs were investigated by Gaál et al. 233 

(2008). To account for the sensitivity of the results to the threshold, three thresholds for the 234 

similarity measure (0.5, 1 and 2) were applied in this study. In contrast to RoI approaches in 235 

frequency analysis (Burn, 1990), the sites were not weighted according to their closeness to 236 

the site of interest in the physiographical space. The original RoI method was varied, because 237 
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the intercept of PREC is only determined by one pair of unit flood of record and drainage area 238 

(see “Probabilistic regional envelope curve”). Consequently, a weighting scheme would not 239 

affect the magnitude of the regional envelope curve. 240 

Traditionally, a fixed number of sites is targeted at when deriving a RoI (Burn, 1997). This 241 

target number is a function of the aspired return period. In our case a target number of sites 242 

cannot be determined, since the recurrence interval T associated with the PREC is not known 243 

a priori. Therefore, the maximum number of sites in the RoI was identified on the basis of the 244 

hydrological affinity with the site of interest.  245 

 246 

2.3 Homogeneity test 247 

Each pooling group was checked for homogeneity by applying the heterogeneity measure of 248 

Hosking and Wallis (1997) (Table 1). The H1-test calculates the variability of the L-249 

coefficient of variation (L-CV). The sample L-CV is compared with an expected value for a 250 

homogeneous region obtained by a Monte-Carlo simulation. The second and third 251 

heterogeneity measures H2 and H3 consider the L-CV and the L-skewness as well as the L-252 

skewness and the L-kurtosis, respectively. A more detailed explanation of L-moments and the 253 

heterogeneity measure is given by Hosking and Wallis (1997). 254 

Since the homogeneity test for the L-CV (H1) is a more significant test than the tests with 255 

higher moments (H2 and H3) (Castellarin et al., 2001, 2007; Hosking and Wallis, 1997), this 256 

study focused on the H1-test using the hw.test (Viglione, 2008, implemented in R). All 257 

regions with a H1 value lower than 2 were used for deriving a PREC.  258 

 259 
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2.4 Probabilistic regional envelope curve 260 

The method of probabilistic regional envelope curves (PREC) is based on two principles. In 261 

the first place, all gauging stations of a region have to be homogeneous in terms of the index 262 

flood hypothesis. Secondly, the index flood μX (mean of the annual maxima series) is related 263 

to the drainage area A (Eq. (2), adopted from Castellarin, 2007). Under these assumptions the 264 

index flood scales with the drainage area and depends only on the drainage area (Castellarin, 265 

2007): 266 

1* += b
X ACμ  (2) 267 

To derive a regional envelope curve, all floods of record QFOR of a region are normalised by 268 

their corresponding catchment area A to the unit flood of record qFOR and are related to A in a 269 

double-logarithmic scale (Eq. (3), adopted from Castellarin et al., 2005). The regional 270 

envelope curve bounds all unit floods of record of a region and is defined by its slope b and 271 

the intercept a:  272 

)log(*log Aba
A

QFOR +=⎟
⎠
⎞

⎜
⎝
⎛  (3) 273 

The slope b is derived by a regression of the unit index flood against the drainage area 274 

(Fig. 1). The intercept a is determined by a parallel upshift of the regression until the envelope 275 

curve bounds all unit floods of record (Castellarin et al., 2005). In a homogeneous region the 276 

index floods of all gauges are close to the regression line. In this study, a PREC was 277 

determined for each region with at least four sites. It was assumed that a lower number of 278 

sites is not representative for a regression analysis.  279 

An exceedance probability is assigned to that particular data pair of unit flood of record and 280 

its drainage area that determines the intercept of the envelope curve. This exceedance 281 

probability is valid for the range of catchment sizes covered in the pooling group. For this, the 282 

AMS of all gauging stations of that region were considered. The total number of sample years 283 

of data was reduced to an effective number of sample years of data, by accounting for cross-284 
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correlated sites (Castellarin, 2007). Several studies have shown that the correlation of annual 285 

maximum series decreases with the distance of the catchments (see e.g. Hosking and Wallis, 286 

1988; Troutman and Karlinger, 2003). Under these assumptions, a regional cross-correlation 287 

function by Tasker and Stedinger (1989) (Eq. (4), from Castellarin, 2007) was optimised 288 

using the distances between catchment centroids, the correlation coefficients between the 289 

AMS and the lengths of overlapping time series.  290 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−=

ji

ji
ji d

d

,2

,1
, 1

exp
λ

λ
ρ   (4)  291 

d is the distance between catchment centroids, ρ the correlation coefficient, λ1, λ2 the 292 

parameters, and i,j are the index denoting pairs of catchments. 293 

In comparison to Castellarin (2007), the method for considering intersite correlations was 294 

changed in this paper due to the larger number of catchments available and the presence of 295 

numerous nested catchments, i.e. gauging stations along the same river. Troutman and 296 

Karlinger (2003) emphasised that the correlation between the AMS of nested catchments was 297 

higher than for unnested catchments. Guse et al. (2009) showed that distinct parameter sets 298 

for nested and unnested catchments led to a reduction of the recurrence interval of PRECs due 299 

to larger correlations between nested catchments. Hence, specific parameters of the cross-300 

correlation function were used for nested and unnested catchments.  301 

Considering the intersite correlation, the overall effective sample years of data neff were 302 

calculated by an empirical relationship, which was determined by Castellarin et al. (2005) and 303 

Castellarin (2007) in Monte-Carlo simulations (Eq. (5)). This approach is based on the 304 

average correlation coefficient ρ (see Eq. (4)). Castellarin (2007) proposed an algorithm that 305 

can be applied for real world datasets with Y years, in which the record lengths of the gauges 306 

varies. In the first step of the algorithm, the number of years n1 was identified in which only 307 

one gauging station had a measured discharge. These observations n1 were reasonably 308 

effective. The remaining years Y-n1 were divided in )( 1nYYsub −≤  subsets with the same 309 
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gauging stations Ls and the length ls. Next, for each subset s of ls years, the effective number 310 

of observations neff,s was calculated separately. Finally, the effective samples for all subsets 311 

were summed up. The number of effective sample years of data for the whole regional data 312 

set neff includes n1, the years with one observations, and the sum of neff,s (Eq. (5), adopted 313 

from Castellarin, 2007).  314 

[ ]∑∑
== −+

+=+=
sub

s

sub Y

s sL

ss
Y

s
seffeff

L

lL
nnnn

11
1,1

)1(1 βρ
 with [ ]

sL

sslL
ß

376.0

176.0

)1(

)(
4.1:

ρ−
=   (5) 315 

In this way the effective sample years of data is equivalent to the number of independent 316 

observations. This reduction of the regional plotting position determines the information 317 

content of the collected data (Castellarin, 2007).  318 

The next step is a selection of an appropriate plotting position depending on an adequate 319 

distribution function to estimate the recurrence interval of the PREC. Castellarin (2007) 320 

recommended the use of the Hazen plotting position (Eq. (6), from Castellarin (2007)) in 321 

order to get unbiased flood quantiles, when the Generalised Extreme Value (GEV) 322 

distribution is a suitable parent distribution. Its suitability for the case study is reported in 323 

“Study area and data”. As a result, the recurrence interval TPREC is twice as high as the 324 

number of effective observations neff. 325 

effPREC nT *2=  (6) 326 

The exceedance probability is greatly influenced by the formation of homogeneous regions. 327 

Adding or removing only one gauging station to/from a homogeneous group modifies the 328 

effective sample years of data and hence the exceedance probability of the PREC. 329 

The discharge associated with the exceedance probability for a specific site is determined by 330 

the intercept of the drainage area and the regional envelope curve. It is worth noting that the 331 

gauging stations within a region have a different influence on the exceedance probability of 332 

the PREC. Due to the fact that the intercept of the PREC is determined by the data pair of the 333 

highest unit flood of record and its drainage area, this gauging station is the most decisive. 334 
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This aspect highlights the particular importance of a consistent assignment of gauging stations 335 

to pooling groups. 336 

A discharge QPREC and a recurrence interval TPREC were derived for all gauging stations of a 337 

region. TPREC is constant for all gauging stations in the region. Since the PREC was only 338 

calculated for homogeneous regions, the number of PREC realisations is different for the 339 

gauging stations. It depends on the number of homogeneous regions in which the specific 340 

gauging station is included.  341 

 342 

2.5 Sensitivity analysis 343 

The effect of pooling groups on PREC flood quantiles (QPREC, TPREC) was examined by a 344 

sensitivity analysis. Pooling groups of both pooling methods were derived for all candidate 345 

sets of catchment descriptors with a correlation coefficient to the unit index flood >0.60. For 346 

each candidate set of catchment descriptors, cluster analysis was applied five times (allowing 347 

three to seven clusters) and the Region of Influence approach three times (with different 348 

thresholds in the physiographical space) (see “Formation of homogeneous regions”). These 349 

predefined number of clusters and thresholds in the physiographical space led to several 350 

candidate solutions of pooling groups. Ultimately all pooling groups with a heterogeneity 351 

measure H1 < 2 were used to derive a PREC. Each PREC realisation led to a pair of QPREC and 352 

recurrence interval TPREC (PREC flood quantile) for each gauge of the pooling group.  353 

The rationale behind this scheme is that different constitutions of the regions lead to different 354 

realisations of PREC. The application of several candidate sets of catchment descriptors 355 

allows a quantification of the sensitivity of the PREC results in terms of the pooling method 356 

and the selected subset of catchment descriptors. However, it is worth noting that the 357 

uncertainty of the ensemble of PRECs results is not estimated by this procedure. 358 

 359 
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2.6 Performance criteria 360 

The performance of PREC flood quantiles was evaluated by comparing them with a 361 

traditional index flood approach.  362 

The index flood method is based on the assumption that a regional growth curve is valid for 363 

all sites of a pooling group. For this, the AMS was normalised by the index flood μX. To 364 

calculate the T-year flood X(T), a regional quantile xT was scaled to at-site conditions by the 365 

index flood μX (Eq. (7)). 366 

TX xTX *)( μ=  (7) 367 

The GEV was also used for the index flood approach. The parameters were estimated with 368 

regional L-moments, by weighting at-site L-moments of all gauges according to the data 369 

length (Robson and Reed, 1999). 370 

In order to assess the accuracy of PREC for ungauged catchments, a cross-validation 371 

procedure was applied. The PREC was recalculated following a leave-one-out jackknifing 372 

algorithm (Castellarin, 2007; Castellarin et al., 2007), termed PREC-JK: (1) A pooling group 373 

with M sites, which fulfilled the homogeneity criteria, was selected. (2) A site m was 374 

excluded from this pooling group. (3) For the remaining M-1 stations the PREC-JK was 375 

calculated and the recurrence interval of PREC-JK (TPREC-JK) was determined. (4) The 376 

discharge of PREC-JK QPREC-JK was evaluated for the given drainage area of the site m. Since 377 

site m was not included in the calculation, the PREC-JK result was considered as ungauged. 378 

(5) The index flood method was applied for the same pooling group. In this case the site m 379 

was included. The flood quantile for the given recurrence interval TPREC-JK was calculated by 380 

the index flood method (QIF (TPREC-JK)). In this context the index flood method was assumed 381 

as the ‘true’ result. To get a perfect estimator for ungauged conditions, QPREC-JK(TPREC-JK) was 382 

compared with QIF (TPREC-JK) (Eq. (8), adopted from Castellarin, 2007).  383 

),(
),(),(
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JKPRECIFJKPRECJKPREC
JKPREC TmQ
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−
=ε   (8) 384 
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The cross-validation was performed for all homogeneous regions. It was repeated M-times for 385 

all sites within a cluster. In the case of a RoI, the jackknifing approach was only applied once 386 

for the site of interest. The relative error of PREC-JK in comparison to the index flood 387 

method enables us to compare the two pooling methods.  388 

 389 

3 Study area and data 390 

The study area is the federal state of Saxony in the south-east of Germany (Fig. 2). Saxony is 391 

characterised by the mountain range of the Erzgebirge in the south-west with elevation up to 392 

1214 m above sea level (Fichtelberg) and a mean annual precipitation up to 1244 mm (at the 393 

synoptic station Carlsfeld). The highest monthly precipitation occurs in summer (Flemming, 394 

2001). The river Elbe with a drainage area of about 52,000 km² at the gauge Dresden is the 395 

biggest river in Saxony. Several feeder rivers originating in the Erzgebirge flow into the Elbe, 396 

the most important one is the river Mulde (Fig. 2). The mountain range east of the Elbe has a 397 

lower elevation than the Erzgebirge. Towards the north the elevation flattens. The north-398 

western and north-eastern parts of Saxony are influenced by mining activities.  399 

In Saxony, several severe floods occurred in the past. Ulbrich et al. (2003) distinguished 400 

between flash floods along the tributaries of the rivers Elbe and Mulde and slowly rising river 401 

floods along the Elbe. The Erzgebirge was affected by local (e.g. in 1927, 1957) and regional 402 

floods (e.g. in 1954, 1958, 2002) (Pohl, 2004; Thieken et al., 2007). Among the regional 403 

floods, especially the recent destructive flood of 2002 along the rivers Elbe and Mulde and 404 

their tributaries from the Erzgebirge is still present in people’s minds. During this event a 405 

record-breaking daily precipitation of 312 mm/day was measured at the synoptic station 406 

Zinnwald-Georgenfeld, which is located in the upper stream of the Müglitz (Ulbrich et al., 407 

2003). For the 2002 flood, IKSE (2004) estimated recurrence intervals up to 200 – 500 years 408 

at some tributaries of the Elbe river, e.g. at the rivers Mulde, Müglitz and Weisseritz.  409 
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One hundred and seventeen discharge gauging stations from all over Saxony with the 410 

maximum discharges for each month were provided by Saxon authorities. For the catchment 411 

of the Weisse Elster, which is only partly located in Saxony, additional data was provided by 412 

authorities of Thuringia and Saxony-Anhalt. The gauging stations are evenly distributed 413 

throughout the area of this study (Fig. 2). All major rivers are included in the data set. 414 

Observation periods range from 20 to 150 years with a mean length of 50 years. This data set 415 

includes extreme floods with local as well as regional spatial extent. The highest unit 416 

discharges were observed in the western tributaries of Elbe (i.e. at the rivers Gottleuba and 417 

Müglitz) and in the river Pliessnitz, a tributary of the Lausitzer Neisse near the German-Polish 418 

border (Fig. 2). Due to a few very extreme floods, the series of annual maximum floods show 419 

a high skewness, especially in the Erzgebirge (Petrow et al., 2007).  420 

Since the index flood hypothesis requires a strong homogeneity within a region, only gauging 421 

stations were used that represented the regional hydrological situation. Thus, the available 422 

data set was reduced, i.e. gauges of heavily influenced rivers due to mining activities (four 423 

sites), gauging stations directly downstream of a dam (two sites) and very small catchments 424 

(<10 km2) (four sites) were discarded. Furthermore, only gauging stations with at least 425 

30 years of data were used. Due to these restrictions the number of gauging stations was 426 

reduced to 95. 427 

The construction of pooling groups (see “Formation of homogeneous regions”) requires the 428 

derivation of different catchment descriptors. These predictor variables were pre-selected 429 

based on a literature review (e.g. Wiltshire, 1986; Pitlick, 1994; GREHYS, 1996; Castellarin 430 

et al., 2004; Merz and Blöschl, 2005). Those catchment descriptors were applied, which have 431 

yielded good results in flood regionalisation studies (Table 2). All catchment descriptors are 432 

catchment averages. 433 

Precipitation data with a daily resolution in and around Saxony was provided by the German 434 

Weather Service (DWD). Precipitation indices were derived on the basis of 453 stations with 435 
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at least 30 years of data in order to ensure a sufficient sample size. The second constraint was 436 

that the time series endured at least up to 2002. This year was selected because of the severe 437 

flood event in August 2002. In order to optimise the spatial distribution of precipitation 438 

stations, 23 stations with an observation period of less than 30 years were additionally used to 439 

derive the maximum daily precipitation and the 5-day-precipitation sum. These stations were 440 

added, because the year of the maximum daily precipitation coincided with the flood of 441 

record of the downstream gauging station. In these cases, it was assumed that the maximum 442 

precipitation was representative for this catchment. The precipitation values were interpolated 443 

for the different precipitation indices using ordinary kriging. In the next step the catchment 444 

boundaries were superimposed on the precipitation map and the mean value was derived for 445 

each catchment.  446 

The mean elevation of the catchments was derived from a digital elevation model for Saxony 447 

with a grid size of 25 m. Outside Saxony the SRTM-DEM (Jarvis et al., 2008) with a grid size 448 

of 90 m was resampled to 25 ms. A mean slope was derived from this combined DEM. The 449 

DEM also provided the catchment centroids, from which the distances between the 450 

catchments were calculated, which were then used to optimise the theoretical cross-451 

correlation function (see Eq. (4)). The digital landscape model ATKIS (BKG GeoDataCentre, 452 

2005) was used to derive landscape parameters such as the fraction of urban area. The 453 

hydrogeological map HÜK200 (1:200,000) of the Saxon State Agency of Environment and 454 

Geology provided the fraction of bedrock and low permeability area. The hydrogeological 455 

map HÜK200 distinguished between bedrock and unconsolidated rock. Permeability was 456 

classified in eleven classes. Low permeability was assessed for all rocks with permeability 457 

<10-7 (AG Boden, 1994). 458 

Soil parameters were not used in this study, since for example Merz (2006) has emphasised 459 

the low performance of soil parameters in multiple regressions without a hydrological soil 460 

classification such as the Hydrology of Soil Types (HOST) classification in the United 461 
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Kingdom (Boorman et al., 1995). The drainage area itself was not used as variable, because it 462 

is already included in the concept of regional envelope curves. 463 

Among the available data for the catchment descriptors only the DEM covered the catchments 464 

outside of Saxony. Therefore, catchments with insufficient information for the other 465 

catchment descriptors were omitted. This led to a further reduction of the data set. In total, all 466 

thirteen catchment descriptors listed in Table 2 were determined for 89 gauging stations 467 

shown in Fig. 2. Their catchment size varies between 13 (Rennersdorf 2/ Pliessnitz river) and 468 

6170 km² (Bad Düben/ Mulde river). 469 

For each of the 89 gauges the flood of record QFOR was determined. In a further step, the 470 

annual maximum series (AMS), which contain the highest discharge for each hydrological 471 

year (1st November to 31th October), was calculated. Independence between flood events in 472 

the AMS was ensured by a time gap of at least 7 days between consecutive annual maxima 473 

(GREHYS, 1996). L-moment ratio diagram (see e.g. Vogel and Fennessey, 1993; Peel et al., 474 

2001) clearly indicates that the GEV is a suitable parent distribution function for the whole 475 

study area.  476 

 477 

4 Results 478 

4.1 Suitable candidate sets of catchment descriptors 479 

Considering the 13 catchment descriptors listed in Table 2, 13 subsets with one, 78 with two 480 

and 286 with three catchment descriptors resulted. Among the 377 possible subsets of one, 481 

two and three catchment descriptors, 39 subsets have a correlation coefficient to the unit 482 

index flood higher than 0.6. All subsets with three catchment descriptors were checked for 483 

redundancy compared with the subsets with two catchment descriptors. The rationale behind 484 

this approach was that an additional parameter ought to lead to a higher proportion of 485 
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explained variance. Consequently, subsets with three catchment descriptors were only used 486 

(a) if they did not include two catchment descriptors, which formed one of the selected 487 

subsets with two catchment descriptors, or (b) if the correlation coefficient was higher than 488 

this subset with two catchment descriptors. This procedure reduced the number of subsets 489 

from 39 to 20. The test of multi-collinearity by the VIF-test resulted in no further reduction.  490 

Table 3 illustrates that the correlation coefficient to the unit index flood of the 20 subsets 491 

differed between 0.60 and 0.70. All 20 subsets were considered as candidate set and were 492 

used to form homogeneous regions and to derive a PREC. The selected subsets contain two or 493 

three catchments descriptors. Among the catchment descriptors precipitation and topographic 494 

indices have a higher explanatory power than land use and geologic parameters. The 495 

maximum of the 5-day-precipitation sum (MAX5DAY), the range of elevation within the 496 

catchment (RANGE_NORM) and the fraction of urban land coverage (URBAN) were most 497 

often included.  498 

 499 

4.2 Results for the best subset of catchment descriptors 500 

The best subset of predictor variables contains MAX5DAY, the mean elevation (ELEV) and 501 

RANGE_NORM with a correlation coefficient of 0.70 (Table 3). The pooling groups derived 502 

by cluster analysis are illustrated in Table 4, using the solution with seven clusters as an 503 

example. The heterogeneity measure of the cluster analysis shows that there are four (H1 < 2) 504 

homogeneous regions (clusters 1, 2, 4, and 6) (Table 4). Clusters 3 and 7 are strongly 505 

heterogeneous. The H1-test was not applied for cluster 5, because there are only two sites in 506 

this cluster. For these three regions the assumptions of PREC are not fulfilled. Thus a PREC 507 

was only calculated for the clusters 1, 2, 4 and 6. 508 

The RoI approach provides one region for each of the 89 gauging stations. As outlined in 509 

“Formation of homogeneous regions”, three different thresholds of the similarity measure 510 
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were applied. The total number of PREC realisations is lower than 89, because in several 511 

cases the number of sites in the RoI is lower than four (Table 5). Only for 50 sites, there are at 512 

least four sites in the physiographical space with a Euclidean distance lower than 0.5. It 513 

becomes apparent that, also for the RoI approach, the method of PREC is not applicable for 514 

all gauging stations. 515 

In summary, with both pooling methods heterogeneous regions were constructed, for which it 516 

was impossible to calculate a PREC. As mentioned before, this deficiency could partly be 517 

compensated by the use of different subsets of catchment descriptors. 518 

 519 

4.3 Analysis of homogeneous regions for different candidate sets of 520 

catchment descriptors 521 

Since 20 subsets of catchment descriptors were selected and the cluster analysis was 522 

performed five times (number of clusters from 3 to 7), altogether 500 regions were 523 

constructed and checked for homogeneity by the Hosking-Wallis test. The fraction of 524 

homogeneous regions (H1 < 2) is in the range between 43% (3 cluster) and 54% (7 cluster) for 525 

the different numbers of clusters (Table 6). 526 

With the RoI approach, one region was formed for each gauging station and each subset of 527 

catchment descriptors. The fraction of homogeneous regions is strongly influenced by the 528 

threshold of the Euclidean distance in the physiographical space. The number of 529 

homogeneous regions decreases from 54% for a threshold of 0.5 to 12% for a threshold of 2. 530 

As expected, both methods reveal that the fraction of homogeneous regions increases with a 531 

decreasing number of gauging stations (higher number of clusters, lower RoI-threshold).  532 

The distribution of the relative number of homogeneous regions shows a spatial pattern for 533 

both pooling methods (Fig. 3). The gauging stations in the Erzgebirge are mostly grouped in 534 

homogeneous regions. In contrast, there are no or only a low number of homogeneous regions 535 
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for several gauges in the Weisse Elster subbasin and east of the Elbe. The relative number of 536 

homogeneous regions is larger for the cluster analysis than for the RoI approach. This can be 537 

explained by the low number of homogeneous regions that were constructed for a threshold of 538 

two in the RoI approach (Table 6).  539 

  540 

4.4 PREC results for candidate sets of catchment descriptors 541 

Due to the fact that one PREC is provided for each homogeneous region, it is not possible to 542 

show all PREC realisations for all sites. All PREC realisations for the gauging station 543 

Dohna/Müglitz are shown as an example in Fig. 4. In addition, the pairs of the unit flood of 544 

record and the drainage area, which determine the intercept of PREC, are highlighted by black 545 

circles. The site itself is indicated separately. Both figures illustrate the influence of different 546 

subsets of catchment descriptors and pooling methods on the results of PREC.  547 

Besides the slope and the intercept, also the range of the catchment size that is covered by the 548 

PREC depends on the constitution of the pooling group. As expected, the slope decreases with 549 

catchment size with two exceptions for RoI. In the example shown in Fig. 4 four sites govern 550 

the intercept of PREC including the selected site itself for both pooling methods.  551 

As illustrated in Fig. 5, the results of PREC for the gauge Dohna differ in discharge (400–630 552 

m³/s) and recurrence interval (300–1200 years) for the two pooling schemes, as well as for 553 

different subsets of catchment descriptors. As expected, the discharge augments with 554 

increasing recurrence interval. The site itself has only a minor influence on the recurrence 555 

interval, because all AMS of the region are collected together (overall sample years of data). 556 

Both pooling methods show the influence of the pair of the unit flood of record and drainage 557 

area, which determines the intercept of PREC. All discharges are at least 400 m³/s, which is 558 

the flood of record at the gauge Dohna. In this example the PREC results of both methods are 559 

scattered in three groups. In the first group, the gauge Dohna itself determines the intercept of 560 

PREC. The gauge Dippoldiswalde and Rehefeld or Hainsberg 1 in the case of the cluster 561 
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analysis or RoI, respectively, have the highest unit flood of record for the PREC realisations 562 

of the second group, where the discharge varies between 400 and 480 m³/s (Figs. 4 and 5).  563 

In the third group, the discharge of PRECs for the gauge Dohna is between 580 and 630 m³/s. 564 

The intercept of these PRECs is determined by the gauge Neundorf and in two cases for the 565 

cluster analysis also by Rehefeld. The range is caused by the different slopes of the PRECs, 566 

which were derived for pooling groups with different combinations of gauges. The higher the 567 

difference in the catchment size (e.g. Rehefeld (15 km²) and Dohna (198 km²), (see Fig. 4)), 568 

the larger is the PREC discharge affected by a variation of the slope. 569 

The three groups of PREC realisations show that the inclusion of a gauge with a high unit 570 

flood of record (here: Neundorf) results in an upshift of the PREC. The extent of the upshift 571 

depends on the difference between the unit flood of record of the site of interest and the 572 

highest unit flood of record in the homogeneous group. It is important to highlight that Dohna 573 

and Neundorf have a relatively high unit flood of record. For a gauging station with a lower 574 

unit flood of record, the difference between the unit flood of record and the regional envelope 575 

curve discharge might be significantly higher, if the PREC is also determined by Neundorf.  576 

 577 

4.5 Performance evaluation of PREC 578 

The reliability of the PREC was evaluated by a leave-one-out jackknifing procedure 579 

(PREC-JK). The relative error of the PREC-JK to the index flood method was calculated for 580 

each gauging station (see Eq. (8)). In Fig. 6, only those gauging stations were considered, 581 

which had at least eight PREC-JK realisations. This criterion was fulfilled for 68 (Cluster 582 

analysis) and 61 sites (RoI), with on average 44 and 21 PREC-JK realisations, respectively. 583 

The PREC-JK approach for both pooling methods illustrates that the median of the relative 584 

error is in most cases positive (Fig. 6). A high positive relative error indicates a high over-585 

estimation of the discharge of PREC-JK for this recurrence interval in comparison to the 586 
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index flood method. A negative relative error occurs for the gauging stations which determine 587 

the intercept of REC or which are close to the REC (see Fig. 7). Comparing the pooling 588 

methods, the relative errors (median of the box) as well as the scatter (size of the box) are 589 

similar for cluster analysis and RoI (Fig. 6).  590 

The relative error between PREC-JK and the index flood method depends on the position of 591 

the gauging station in the ‘unit discharge-area plot’ (Fig. 7). If the unit flood of record qFOR of 592 

a gauging station is close to the regional envelope curve, the unit discharge qPREC-JK derived 593 

from the regional envelope curve for this station is similar to or lower than that of the index 594 

flood method. In contrast, the higher the difference between the regional envelope curve qPREC 595 

and the flood of record discharge qFOR for a gauging station, the higher the relative error of 596 

PREC-JK in comparison to the index flood method. This relationship has a correlation 597 

coefficient of 0.73 (see Fig. 7).  598 

 599 

4.6 Assessing the effect of the threshold of the heterogeneity measure 600 

The homogeneity of a pooling group is a fundamental assumption of PREC. The influence of 601 

the degree of homogeneity on PREC was determined by varying the threshold of the 602 

heterogeneity measure. In order to consider the influence of the threshold on PREC, the 603 

sensitivity analysis was repeated for stronger (H1 < 1) and weaker (H1 < 4) thresholds of the 604 

Hosking-Wallis test. Following the classification of Hosking and Wallis (1997), a threshold of 605 

H1 < 1 means that ‘possibly homogeneous regions’ (1 < H1 < 2) are excluded (Table 1). By 606 

increasing the threshold to four, also ‘slightly heterogeneous regions’ (2 < H1 < 4) are 607 

included. In this case only ‘strong heterogeneous regions’ (H1 > 4) are excluded. The 608 

influence of the relative number of homogeneous regions for different thresholds of the 609 

Hosking-Wallis test has been discussed by Cunderlik and Burn (2002). An increase of H1 610 

from 2 to 4 results in a larger number of homogeneous regions (Fig. 8). This is especially 611 
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relevant for those gauging stations, which were only seldom grouped in a homogeneous 612 

region when applying the strict definitions of homogeneity.  613 

A comparison of the mean absolute relative error for the three thresholds illustrates that an 614 

increase in the degree of heterogeneity leads to a higher mean absolute relative error for most 615 

of the gauging stations and for both pooling methods (Fig. 9, Table 7). In addition, there are 616 

more results of the mean absolute relative error for H1 < 4 because of the higher number of 617 

PREC realisations.  618 

Considering that the relative error was calculated with the index flood method as reference, it 619 

is necessary to mention that the index flood estimate is subject to a higher uncertainty due to 620 

the higher degree of heterogeneity.  621 

An overall performance indice was calculated as follows. All sites were selected which had at 622 

least four realisations for both pooling methods (see Table 7). The mean and the standard 623 

deviation of the absolute relative errors were calculated for all PREC realisations of these 624 

sites (n in Table 7). Both were averaged over the n sites. These performance indices increase 625 

with a higher degree of heterogeneity (Table 7). The result emphasises the relevance of the 626 

homogeneity criteria for PREC. The two performance indices are similar for the cluster 627 

analysis and RoI for the three thresholds of heterogeneity. 628 

 629 

5 Discussion 630 

The method of probabilistic regional envelope curves (PREC) derives a flood discharge and 631 

its recurrence interval for a homogeneous group of discharge gauges. One main assumption is 632 

its applicability in a homogeneous region in terms of the index flood method. 633 

By using different subsets of catchment descriptors and two pooling methods (cluster analysis 634 

and RoI), a large number of homogeneous regions, which fulfilled the heterogeneity measure 635 

of Hosking and Wallis (1993), was derived for the mountainous catchments in Saxony. In 636 
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contrast, the gauges located in the lowlands were mostly grouped in heterogeneous regions, 637 

which mean that the method of PREC could not be applied.  638 

The reliability of PREC was assessed by a cross-validation procedure and a comparison with 639 

the index flood method. For a better understanding of the cross-validation results, it is worth 640 

emphasising an important difference between the index flood method and the PRECs. The 641 

index flood method represents the mean flood behaviour in a homogeneous region by a 642 

regional growth curve. Under this assumption it is expected that there are very small 643 

differences between the at-site flood behaviour and the regional distribution function in a 644 

homogeneous region. In contrast, the regional envelope curve is governed by the highest 645 

flood of record in a homogeneous region. Under the assumption that the estimation of the 646 

flood of record is more uncertain than the estimation of the index flood, the PREC is more 647 

sensitive to gauging stations with a high difference of an at-site flood of record to PREC than 648 

the index flood estimation. 649 

The results of the PREC can be compared with a traditional at-site flood frequency analysis. 650 

The example of Dohna shows that most of the PREC realisations are close to the GEV 651 

distribution function (Fig. 10). This fact enhances the accuracy of the flood quantile estimates 652 

for high recurrence intervals. If there were large deviations between PREC and at-site flood 653 

frequency analysis, a more detailed consideration of the hydrologic situation at this gauge 654 

would be required. 655 

It is important to highlight an essential difference of the PREC in comparison to other 656 

regionalisation methods. The magnitude of the recurrence interval of a PREC is mainly 657 

governed by one data point, i.e. the pair of the maximum unit flood of record and its drainage 658 

area. Castellarin et al. (2005) emphasised that a discordant site might reduce the use of the 659 

PREC method, since the recurrence interval is governed by the largest standardised maximum 660 

flood.  661 
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In other flood regionalisation methods (e.g. index flood, multiple regressions) commonly all 662 

sites have the same influence or their influence is weighted according to a selected weighting 663 

scheme. Sites, which are closer to other stations in a real or physiographical space, have 664 

higher weights. Consequently, the effect of a discordant site could be reduced by weighting 665 

the sites according to their similarity to the considered site or by averaging the values for all 666 

sites of a region. However, in the PREC concept weighting or averaging of sites is not 667 

possible when deriving the intercept of the PREC. Thus, in the PREC concept, the site that 668 

determines the intercept, plays an exceptional role. Because of that, an appropriate 669 

construction of homogeneous pooling groups is extremely important for PRECs. 670 

The explicit estimation of a recurrence interval in the PREC scheme is another difference to 671 

traditional regional flood frequency methods. Whereas a target recurrence interval might be 672 

predefined in traditional approaches, the recurrence interval of PREC could only be 673 

approximately approached by the number of sites within a pooling group. 674 

 675 

6 Conclusion 676 

In this study the method of probabilistic regional envelope curves (PREC) was applied for the 677 

first time outside the original study area in Italy. It was shown that the transfer of this method 678 

to another region with different geographical conditions is possible. The goal of this paper 679 

was to quantify the influence of the pooling methods on PREC and to determine the 680 

sensitivity of PREC flood quantiles within different pooling groups. A combination of PREC 681 

and the RoI approach was introduced and compared with fixed homogeneous regions.  682 

The main outcomes of this study are: 683 

 684 

(1) The number of homogeneous regions strongly depends on the physiographic 685 

conditions of the catchment. The application of both pooling methods with different 686 
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candidate sets of catchment descriptors leads to a high number of homogeneous 687 

regions for the mountainous catchments and to a lower number for gauges in the 688 

lowlands and the eastern part of Saxony.  689 

(2) A sensitivity analysis illustrates that PREC flood quantiles change in discharge as well 690 

as in the assigned recurrence interval depending on the constitution of the pooling 691 

group. It is thus recommended to compare different subsets as demonstrated in this 692 

study instead of using only the best subset of predictions. 693 

(3) A leave-one-out jackknifing approach for ungauged conditions emphasises a similar 694 

relative error of the PREC results for both pooling methods (cluster analysis, RoI). An 695 

overall performance indice also affirms an increasing absolute relative error for 696 

different degrees of heterogeneity.  697 
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TABLES:  862 

Table 1 863 

Interpretation of the heterogeneity measure (Hosking and Wallis, 1993; Robson and Reed, 1999). 864 

Heterogeneity measure Interpretation Review 
< 1 Homogeneous Not required 

1 – 2 Possibly heterogeneous Optional 
2 – 4 Heterogeneous Desirable 
> 4 Strongly heterogeneous Essential 

 865 

Table 2 866 

 List of catchment descriptors. 867 

Abbreviation Catchment descriptors 
MAP Mean annual precipitation (mm) 
MAXDAY Maximum daily precipitation (mm) 
P50 Annual frequency of days with precipitation of more than 50 mm/d (%) 
MAX5DAY Maximum precipitation in 5 days (mm) 
PAMS Mean of the annual maximum series of daily precipitation (mm) 
ELEV Mean elevation of the catchment (m asl) 
SLOPE Mean slope of the catchment (%) 
RANGE_NORM Range of catchment elevation, normalised with the catchment size (10-3m-1) 
ARABLE Fraction of arable land coverage (%) 
URBAN Fraction of urban land coverage (%) 
MINING Fraction of mining activities (%) 
BEDROCK Fraction of bedrock areas (%) 
KF_LOW Fraction of low permeability areas (%) 
 868 
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Table 3 869 

 Selected subsets of catchment descriptors (CD) and the correlation coefficient (COR) to the unit index 870 

flood of all gauging stations. 871 

CD1 CD2 CD3 COR 
MAX5DAY ELEV RANGE_NORM 0.70 
MAX5DAY RANGE_NORM URBAN 0.69 
MAP MAX5DAY RANGE_NORM 0.69 
MAX5DAY RANGE_NORM  0.68 
MAX5DAY ELEV URBAN 0.68 
ELEV RANGE_NORM URBAN 0.66 
PAMS RANGE_NORM URBAN 0.64 
MAX5DAY ELEV  0.64 
ELEV RANGE_NORM  0.64 
MAP MAX5DAY URBAN 0.64 
MAP MAX5DAY  0.62 
MAP RANGE_NORM  0.62 
PAMS RANGE_NORM  0.62 
P50 RANGE_NORM URBAN 0.61 
MAX5DAY ARABLE URBAN 0.61 
MAXDAY RANGE_NORM URBAN 0.61 
MAX5DAY URBAN BEDROCK 0.61 
MAX5DAY PAMS URBAN 0.61 
RANGE_NORM URBAN BEDROCK 0.60 
RANGE_NORM BEDROCK  0.60 

 872 

Table 4 873 

 Results of heterogeneity measure and of PREC method for the best subset of catchment descriptors, 874 

derived by cluster analysis for the seven-cluster solution. 875 

Cluster 1 2 3 4 5 6 7 
Number of gauges 7 24 10 18 2 8 20 
H1 0.6 0.8 7.8 1.5  -1.4 9.3 
Number of observations 277 1471  1326  498  
Effective number of observations 160 483  403  202  
Recurrence interval [a] 320 966  805  403  

 876 

Table 5 877 

Number of sites below and above the threshold (H1=2) of the heterogeneity measure for the best subset of 878 

catchment descriptors constructed by the Region of Influence approach using different thresholds of the 879 

Euclidean distance. 880 

Threshold H1 <  2 H1 > 2 Sum 
0.5 28 22 50 
1 27 49 76 
2 14 74 88 

 881 
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Table 6 882 

Number of homogeneous regions derived by cluster analysis and Region of Influence (RoI). 883 

Number of clusters H1 < 2 H1 > 2 H1 < 2 [%] 
3 26 34 43.3 
4 35 44 44.3 
5 48 47 50.5 
6 58 55 51.3 
7 67 58 53.6 
    
RoI-threshold    
0.5 575 493 53.8 
1 628 1002 38.5 
2 212 1539 12.1 

The H1-test was not applied for pooling groups with less than four sites. 884 

 885 

Table 7 886 

Overall performance indices of the jackknifing procedure for both pooling methods and the different 887 

thresholds of the heterogeneity measure. 888 

 Cluster analysis Region of Influence 
H1 < 1: n = 57   
Mean of the mean absolute relative error 0.54 0.54 
Mean of the standard deviation of absolute relative error 0.21 0.26 
H1 < 2: n = 70   
Mean of the mean absolute relative error 0.81 0.69 
Mean of the standard deviation of absolute relative error 0.36 0.40 
H1 < 4: n = 75   
Mean of the mean absolute relative error 1.12 0.88 
Mean of the standard deviation of absolute relative error 0.56 0.53 

n = Number of sites with at least four PREC realisations 889 

 890 
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FIGURES 891 

 892 

 893 

Fig. 1: Example of a Regional Envelope Curve. 894 

 895 



 39

 896 

Fig. 2: Study area: Elevation above sea level in the federal state of Saxony, Germany, and 897 

available discharge gauging stations coloured by the unit flood of record. 898 

 899 

 900 
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 901 

Fig. 3: Fraction of homogeneous regions (H1<2) [%] by cluster analysis and Region of 902 

Influence for the gauging stations in the study area. 903 
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 904 

 905 

Fig. 4: All PREC realisations for the gauge Dohna in homogeneous regions derived by cluster 906 

analysis (left) and RoI (right). 907 

 908 

 909 

Fig. 5: Pairs of discharges and recurrence intervals for all PREC realisations of the gauge 910 

Dohna. 911 

 912 
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 913 

Fig. 6: Relative error of the PREC realisations for the two pooling methods cluster analysis 914 

(top) and Region of Influence (bottom) for the 89 sites of the study area. The boxplot 915 

edges are formed by the 25th and 75th percentiles. Outliers are illustrated with red 916 

crosses. 917 
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 918 

 919 

Fig. 7: Relative error of PREC-JK versus the distance of the unit flood of record qFOR to qPREC 920 

for pooling groups identified by cluster analysis and the Region of Influence approach. 921 

 922 
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 923 

 924 

Fig. 8: Relative number of homogeneous regions for different thresholds of heterogeneity for 925 

cluster analysis and Region of Influence. 926 

 927 
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 928 

Fig. 9: Mean absolute relative error of PREC-JK for both pooling methods (cluster analysis, 929 

Region of Influence (RoI)) using different thresholds of the heterogeneity measure H1. 930 

The mean absolute relative error is illustrated for sites with at least four PREC-JK 931 

realisations. 932 

 933 

 934 
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 935 

Fig. 10: Comparison of PREC results of both pooling methods with at-site flood frequency 936 

analysis (GEV) for Dohna. 937 

 938 


