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S U M M A R Y
An increasing number of regional inversions of gravity and magnetic field data have recently
been computed, some based on satellite and ground data, some on satellite data only. In each
case it is important to quantify the errors resulting from the confined data region or the satellite
parameters. In this study we investigate the error distribution of regional inversions for scalar
gravity and vector geomagnetic data from satellite data only. We include the effects of satellite
altitude, size of the data region, signal-to-noise ratio and spherical harmonic degree of an
a priori global field model. We evaluate our results on the basis of a regional inversion of the
Earth’s magnetic field.
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1 I N T RO D U C T I O N

Since the satellite era the amount of available potential field
data has increased tremendously and a huge variety of geomag-
netic and gravity field models have been presented. Recent global
models of the geoid derived from satellite data are, for example
EIGEN-CHAMP03S (Reigber et al. 2004) from CHAMP data or
EIGEN-GRACE02S (Reigber et al. 2005) and EIGEN-GRACE-
GL04C (Förste et al. 2008) from GRACE and LAGEOS data. From
these models regional features of the gravity field have been used
to study mass changes over large river basins (Papa et al. 2008) or
on continents (Schmidt et al. 2006), and also ice sheet melting over
Greenland (Fleming et al. 2004) or Antarctica (Sagen et al. 2007).
Recent global models of the magnetic field derived from satellite
data only are, for example CHAOS (Olsen et al. 2006) and MF6
(Maus et al. 2008). When the magnetic field is modelled on a global
scale, the determination of spherical harmonic coefficients tends to
become unstable for higher degrees (Lesur et al. 2008). By regular-
ization they may be determined up to degree 90 (Maus et al. 2006).
Maus et al. (2008) were able to calculate a model up to spherical
harmonic degree 120 by means of careful data selection, extensive
correction, filtering and line levelling.

When investigating regional structures in great detail it is useful
to concentrate the inversion on a bounded region. One of the im-
portant contributions in this field was done by Simons & Dahlen
(2006). They show the connection of this problem to the Slepian’s
spaciospectral localization problem and expand the source field in
a truncated Slepian function basis set.

Regional modelling allows to reduce the number of parameters
in the inversion (Thébault et al. 2006) and to avoid problems of
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inversion with globally supported basis functions (such as spheri-
cal harmonics). Thébault (2006) calculated a global magnetic field
model from regional patches derived from satellite- and ground-
based data. Regional gravity models have been presented, for ex-
ample by Mayer-Gürr et al. (2006) and Schmidt et al. (2007). Ilk
et al. (2007) stated that the heterogeneity of the gravity field cannot
be taken into account by globally supported basis functions and
thus modelled only long and medium wavelengths by spherical har-
monics and refined that field locally using space localizing basis
functions. Moreover, the polar gap, present in all satellite data sets,
complicates global inversions. Simons & Dahlen (2006) have also
solved the polar gap problem, providing a very efficient algorithm
for this situation present in all satellite surveys.

It is the aim of this study to estimate the magnitude and distribu-
tion of errors arising from regional inversion of satellite data. The
modelling errors are investigated depending on satellite altitude,
size of the data region, magnitude of measurement noise and de-
gree of an a priori global internal field model. The errors are then
compared to results of existing regional inversions.

This paper starts with a short overview of the theoretical back-
ground of regional modelling in Section 2. Section 3 deals with the
error distribution of global data coverage to demonstrate two funda-
mental error sources in data inversion. Section 4 describes the data
used for the numerical experiments, and in the following section the
results are presented and discussed.

2 T H E O R E T I C A L B A C KG RO U N D

2.1 General considerations

In regional inversion we need to consider the interplay of three
ingredients. On the one hand, there is the bounded modelling region
on the Earth’s surface where the potential field has to be computed.
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Error distribution in regional inversion 1429

On the other hand, we need to consider the data region, based on
which the regional inversion is computed. In addition, we need to
take into account a global model as prior information for the regional
inversion. In the following all field contributions are assumed to be
of internal origin.

In this paper we work in a Bayesian framework. The prior infor-
mation about the potential field, �, is as follows. We first suppose
that � is a potential field exterior to a sphere � = {x2 + y2 + z2 =
R2} that contains all sources of the potential, so � is harmonic:

�� = 0 in ext �,

where � = ∇2 denotes the Laplacian. We further assume that there
is a bounded quadratic form, a generalized energy, Q such that

Q(�) < ∞.

In the terminology of spline modelling, this can be seen as an
a priori smoothness assumption about �. In Bayesian inversion, Q
is related to the prior probability of the field through

P(�) � exp(−Q(�)).

The second piece of prior information assumes that an a priori
global internal field �0 is perfectly known. The whole field can then
be written as

� = �0 + �1, (1)

with �1 being Q-orthogonal to �0:

Q(�0, �1) = 0.

As a consequence we can write

Q(�) = Q(�0) + Q(�1). (2)

The a priori model is improved through measurements. Supposing
the field is known at the radius, R, of the sphere �, the potential at
a point x at altitude h is given by Freeden & Michel (2004)

u(x) =
∫

�

P(x, ξ ) �(ξ ) d�, (3)

where

P(x, ξ ) = 1

4π

R((R + h)2 − R2)

(R2 + (R + h)2 − 2R(R + h) cos γ )
3
2

(4)

is the Poisson kernel with γ the angle between x and ξ , and �

the potential just above the surface of the sphere �. Fig. 1 shows
Poisson kernels for different satellite altitudes. The lower a satellite
is the higher and narrower is the corresponding Poisson kernel. For
h → 0, the Poisson kernel tends to a Dirac delta function.

We now consider the case when the data are only known in a
circular region D at altitude h (cf. Fig. 2). Satellite measurements at
the altitude h can be described by

�
η

h = K� + ε, (5)

where ε is the noise of observations, modelled as Gaussian dis-
tributed noise with standard deviation η. The operator K is defined
differently for the scalar and vector case and will be denoted K s and
K v, respectively, if the distinction is important, and K if the equa-
tion demonstrates general facts that apply to both cases. In eq. (5),
K is defined as K s = χD P in the scalar case and K v = χD∇ P in
the vector case, where χD is the characteristic function of the data
region and ∇ = (− ∂

∂θ
eθ ,

∂

∂φ
eφ, − ∂

∂r er), so as to obtain vector data
in the NEC-system (i.e. basis vectors pointing in the North, East
and Centre direction). From eqs (1) and (5) follows

�
η

h = K (�0 + �1) + ε.

Because we assume the global model, �0, to be perfectly known,
we define a simulated measurement where the large scale a priori
field contribution, �0, is removed:

�̃
η

h = �
η

h − K�0 = K�1 + ε. (6)

Thus, the simulated measurements contain only small-scale field
signals, �1, and measurement noise. With the assumption about the
noise, ε, follows that

E(ε) = 0, E(ε(x)ε(y)) = η2δ(x − y).
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Figure 1. The Poisson kernel for different satellite altitudes (200 km—solid line, 350 km—dashed line, 500 km—dotted line, 800 km—dash-dotted line).
Kernels of large satellite altitudes are broader than those of low altitude. Thus, for high altitudes, the contribution of distant sources to the value of the potential
is greater than for small altitudes where the Poisson kernel is more localized.
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Figure 2. The potential field at the surface of the sphere � is assumed to
be perfectly known. It is upward continued to the satellite altitude, h, and
confined to a spherical cap (data region, D). In this region, the measurements
are simulated. The simulated data are inverted in the modelling region and
then compared to the original data. The dark grey region in the left figure is
the part of the modelling region that is useful for modelling, that is where the
errors do not exceed a certain level. The appropriate thickness of the light
grey boundary region depending on modelling parameters is subject of this
study. In the following, the error values will be calculated as RMS values in
annuli around the cap centre and will associated to the mean annulus radius.
This is depicted in the right part of the figure.

In principle, the operator K is invertible. Indeed, because �̃0
h is

a harmonic function, it is sufficient to know it in an arbitrary small
neighbourhood of a given point. However, the inverse is unbounded
and therefore in the presence of noise the inversion becomes un-
stable. The problem is ill posed. We thus need to regularize the
reconstruction. One possibility of regularizing comes from spline
modelling where the regularizing family of operators

Lλ = (K T K + λQ)−1 K T

is considered. Q is the Q-energy operator in matrix notation. This
leads to Tykhonov type of regularizing.

In this paper, an alternative regularizing family based on the
singular value decomposition (SVD) of the operator K is considered:

K =
∞∑

n=0

σn|Un〉〈Vn|, (7)

with Vn and Un column vectors of the matrices V and U . They
form orthonormal bases in the domain and range of the operator
K, respectively. The 〈·| and |·〉 operators are the bra-ket operators
as used in quantum mechanics (see, e.g. Dirac 1982). The σ n are
the corresponding singular values of K. We can suppose that the
singular values are ordered such that

σn ≥ σn+1.

We introduce the regularizing family for the inverse of K as

L N =
∑
n≤N

σ−1
n |Vn〉〈Un| (8)

with N being a cut-off for the summation of weighted basis func-
tions. This is the truncated SVD (TSVD) approach as described, for
example, by Xu (1998). Let us note that in the continuous case this

is the truncated Slepian function approach described by Simons &
Dahlen (2006). Because K is invertible all σ n �= 0 and the earlier
expression is well defined. Clearly,

L N K�1 → �1 as N → ∞, (9)

so in case of noise free measurements, LN can be used to approx-
imate arbitrarily well the field �1 on the Earth’s surface from the
regional simulated measurements K�1. If the measurements are
contaminated by noise, an optimal working point, N opt, has to be
chosen. The optimality is based on a cost function d that measures
the quality of the reconstruction.

Let �̃N = L N �̃
η

h be the inverted potential field at the surface of
�. We can use the distance measure definition

d(�1, �̃N )D = ||�1 − �̃N ||,

where ||�̃||2 =
∫

D
|�̃|2d� (mean squared error),

(10)

for the average quality of the approximation in the region D and
define

d(�1, �̃N )x = |�1(x) − �̃N (x)|,
for the absolute error at a fixed point x. Because d satisfies the
triangle inequality, we can write

d(�1, �̃N )D = d(�1, L N K�1 + L N ε)D

≤ d(�1, L N K�1)D + d(0, L N ε)D . (11)

There is a trade-off between the quality of approximation (as given
by the first term) and the amplification of the noise (as given by the
second term). For fixed prior information and fixed measurement
geometry, the optimal choice for N depends on the noise level. It has
to be determined such that the expected value of the cost function
becomes minimal

Nopt = argmin E d(�1, L N (K�1 + ε)). (12)

The inequality (11) enables us to compute an upper bound for the
error. The estimation variance (i.e. the expected variance of the
amplified noise) at the location x can be calculated explicitly:

Var (L N ε)(x) =
∑
n≤N

σ−2
n |Vn(x)|2η2. (13)

A second error, the bias or reconstruction error (i.e. the error due
to the truncation of the inversion in eq. 8) has to be approximated
through numerical tests. In the following these tests are described.

2.2 Setup and method

The inversion errors are evaluated in a frame shown in Fig. 2.
We suppose the potential field is perfectly known at the surface
of a sphere � with the radius R. The potential �1 is then upward
continued to satellite altitude h and confined to the data region (in
the vector case the derivative is also calculated) using eq. (5). Then
measurement noise is added.

Because our aim is to obtain predictions for the mean errors, we
have performed Monte Carlo simulations consisting of the following
steps:

(i) synthesis of global data according to Kaula’s rule (scalar grav-
ity data) or Mauersberger-Lowes spectrum (vector magnetic data)
at the surface of �,

(ii) upward continuation of the potential data, calculation of the
derivatives (vector data) and confinement to the data region,
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(iii) addition of noise,
(iv) regional inversion,
(v) calculation of the residuals to the original data (scalar data)

or their derivatives (vector data).

Then we calculate the RMS of the residuals within annuli around the
cap centre to obtain a radial dependence of the expected inversion
error.

3 E R RO R E S T I M AT I O N : T OWA R D S
T H E O P T I M A L I N V E R S I O N C U T - O F F

For global data, the error computations can be carried out explicitly
to some extent. This case is described in detail because the relevant
error sources also appear in regional inversions, superposing effects
due to the confined data region.

When inverting potential field data globally on a sphere there
are two fundamental sources of error: amplification of noise or
variance (e.g. measurement noise, unmodelled sources, etc.) and
a reconstruction error due to the truncation of the basis functions
series (bias). In the following, these two kinds of errors as well
the influence of the number of measurements at satellite level are
investigated and estimated.

3.1 Noise amplification (estimation variance)

A potential at the surface of a sphere is usually expressed as a
truncation or filtering of an infinite series of weighted basis func-
tions. A suitable family of functions are surface spherical harmonics
(Freeden & Michel 2004). Let r = (r , θ , ϕ), of length ||r || = r ,
be a vector that describes the spatial position, and let r̂ = (θ, ϕ), of
length ||r̂|| = 1, denote the positions of all points restricted to the
unit sphere, �. The complete spherical harmonic representation of
a (potential) field, �, has the form (Blakely 1995)

�(r) = R
∞∑

l=0

l∑
m=−l

(
R

r

)l+1

cl,mYl,m(r̂), (14)

where Y l,m are the surface spherical harmonics of degree l and
order m and cl,m the corresponding weight factors or expansion
coefficients. When R denotes the Earth’s radius and R + h the
altitude of observation, we can thus write

�(r) = R
∞∑

l=0

l∑
m=−l

(
R

R + h

)l+1

cl,mYl,m(r̂). (15)

Let us now collect the spherical harmonic coefficients of the true
potential at the Earth’s surface in a singly indexed column vector

� = (�1, . . . , � j , . . . , �M )T,

and the potential measured at satellite altitude in the column vector

�h = (
�h

1, . . . , �
h
i , . . . , �

h
N

)T
,

where �h
i = �h(ri) for a discrete set of points with i = 1, . . . , N .

The matrix operator mapping a set of spherical harmonics at Earth’s
surface to measurements at satellite altitude has the elements

Ki j =
(

R

R + h

)l( j)+1

Yl( j),m( j)(r̂i). (16)

It describes the contribution of the jth mode of the potential at
Earth’s surface to the ith field value at satellite altitude. The degree
and order of the spherical harmonics are functions of the index j:

l( j) = floor(
√

j − 1), m( j) = j − l2 − l − 1 (17)

where floor (n) is the largest integer not greater than n. The least
squares solution of the discretized problem (6) is

cest = (K T K )−1 K Td, (18)

where d is the vector of measurements at satellite altitude and cest

the vector with inverted spherical harmonic coefficients. In this
expression

(K T K ) j j ′ =
(

R

R + h

)l( j)+l ′( j ′)+2 N∑
i=1

Yl( j),m( j)(ri)Yl ′( j ′),m′( j ′)(ri).

Regarding the sum as a Riemann-sum it can be approximated by an
integral:

(K T K ) j j ′ ≈
(

R

R + h

)l( j)+l ′( j ′)+2

× N

4π R2

∫
�R

Yl( j),m( j)(ri)Yl ′( j ′),m′( j ′)(ri) d�

and using the 4-π orthogonality of the spherical harmonics we
obtain

=
(

R

R + h

)2l+2

Nδ j j ′ . (19)

With this, the inverse of this matrix has the elements

(K T K )−1
j j ′ ≈

(
R + h

R

)2l( j)+2
δ j j ′

N
. (20)

Inserting eq. (16) in the expression K Td and using eq. (20) the esti-
mate for the j th spherical harmonic coefficient in eq. (18) becomes

cest
j =

(
R + h

R

)l+1
δ j j ′

N

N∑
i=1

Yl,m(ri)d(ri).

We will from now on exchange the vector subscript j with the
subscripts for the degree and order, l and m, respectively. They are
transformed with the relation (17). Writing now the measurements
di as a sum of the true value and a measurement error this yields

cest
l,m =

(
R + h

R

)l+1 1

N

N∑
i=1

Yl,m(ri) d0(ri)

+
(

R + h

R

)l+1 1

N

N∑
i=1

Yl,m(ri) εi . (21)

The first part is the reconstruction of the true spherical harmonic
coefficient. The second part is the amplified noise. We are interested
in the magnitude of the second part only. Recalling the rules for
computing variances (Wilcox 2001):

Var(αA + β B) = α2Var(A) + β2Var(B),

if α, β ∈ R and A and B are statistically independent random vari-
ables, its variance is

Var
(
cerr

l,m

) =
(

R + h

R

)2l+2 1

N 2

N∑
i=1

Y 2
l,m(ri) Var(εi )

and approximating the sum by an integral it becomes

=
(

R + h

R

)2l+2 1

N 2

N

4π (R + h)2

∫
�R+h

Y 2
l,m(r)η2 d�

=
(

R + h

R

)2l+2
η2

N
(22)
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As there are 2l + 1 modes for the spherical harmonic degree l the
variance per degree is

Var
(
cerr

l

) = (2l + 1)

(
R + h

R

)2l+2
η2

N

and the total variance of the inverted noise is

E1(M) = Var (cerr) = η2

N

M∑
l=0

(2l + 1)

(
R + h

R

)2l+2

. (23)

Written as an integral this is approximately

E1(M) ≈ η2

N

∫ M

0
(2l + 1)

(
R + h

R

)2l+2

dl.

3.2 Reconstruction error (bias)

In practice, a spherical harmonic series cannot be computed to in-
finity. The inversion has to be regularized, for example by filtering
or truncation. When truncating the spherical harmonic field repre-
sentation (cf. eq. 14) after degree M the remainder is

�̄ =
∞∑

l=M+1

l∑
m=−l

cl,mYl,m .

The total power of �̄ is

E2(M) =
∞∑

l=M+1

c2
l ,

where cl is the total spectral power of degree l.

3.2.1 Gravity field

In case of the gravity field, using Kaula’s rule of thumb (Kaula
1966), the gravity spectrum can be represented as in Fig. 3, and we

can write

cl√
2l + 1

= C

lγ
(24)

as a degree variance model. Then the total power can be written as

E2,G(M) =
∞∑

l=M+1

(2l + 1) C2

l2γ

with constants C = 10−5 m2 s−2 and γ = 2 for geodesy. This sum
can be regarded as a Riemann-sum and be approximated by the
integral

E2,G(M) = C2

∫ ∞

M+1

2l + 1

l4
dl.

Thus, for the gravity field the total error, depending on the truncation
level M , can be written

EG(M) = E1(M) + E2,G(M)

= η2

N

∫ M

0
(2l + 1)

(
R + h

R

)2l+2

dl + C2

∫ ∞

M+1

2l + 1

l4
dl.

(25)

3.2.2 Magnetic field

For the magnetic field, the spectrum is different. Considering only
the internal sources, two contributions, one from the core and one
from the crust have to be taken into account (Fig. 3). The core field
spectrum has, due to its deep source, a much steeper slope than the
spectrum of the crustal field. Lowes (1974) approximated the power
spectrum of the internal field by

c2
l = 4.0 × 109(4.5)−l + 150 × exp(−0.004 l). (26)

The total reconstruction error is then

E2,B(M) =
∞∑

l=M+1

4.0 × 109(4.5)−l + 150 × exp(−0.004 l), (27)
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Figure 3. Kaula spectrum of gravity (solid line, and left scale) and Mauersberger-Lowes spectrum of the magnetic field (dotted line and right scale). The
magnetic field spectrum has contributions from two sources: the steep part of the spectrum results from core contributions, the shallow part from crustal
sources.
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Figure 4. Inversion error for gravity field recovery for several noise levels. The inversion error is the sum of omission error (decreasing with increasing degree
of the SH series) and commission error (increasing with increasing degree of the SH series). The minimum of this error is the optimal truncation point of the SH
series with respect to the total error. Noise variance levels in this plot are 10−18 m4 s−4 (solid line), 10−20 m4 s−4 (dashed line) and 10−22 m4 s−4 (dash-dotted
line). The bin size is 2◦ × 2◦. This is the bin size also used in the numerical experiments in Section 5.

yielding an inversion error of

EB(M) = E1(M) + E2,B(M)

= η2

N

∫ M

0
(2l + 1)

(
R + h

R

)2l+2

dl

+
∫ ∞

M+1
4.0 × 109(4.5)−l + 150 × exp(−0.004 l) dl.

(28)

The two error types have an antipodal dependence on the degree
of signal reconstruction. The noise amplification grows exponen-
tially with increasing degree of spherical harmonics whereas the
reconstruction error decreases exponentially. The sum of these two
errors has a minimum, which is the optimal truncation point for an
inversion. For a given field type, the position of the optimal working
point depends on the satellite altitude, the number of measurements
and the noise amplitude. Fig. 4 shows an example of the inversion
errors for a satellite altitude of 800 km and three different noise
amplitudes. Indeed, the inversion error is indicated for the gravity
field, with noise variance levels of 10−18 m4 s−4, 10−20 m4 s−4 and
10−22 m4 s−4. For the large wavelength part (here up to SH degree
50), there are no differences in the evaluated RMS error. However,
for SH degrees higher than 50, the amplified noise is the dominating
error. For smaller noise levels, the minimum of the error curve is
located at greater truncation degrees. Fig. 5 shows the position of
the optimal working point (i.e. the inversion cut-off with minimal
inversion error) depending on the bin size of the grid on which
measurements are taken for three different noise levels in the scalar
case.

3.3 Boundary effects in regional modelling

In addition to the errors mentioned earlier, edge effect errors have to
be considered when the data base is not global. The Poisson kernel
has, in general, a global support (cf. Fig. 1). As the degree of local-
ization depends on the satellite altitude, with localization increasing

with decreasing altitude, the contribution of unmodelled sources
from outside the data region increases with increasing satellite alti-
tude. Fig. 6 shows the fraction of the Poisson kernel lying outside
the data region—thus giving zero contribution in the inversion—
depending on the distance to the boundary. It is the integral of the
Poisson kernel over the complement of R divided by the integral of
the Poisson kernel over the whole sphere:

f (x) =
∫

�\R Ph(x, ξ ) d�∫
�

Ph(x, ξ ) d�
.

Assuming a signal with energy equally distributed over the sphere
this can be seen as the part of the signal that cannot be reconstructed
in a regional inversion, however perfect the inversion scheme is.

4 DATA

4.1 Scalar potential data

When modelling the error distribution for the inversion of a scalar
potential (e.g. the gravity potential), we start with synthetic data on
a 2◦ × 2◦ grid at the surface of the sphere �. The synthetic data
are produced by a series of spherical harmonics from degree 15
to 70, the coefficients having zero mean and a standard deviation
following the Kaula rule (cf. eq. 24). Using eq. (5), measurements
at the satellite altitude are simulated.

With the SVD of the operator K s it is possible to reconstruct a
signal at the sphere � from the simulated measurements at satellite
altitude (cf. eq. 9). For the scalar data approach, this yields a scalar
potential at � which can be compared directly to the original data.

4.2 Magnetic field vector data

In planetary magnetism, the type of data to deal with are vector
data, that is not the potential itself but the gradient of the potential:

B = −∇V,
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Figure 6. Ratio between the integral of the Poisson kernel over the complement of the data region and its integral over the whole sphere when the kernel
is centred at some point inside the spherical cap. This represents the part of the contribution at a given location inside the cap that cannot be reconstructed
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where V is the geomagnetic potential and B the magnetic flux
density. Therefore, the procedure of estimating errors in mag-
netic field inversion differs from the procedure for gravity data
inversion. In case of vector data we start with a set of spher-
ical harmonic coefficients at the Earth’s surface level that rep-
resent the potential (cf. eq. 14). The spherical harmonic coeffi-
cients have zero mean and a standard deviation according to the
Mauersberger–Lowes spectrum (cf. eq. 26). The operator K v that
we want to analyse, maps the spherical harmonic coefficients to the
gradient of the potential at satellite altitude restricted to the data

region:

Kv : cl,m �→ χD(r )

(
R

R + h

)l+1

cl,m∇Yl,m(r).

Here χD is the characteristic function of the region D, where we
take the measurements. Using eq. (9) it is possible to invert the
synthetic data and obtain a set of new Gauss coefficients at the sphere
surface. To estimate modelling errors, we compute the gradients of
the geomagnetic potential given by the sets of synthetic and inverted
Gauss coefficients and analyse the residuals.

C© 2010 The Authors, GJI, 181, 1428–1440

Journal compilation C© 2010 RAS



Error distribution in regional inversion 1435

In both cases, for scalar and vector data, it is necessary to solve
eq. (12) to find the optimal working point, N opt, for the operator LN

in eq. (9). To find that point we calculate the RMS error over the
entire spherical cap after each inversion step. The optimal working
point (where the error minimal) is reached when that RMS error
reaches its minimum.

5 R E S U LT S

5.1 Error estimation

First, we have analysed the role of the a priori global model degree
(cf. eq. 6) on the errors in regional modelling of scalar data. We have

considered modelling regions of varying size, from 10◦ to 30◦ radius
and a fixed satellite altitude of 350 km. We have supposed internal
field models up to degree 5, 10, 15 and 20. Although global models
exist up to much higher degrees, it is only the first few coefficients,
that are well constrained so that they can be considered to be well
known. Because we want to analyse the incremental information
gained by using data on regional scales, we can use these baseline
models.

Fig. 7 shows, for fixed modelling region radius of 30◦, the inver-
sion error distribution, calculated as RMS error in annuli centred at
the spherical cap centre. The error decreases with increasing global
model degree, but the general shape of the residual distribution is
similar in all cases. This is a superposition of two effects. One the
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Figure 7. Inversion errors for different degrees of a priori known global models in gravity field recovery without noise. Global models are truncated at degree
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one hand, wavelengths larger than the radius of the chosen modelling
region cannot be sampled adequately and large inversion errors ap-
pear. Thus, excluding large wavelength data reduces the inversion
error. On the other hand, the absolute contribution to the potential
field decreases with increasing degree of the basis functions because
the spherical harmonic coefficients follow the Kaula rule (cf. eq. 24)
and Fig. 3 for the power spectrum of the synthetic data. Thus, the
total amplitude of the synthetic signal decreases when considering
higher degree global models and so does the inversion error.

The next test investigate the influence of the data region size.
With fixed satellite altitude, degree of global model and noise level,
the cap radius of the data region is varied between 10◦ and 35◦

for scalar data and between 10◦and 45◦ for vector data. As shown
in Figs 8 and 9, the error decays from the boundary of the mod-
elling region towards the centre. It turns out that the thickness of
the boundary region and the maximum error at the boundary are
essentially independent of the modelling region radius, provided the
region is larger than the longest wavelength present in the data.

It is interesting to zoom on the maximum error for each region
radius. Fig. 10 shows the inversion errors at the cap boundary for
different region radii with the same data spectrum (i.e. main field
truncated at degree 15). With a data region large enough, the maxi-
mum error at the boundary saturates.

The boundary region could also be defined with respect to a
desired accuracy that is to be reached in the remaining modelling
region. In case of properly high-pass filtered data, the size of a
boundary region defined this way does not change with data region
size as can be seen in Fig. 11. It shows the inversion errors data
regions with cap radii varying between 20◦ and 45◦. The global
model truncation is degree 15 in all cases, the simulated data are
noise free. The error values are printed depending on the distance
of the annulus to the boundary (cf. Fig. 2).

On the other hand, the size of boundary region depends on the
satellite altitude. Fig. 12 shows the modelling error for a fixed data
region size of 30◦ radius and several satellite altitudes. The noise
amplification increases with altitude (cf. eq. 22). For lower satellite
altitudes, the inversion errors decrease more quickly from the cap
boundary towards the centre. This is an effect of the shape of the
Poisson kernel varying with altitude (cf. Fig. 1): it is narrower for
lower altitudes and thus influences of distant sources on the potential
at a certain point are smaller than for high satellite altitudes where
the kernel is broader.

In a last series of tests, we are interested in the noise amplification
distribution within the modelling region. With fixed data region
size and satellite altitude, the variance of the noise added at the
satellite level is varied. The variance of the Gaussian distributed
noise varies between 0.1 and 5 nT for the vector data. Fig. 13 shows
the error distribution for several noise levels. They all show the
same characteristics and differ only in magnitude proportional to
the noise level at satellite altitude.

5.2 Regional modelling

Another aim of this study is to compare the errors predicted in the
tests to regional models of the magnetic field to estimate which of
the features in the inversion are justified and which lie below the
noise level. As, currently, there are no available regional magnetic
field models based on satellite data only, we compute our own re-
gional model of the magnetic anomaly field using the localized basis
functions described by Lesur (2006). This approach is a predecessor
of the harmonic splines used by Geese et al. (2010). The harmonics
splines have also been used by Shure et al. (1982) in modelling the
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Figure 9. Inversion error for different data region radii for the noise free
vector data case; top panel: X-component, middle panel: Y-component,
bottom panel: Z-component of vector data. The residuals are RMS values
over annuli around the cap centre, the modelling region radii vary between
10◦ and 45◦. Global model degree is 15.

geomagnetic field at global scale. As an example region we choose
the Australian continent and invert satellite data in spherical cap of
radius 20◦, centred at 130◦E, 20◦S. Prior to the inversion we remove
an internal field model (GRIMM) of spherical harmonic degree 16.

After the model calculation, the regions where the absolute field
values are smaller than the predicted error at the same location are
eliminated from the maps. For error prediction we use the error
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profiles calculated earlier in this study for satellites with 500 km
altitude and 5 nT noise level. Features with absolute field values
larger than the error prediction are significant, those with smaller
absolute values are indistinguishable from amplified noise. Fig. 14
shows the comparison of maps for the three field components before
and after removing the features with low magnitude. It reveals that
all the major features of the inversion have significant amplitudes.
Only minor parts near the boundary are cut out or the shape of some
features is not surely determined. In the central region, the removed
parts are basically the transitions between regions with opposite
signs. This indicates whether there is great uncertainty in the shape
of the features (small transition zone) or not (broad transition zone).

6 D I S C U S S I O N A N D C O N C LU S I O N S

In this study, we have investigated the role of several parameters
on errors in regional inversion of potential fields, such as satel-
lite altitude, size of the data region, noise level, and degree of an
a priori internal field model. There are several types of errors in
potential field inversion, each depending on a different parameter
or a combination of them. The error types are noise amplification,
reconstruction errors and edge effects due to the localized data
base. The reconstruction error does not depend on the investigated
parameters but only on the truncation point in the signal reconstruc-
tion. The amplified noise in the inverted field is influenced by the
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measurement noise level and the satellite altitude. The latter is also
the main influencing factor for error at the boundary and its decay-
ing behaviour towards the centre of the model region. The internal
field model degree is only important in choosing its value such that
the longest wavelength in the data is not larger than the model region
radius.

The general shape of the residual distribution over the mod-
elling region is equal for all numerical tests throughout this study.
It shows smallest residuals in the central region and an exponential
like growth towards the boundaries. The investigated parameters
influence the residual level and the steepness of the curve towards
the boundaries.

The degree of an a priori internal field model is important for
the analysis of errors because it determines the largest wavelength
present in the available data. This wavelength must be smaller than
the radius of the data region to be able to properly represent the
field within the confined region. Larger wavelengths are not well
restrained and result in high inversion errors.

The satellite altitude influences the error amplitude and the steep-
ness of the radial dependence, especially near the cap boundaries.
For greater satellite altitudes, noise is amplified more strongly and
the error curve is shifted upwards. Secondly, with increasing satel-
lite altitude the Poisson kernel becomes broader and thus the de-
pendence of an inverted value on data values outside the data
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Figure 14. Regional inversion of the magnetic anomaly field over Australia: North, East and Centre components from top to bottom. The left panels show
the raw inversion over the full data region. The right panels show the remaining features after removing those with a magnitude below the noise level. The
used error prediction curve has the following parameters: satellite altitude: 500 km, noise level: 5 nT. Near the edges there are minor features with amplitudes
smaller than the noise level or where their shape is only poorly determined.

region increases. Because there is no information about the field
outside the data region, the error increases with increasing satellite
altitude.

The noise level at satellite altitude influences the error ampli-
tudes. The general shape of the error curves is not changed for
different noise levels. They are shifted upwards towards greater
errors for greater noise amplitudes. When investigating the depen-
dence on the data region radius it turned out that the error decay
from the boundary towards the centre of the data region is similar
for different radii, provided the radii are greater than the minimum
wavelength in the used data. Thus, the width of the boundary region
needed to achieve a certain accuracy in the modelling region does
not depend on the data region radius.

The regional inversion calculated in order to verify whether or
not the inverted features are significant, i.e. larger than the expected
error at that location, revealed that most of the prominent features
lie above the noise level. Nevertheless near the boundaries there
are parts of the inverted field that have smaller amplitudes than the

amplified noise or are at least not well constrained in their shape.
Thus they must be removed from the eventual inversion by the
choice of a suitable boundary region. Here we used satellite data
only, so when ground based data are also used in an inversion the
accuracy should increase and features existing in the data should be
better described. The results of this study could be very beneficial in
regional inversions of gravity data provided by the newly launched
GOCE mission or of magnetic data expected from the future Swarm
mission.
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