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S U M M A R Y
We study the relations between rock fracturing, non-linear deformation and damage- and
stress-induced anisotropy of seismic waves by comparing theoretical predictions of a damage
rheology model to results of laboratory experiments with granite samples. The employed
damage model provides a generalization of Hookean elasticity to a non-linear continuum
mechanics framework of cracked media incorporating degradation and recovery of the effective
elastic properties, along with gradual accumulation of irreversible deformation beyond the
elastic regime. The model assumes isotropic distribution of local microcracks expressed in
terms of a scalar damage variable, but the non-linear elastic response caused by the opening,
closure and evolution of the internal cracks is predicted to lead to seismic wave anisotropy.
We develop relations between the seismic wave anisotropy, internal rock damage and stress
field, and test the viscoelastic damage rheology against sets of laboratory experiments with
cylindrical granite samples. The observed data include measurements of stress and strain in
three loading cycles culminating in a final macroscopic failure, together with measured wave
velocities along and perpendicular to the axis of the cylinder. Using a single set of parameters,
the model fits well the overall evolution of the axial and transversal stress–strain relations, as
well as the anisotropic elastic wave velocities, during all cycles from the onset of fracturing in
the first cycle until the macroscopic failure in the final cycle.

Key words: Elasticity and anelasticity; Fault zone rheology; Seismic anisotropy; Dynamics
and mechanics of faulting, Fractures and faults; Rheology: crust and lithosphere.

1 I N T RO D U C T I O N

Crustal rocks are often treated as isotropic and linear elastic mate-
rial with constant elastic wave velocities. This assumption might be
appropriate for rocks with relatively low damage, associated with
internal distributions of cracks and voids, under relatively low loads.
However, rocks subjected to sufficiently high loads develop inter-
nal damage and exhibit clear deviations from linear elasticity (e.g.
Jaeger & Cook 1979). In particular, laboratory fracturing experi-
ments indicate that changes in the effective elastic moduli become
very significant, and the internal rock damage localizes in the final
stages before macroscopic brittle failure (e.g. Mogi 1962; Lockner
& Byerlee 1980; Lockner et al. 1992). One basic manifestation of
damaged rocks is crack-induced anisotropy of elastic waves, which
depends on the crack density and applied stress level. This has
been measured in the laboratory for many rock types (e.g. Nur
& Simmons 1969; Nur 1971; Bonner 1974; Lockner et al. 1977;
Sammonds et al. 1989; Sayers et al. 1990; Zamora & Poirier 1990;
Stanchits et al. 2006; Hall et al. 2008) and is also seen in the vicinity
of large active fault zones and other environments with high rock

damage (e.g. Crampin 1987; Leary et al. 1990; Miller & Savage
2001; Peng & Ben-Zion 2004; Liu et al. 2005; Boness & Zoback
2006).

Stress–strain relations of a damaged rock are usually approxi-
mated by an elastic body with cracks or inclusions embedded inside
an otherwise homogeneous matrix. For example, the elastic field
of ellipsoidal inclusions (Eshelby 1957) allows the construction of
a model for a material with cracks. This approach was success-
fully applied to synthetic materials with known crack geometries
and matrix elastic parameters (e.g. Christensen 1979; Rathore et al.
1995). A useful related framework is the self-consistent model of
O’Connell & Budiansky (1974) and Budiansky & O’Connell (1976)
for materials with random crack distributions. The averaging of ran-
dom crack orientations yields effective moduli that depend on crack
densities but do not depend on crack orientations. Another method
utilizes the crack-density tensor for finding the effective properties
of a solid with arbitrary crack interactions (e.g. Kachanov 1980,
1992; Sayers & Kachanov 1991, 1995). These two approaches were
used by several researchers to study effects of crack- and stress-
induced anisotropy on seismic wave propagation (e.g. Hudson 1981;
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Schoenberg & Douma 1988; Schoenberg & Sayers 1995; Chapman
2003; Verdon et al. 2008). Following the tensorial damage approach,
Sayers (2002) expressed the effective elastic moduli in terms of sec-
ond and fourth rank crack-density tensors and presented an inver-
sion strategy for reconstructing the damage tensor from measured
anisotropy of elastic waves. Such inversion leads to relations be-
tween the measured wave velocities and crack-density tensor (e.g.
Schubnel & Gueguen 2003; Stanchits et al. 2006; Hall et al. 2008).
These approaches assume elastic crack opening and closure, with
instantaneous material degradation and recovery, and they do not
account for gradual and permanent changes of damage with ongoing
loading.

In the framework of continuum mechanics, to simulate the
observed degradation of the effective elastic properties, a non-
dimensional scalar or tensor damage variable is introduced in dam-
age rheology models. The damage state variable characterizes a
properly chosen volume of rock, so that the density of the internal
flaws (e.g. microcracks in a laboratory specimen or small faults
in the Earth’s crust) within this volume may be considered uni-
form. Following theoretical developments (e.g. Kachanov 1986;
Chaboche 1988; Rabotnov 1988; Lemaitre 1996) in the frame-
work of continuum damage mechanics, Hansen & Schreyer (1994)
demonstrated that predictions of a linear scalar damage model corre-
late well with changes of the Young’s modulus but not with changes
of the apparent Poisson’s ratio. For this reason, Ju (1990) and Hansen
& Schreyer (1994) suggested to upgrade the damage variable from
a scalar to a tensor quantity. Such linear tensorial damage models
contain at least three adjustable parameters that can be used to sim-
ulate the evolution of the apparent Poisson’s ratio (see review of
Kachanov 1994). Although the linear tensorial damage models are
capable of reproducing damage accumulation, they do not attempt
to describe healing and material recovery under 3-D compaction.
The local entropy production by damage and healing processes is the
product of the thermodynamic force related to the damage/healing
and the damage/healing rate (e.g. Lyakhovsky et al. 1997a, 1997b;
Hamiel et al. 2004b). Hence, healing under 3-D compaction in the
linear scalar and linear tensorial damage models is prohibited by
the second law of thermodynamics, since it leads to negative en-
tropy production. This limits the applicability of these models to
long-term geological processes that should account for both rock
degradation and recovery.

Variations of Young’s modulus and Poisson’s ratio with damage
intensity under different types of load can be described using a non-
linear damage model, where the free energy of an elastic solid is
augmented by an additional non-linear term, and the evolving elas-
tic moduli are connected to a single scalar damage variable (e.g.
Lyakhovsky & Myasnikov 1984, 1985; Lyakhovsky et al. 1997a,
1997b; Hamiel et al. 2004a,b; Lyakhovsky & Ben-Zion 2008). A
brief background material with the main features of this damage
model is presented in Section 3. Myasnikov & Topale (1987) de-
rived asymptotic dispersion relations for the velocity of seismic
waves propagating in an arbitrary direction in the non-linear elas-
tic model, with the additional second-order energy term and small
values of the damage parameter. Lyakhovsky & Myasnikov (1987,
1988) demonstrated that stress-induced seismic wave anisotropy in
rocks with low damage is compatible with field observations, and
that the predicted stress-induced velocity variations have consider-
able effects on seismic ray tracing.

Modelling the observed stress- and damage-induced seismic
anisotropy requires dispersion relations for an arbitrary level of
damage. In this paper, we derive analytical expressions for veloc-
ities of direct seismic waves as a function of damage and strain

(Section 4) and apply our damage model to laboratory experiments
with Aue granite samples (Section 5). The measured quantities are
axial and transverse components of stress–strain curves for three
consecutive loading cycles and vertical and horizontal wave veloci-
ties. We first calibrate the damage-rheology model parameters using
the measured stress–strain data. Then we calculate the velocities for
P waves propagating in the axial and transversal directions and com-
pare the results with the laboratory measured values. We show that
the employed damage rheology model can quantitatively account
for the main stages of the quasi-static deformation and also repro-
duce damage- and stress-induced seismic wave anisotropy measured
during each cycle of the laboratory experiments.

2 E X P E R I M E N TA L S E T T I N G
A N D R E S U LT S

The experiments were performed on cylindrical granite sample from
Aue, Germany, of 50 mm diameter and 100 mm length. The exper-
imental setup has been described in detail in Stanchits et al. (2006).
The mineral composition of the Aue granite contains 30 per cent
quartz, 40 per cent plagioclase, 20 per cent potassium feldspar
and 10 per cent mica; the grain sizes range from 0.9 to 1.8 mm,
with an average value of 1.3 mm (Zang et al. 2000). To monitor
strain, two pairs of orthogonally oriented strain gauges were glued
onto the cylindrical sample surface. Acoustic emission (AE) activ-
ity and ultrasonic velocity changes were monitored by 12 P- and
eight S-wave piezoelectric sensors; the wave velocities were mea-
sured parallel and normal to the loading direction every 30–40 s
(Stanchits et al. 2006). The full-waveform AE data and ultrasonic
signals for the wave velocity measurements were stored in a 12-
channel transient recording system (PRÖKEL, Germany), with an
amplitude resolution of 16 bit at 10 MHz sampling rate.

The granite sample was subjected to two types of loading. First,
hydrostatic pressure σ1 = σ2 = σ3 was increased up to 120 MPa
and then decreased down to 60 MPa (Stanchits et al. 2006). Subse-
quently, the sample was subjected to increasing axial stress in three
consecutive cycles at confining pressures of 60, 40 and 20 MPa. The
first two cycles were interrupted when differential stresses reached
about 450 MPa and axial strains were between 0.7 and 0.8 per
cent. During the third cycle, the loading process was carried out
until catastrophic failure of the sample (Fig. 1). At all confining
pressures the experimental results show significant stress-induced
P-wave velocity anisotropy. In general, the axial P velocities are
higher than the transverse velocities (up to about 40 per cent), and
the P-wave anisotropy increases with increasing axial loading and
with increasing proximity to the total macroscopic failure (Stanchits
et al. 2006). Toward the macroscopic failure in the third loading cy-
cle, the strong increase of anisotropy is likely due to strong localized
deformation. The observed S-wave velocity variations are relatively
small, up to only 6 per cent, not well resolved and not analysed in this
study. In the current paper only the axial loading cycles following
the earlier hydrostatic ‘preconditioning‘ are analysed.

3 T H E O R E T I C A L B A C KG RO U N D :
V I S C O E L A S T I C DA M A G E R H E O L O G Y

We use a viscoelastic damage rheology model that quantitatively ex-
plains general aspects of brittle rock deformation. In this section, we
present a short background with the main features of the model. For
more details on the theoretical background and comparisons with
rock mechanics experiments see Lyakhovsky & Myasnikov (1984,
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Figure 1. Loading histories during the three analysed deformation cycles. (a) First cycle is under 60 MPa confining pressure. (b) Second cycle is under 40
MPa confining pressure. (c) Third cycle is under 20 MPa confining pressure. The stress–drop during the last cycle signifies macroscopic brittle failure of the
sample.

1985), Lyakhovsky et al. (1997a, 1997b), Agnon & Lyakhovsky
(1995), Hamiel et al. (2004a, 2005, 2006), Ben-Zion & Lyakhovsky
(2006) and Lyakhovsky & Ben-Zion (2008).

The effects of pre-existing cracks (i.e. constant damage) on the
elastic properties of a solid are accounted for in the damage model
by generalizing the strain energy to the form

U = 1

ρ

(
λ

2
I 2

1 + μI2 − γ I1

√
I2

)
, (1)

where I1 = εii and I2 = εijεij (Einstein’s summation convention is as-
sumed) are the first and second invariants of the elastic strain tensor
εij, ρ is the mass density, λ and μ are the Lamé parameters and γ is a
third modulus of a damaged solid. The first two terms of the energy
potential (1) give the classical strain potential of linear elasticity.
The third term may be derived using the effective medium the-
ory of Budiansky & O’Connell (1976) for non-interacting cracks
that dilate and contract in response to tension and compression
(Lyakhovsky et al. 1997b), or by expanding the strain energy poten-
tial as a general second-order function of I1 and I2 and eliminating
non-physical terms (Ben-Zion & Lyakhovsky 2006). Differentiation
of the elastic energy (1) with respect to the strain tensor εij leads to
a constitutive stress–strain relation given by

σij = ρ
∂U

∂εij
=

(
λ − γ

ξ

)
I1δij + 2

(
μ − 1

2
γ ξ

)
εij, (2)

where δij is Kronecker delta and ξ = I1/
√

I2 is a strain invariant
ratio ranging from ξ = −√

3 for isotropic compaction to ξ = √
3

for isotropic dilation. Eq. (2) reduces to linear Hookean elasticity
for an undamaged solid (γ = 0), whereas distributed microcracks
and flaws associated with γ > 0 leads to reduction of the effective
elastic moduli and non-linear elasticity with asymmetric response
to loading under tension and compression conditions. Eq. 2 can be
expressed through the dependence of the effective elastic moduli
(λe = λ − γ /ξ ; μe = μ − γ ξ /2) on the strain invariant ratio and
their abrupt change with transition from compacting (ξ < 0) to
dilating (ξ > 0) strains. Change in the effective elastic moduli under
stress reversal in a four-point beam test (Weinberger et al. 1994) for
rock dilation due to deviatoric stresses (Hamiel et al. 2005) and in
other rock mechanics experiments (Lyakhovsky et al. 1993, 1997b)
confirm the applicability of the non-linear stress–strain relations (2)
derived from the potential (1).

The evolution of rock damage and effective elastic properties is
achieved by introducing functional relations λ(α), μ(α) and γ (α)
between the elastic moduli and a scalar damage variable α repre-
senting the internal crack density. The damage variable α ranges

between 0 and 1, where in undamaged material α = 0 and macro-
scopic brittle failure occurs at critical α. Using the balance equations
of energy and entropy and accounting for irreversible changes re-
lated to viscous deformation and material damage, the equation of
damage evolution has the form (Lyakhovsky et al. 1997a)

dα

dt
= −C

∂U

∂α
, (3)

where C is a positive function of state variables that ensures non-
negative local entropy production. Eq. (3) can describe not only
damage increase or material degradation but also the process of
material recovery associated with healing of microcracks. The latter
is favoured by high confining pressure, low shear stress and high
temperature. In the context of the laboratory fracturing experiments
discussed in this study, the healing process is not relevant.

Agnon & Lyakhovsky (1995) and Lyakhovsky et al. (1997a)
analysed the connection between the elastic moduli and α. They
suggested constant λ and the following linear approximations: μ =
μ0 + μ1α, γ = γ 1α, with μ0, μ1 and γ 1 constants for each material.
Substituting (1) into (3), the damage evolution can be rewritten as

dα

dt
= Cd I2 (ξ − ξ0) , (4)

where Cd > 0 describes the rate of damage evolution for a given
deformation and is constrained by the time span in rock mechan-
ics experiments between the onset of AE and macroscopic sample
failure. The threshold ξ0 for positive damage evolution is a material
property, controlling the transition from healing to degradation, and
is related to the internal friction angle (Agnon & Lyakhovsky 1995).

Analysis of observed deformation and AE from laboratory ex-
periments in granites and sandstones led Hamiel et al. (2004a) to
incorporate in the model a gradual damage-related inelastic defor-
mation before the occurrence of macroscopic brittle failure. This
inelastic strain εv

ij starts to accumulate with the onset of AE, and the
rate of its accumulation is assumed to be proportional to the rate of
damage increase:

dεv
ij

dt
=

⎧⎪⎨
⎪⎩

Cv
dα

dt
σ d

ij

dα

dt
> 0

0
dα

dt
≤ 0

, (5)

where Cv is a material constant and σ d
ij is the deviatoric stress ten-

sor. The inverse of viscosity (Cvdα/dt) relates the deviatoric stress
to the rate of irreversible strain accumulation. Following Maxwell
viscoelastic rheology, the total strain tensor εtot

ij is assumed to be a
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sum of the elastic strain tensor and the irreversible viscous compo-
nent of deformation, that is, εtot

ij = εij + εv
ij. This model assumption

means that the total irreversible strain accumulated during the load-
ing should be proportional to the overall damage increase in the
tested rock sample.

4 S E I S M I C WAV E V E L O C I T I E S

The elastic energy potential (1) is formulated in terms of strain
invariants without explicitly introducing material anisotropy. How-
ever, the potential includes non-linear elastic response that produces
local anisotropy in a damaged volume. A propagating small ampli-
tude seismic wave in the non-linear elastic media is associated with
perturbations of the pre-defined state of stress corresponding to
the initial strain value ε

(0)
ij . The relation between the wave-related

perturbations of stress σ
(1)
ij and strain ε

(1)
ij , in the vicinity of this pre-

defined state of stress, is obtained by linearization of the non-linear
stress–strain relation (2):

σ
(1)
ij =

⎛
⎝λδnm − γ

ε(0)
nm√
I (0)

2

⎞
⎠ δijε

(1)
nm +

⎛
⎝2μ − γ

I (0)
1√
I (0)

2

⎞
⎠ δinδjmε(1)

nm

− γ

⎛
⎝ δnm√

I (0)
2

− I (0)
1

I (0)
2

√
I (0)

2

ε(0)
nm

⎞
⎠ ε

(0)
ij ε(1)

nm. (6)

The stress–strain relations (6) are equivalent to the usual stress–
strain relations for an anisotropic elastic medium σ

(1)
ij = Cijnmε(1)

nm,
with a fourth-rank tensor Cijnm of the strain-dependent effective
elastic moduli:

Cijnm =
⎛
⎝λδnm − γ

ε(0)
nm√
I (0)

2

⎞
⎠ δij +

⎛
⎝2μ − γ

I (0)
1√
I (0)

2

⎞
⎠ δinδjm

− γ

⎛
⎝ δnm√

I (0)
2

− I (0)
1

I (0)
2

√
I (0)

2

ε(0)
nm

⎞
⎠ ε

(0)
ij . (7)

For hydrostatic loading, the effective elastic moduli (7) can be
reduced to the ordinary Lamé constants or Young’s modulus and
Poisson’s ratio of linear elasticity. However, under non-hydrostatic
loading, stress- and damage-induced seismic wave anisotropy
is expected due to crack opening in different stress-preferred
orientations. General relations between the fourth-rank tensor of
the elastic moduli Cijnm and seismic wave velocities may be found
in e.g. Mavko et al. (1998) and Aki & Richards (2002). Here we use
the special form of this tensor and re-derive the expressions for the
seismic wave velocities. Following the standard practice for elastic
waves (e.g. Ben-Zion 2003), we substitute the stress–strain relation
(6) into the Cauchy equation of motion for a continuum solid:

ρ
∂2un

∂t2
= ∂σnj

∂x j
, (8)

where un is the wave-related displacement vector. For mathematical
simplicity, we limit our following derivation to the case of wave
propagation in the x-direction and will rotate the coordinate
system to calculate wave velocity in an arbitrary direction. The
displacement vector for a wave propagating with angular frequency
ω and wavenumber vector kn = (1,0,0) is

un = Anei(k1x−ωt). (9)

Combining eqs (6), (8) and (9) lead to the Helmholtz equation
relating the amplitude, angular frequency and wavenumber vector.

This equation can be reduced to the following system of three linear
equations

An

(
λknki + μeknki − γ eijknk j + μekmkmδin

− γ enmkmki + γ ξeijenmkmk j − ρω2δin

) = 0, (10a)

where eij = εij/
√

I2. This set of three eqs (10a) has non-trivial
solutions only for vanishing determinant of the associated matrix

det
(
λknki + μeknki − γ eijknk j + μekmkmδin

− γ einmkmki + γ ξeijenmkmk j − ρω2δin

) = 0. (10b)

This condition is satisfied if the ratio ω2/.k2 = V 2 is one of the
three eigenvalues of the matrix of (10a). Therefore, three different
types of waves exist in anisotropic media, instead of the two standard
P and S types of waves of isotropic solid. These three types are
referred to (e.g. Mavko et al. 1998; Aki & Richards 2002; Schubnel
& Gueguen 2003) as quasi-longitudial, quasi-shear and pure shear.
Similarly to the general case discussed by Mavko et al. (1998) and
Schubnel & Gueguen (2003), the first eigenvalue

V 2
s = μe

ρ
, (11)

corresponds to a pure shear and isotropic wave, with velocity cal-
culated using the effective shear modulus μe. Using the solution
(11) for the first eigenvalue, the equation for the second and third
eigenvalues reduces to the quadratic equation

F2 − F
(
λ + μe − 2γ e11 + γ ξ (e2

11 + e2
12 + e2

13)
)

+ [
(λ + μe) γ ξ − γ 2

] (
e2

12 + e2
13

) = 0, (12)

where F = ρV 2 − μe. The roots for eq. (12) correspond to the two
different additional wave velocities of the examined anisotropic
solid. One for the compressional (or quasi-longitudinal) wave, with
velocity VP, is given by

V 2
P =

μe + 1

2
A +

√
A2

4
− B

ρ
, (13)

and another type of quasi-shear wave VqS is given by

V 2
qS =

μe + 1

2
A −

√
A2

4
− B

ρ
, (14)

where the coefficients A and B are

A = λ + μe − 2γ e11 + γ ξ
(
e2

11 + e2
12 + e2

13

)
B = [

(λ + μe) γ ξ − γ 2
] (

e2
12 + e2

13

) . (15)

Note that in the case of γ = 0, that is, damage-free intact rock, the
stress–strain relations reduce to Hookean elasticity and the wave
velocities become the well-known expressions from linear elasticity

V 2
S = V 2

qS = μ0

ρ
,

V 2
P = λ + 2μ0

ρ

. (16)

Eqs (13) and (14) predict that the seismic wave velocities VP and
VqS become anisotropic for a solid with pre-existing damage (α >

0) under non-hydrostatic load. Fig. 2 demonstrates these velocities
in the polar coordinate system. The anisotropy in Fig. 2 is induced
by uniaxial loading (the polar angle φ = 0◦ or 180◦ is the loading
direction) applied to a material with initial Lamé parameters values
of λ0 = 16 GPa and μ0 = 33 GPa. These values are appropriate
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Figure 2. Model predicted azimuth dependence of wave velocities. (a) Re-
sults for VP corresponding to the quasi-longitudinal wave. (b) Results for
VqS and VS corresponding to the quasi-shear and pure shear waves, respec-
tively. The loading is uniaxial, 0◦/180◦ corresponds to the directions along
the axis of the loading and 90◦/270◦ correspond to transverse directions.

for the Aue granite samples used in the laboratory experiments,
analysed in the next section. The effective elastic moduli were cal-
culated assuming a material damage of α = 0.3, which is similar
to the value characterizing the beginning of the third cycle of the
examined deformation. With these parameters, a maximum value
of about VP = 5.7 km s–1 is obtained in the axial direction and a
minimum value of about VP = 4.6 km s–1 is obtained perpendicular
to this direction (Fig. 2a). The quasi-shear wave velocity VqS in the
axial and transversal directions is equal to the pure shear velocity VS .
The minimum VqS values are predicted along two orientations (four
directions) that are oblique to the loading (Fig. 2b). In the next sec-
tion, we compare laboratory results with the predicted damage- and
stress-induced anisotropy of P waves, which are associated with
microcracks opening and closure, depending on their orientation
relative to the applied stress.
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Figure 3. Comparison between measured (grey) and simulated (black)
stress–strain relations in the three loading cycles. (a) First cycle is under
60 MPa confining pressure. (b) Second cycle is under 40 MPa confining
pressure. (c) Third cycle is under 20 MPa confining pressure culminated by
a macroscopic brittle failure.

5 A NA LY S I S O F E X P E R I M E N TA L
O B S E RVAT I O N S

The continuous monitoring of axial and transversal strain compo-
nents during cyclic triaxial compressional tests enables us to con-
strain the parameters of the damage rheology model. Fig. 3 shows
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Figure 4. Model predicted damage accumulation during the three loading cycles.

the stress–strain relations for three loading cycles under 60, 40 and
20 MPa confining pressures and the simulated stress–strain curves.
During the first cycle (Fig. 3a), the stress–strain relations for both
axial and transversal components exhibit almost linear relations un-
til approximately 260 MPa differential stress. At higher differential
stresses, these relations deviate from linearity, especially for the
transverse component. The point where the stress–strain curve de-
parts from the initial linear relation corresponds to the onset of
damage and provides an estimate from the measured strain com-
ponents for the critical strain invariant ratio of ξ0 = −0.9. Similar
procedure was applied to the second and third deformation cycles
(Figs 3b and c) and provided almost the same ξ0 value. The linear
part of the stress–strain curves from the first cycle is used to evaluate
the elastic moduli of the initial Aue granite sample. Assuming a low
pre-existing damage value of α = 0.1, the Lamé constants for the
damage-free material are λ = 1.6×104 MPa, μ0 = 3.3×104 MPa.

Two coupled processes, damage increase and the related gradual
accumulation of inelastic strain lead to deviation of the stress–strain
curve from the initial linear path. The rate of damage increase is
controlled by the kinetic coefficient Cd, while the damage-related
viscosity is controlled by the value of the coefficient Cv. A purely
elastic damage rheology model with Cv = 0 can reproduce well
the stress–strain curve during the loading part of the cycle, but it
does not account for the inelastic accumulated strain during the
whole cycle (e.g. Hamiel et al. 2004a). This inelastic component
was clearly observed during the second cycle (Fig. 3b). To reduce
the uncertainty in the evaluation of the damage model coefficients,
we start the analysis using the elastic damage rheology with Cv =
0 and search for the value of the kinetic coefficient Cd, using only
the loading part of the cycles. After constraining the Cd value from
fitting the loading parts, the damage-related viscosity terms (5) of
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Figure 5. Comparison between measured (grey) and simulated (black) horizontal and vertical P-wave velocity in the three examined loading cycles.

the viscoelastic model are included in analysis of the entire exper-
imental stress–strains cycles. This approach gives rise to improved
fitting of the unloading paths with minor changes of the loading
paths. Following this approach, we obtain for the Aue granite sam-
ples the coefficients values of Cv = 5×10−6 MPa−1 and Cd = 3 s−1.
The above single set of the model coefficients produces good quan-
titative agreement between the experimental and calculated stress–
strain curves for all three cycles, except the latest stage prior to the
strong damage localization and macroscopic failure at the end of the
third cycle. The damage increase during the first and second cycles
is relatively minor (Figs 4a and b) and the whole sample may be
analysed in terms of uniform deformation. Toward the macroscopic
brittle failure of the sample in the third cycle, the damage rapidly
increases (Fig. 4c) and tends to localize into a narrow fault zone
(e.g. Lockner et al. 1992; Hamiel et al. 2004a). Modelling detailed
evolution of the damage prior to failure requires full 3-D numerical
simulations that account for the strong spatial variability that de-
velops at that stage. Such 3-D modelling was presented by Hamiel
et al. (2004a); however, it is beyond the scope of the presented study.

The damage rheology model predicts different P-wave velocities
in the axial (vertical) and transversal (horizontal) directions. The
predicted velocity values were calculated using the set of model pa-
rameters constrained above by the measured stress–strain relations
and compared with the experimentally measured velocities (Fig. 5).
Relatively small anisotropy values were predicted by the model and
experimentally observed during the first loading cycle under 60 MPa
confining pressure (Fig. 5a). The small damage generated in that
cycle (Fig. 4a), along with the relatively high confining pressure
lead to an almost isotropic behaviour. More significant anisotropy
is predicted and observed during the initial part of the second cycle
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(Fig. 5b). The anisotropy is strongly enhanced with the high damage
increase after ∼4000 s from the beginning of the second cycle. The
small discrepancy between the observed and simulated wave veloc-
ities at the end of the third cycle may be related to the strong damage
localization at the final stages of damage evolution. This localiza-
tion is a common feature of granite sample fracturing (e.g. Lockner
et al. 1992) and requires 3-D calculations that account for hetero-
geneity of damage distribution (Hamiel et al. 2004a). The employed
model accounts for the material weakening as well as damage- and
stress-induced anisotropy under non-hydrostatic load, but it ignores
small changes in the P-wave velocity associated with the reduction
of the confining pressure. This effect, discussed by Stanchits et al.
(2006) for granite and basalt samples, produces pressure-induced
P-wave velocity change at low confining pressures. This pressure
dependence leads to a certain reduction of the P-wave velocity be-
tween the end of the second cycle (40 MPa) and beginning of the
third cycle (20 MPa) and produces some discrepancies between the
model predictions and observations (Figs 5b and c) under low pres-
sures. However, with the increase of the differential load during the
third cycle, the pressure effect becomes negligible and the model-
predicted velocities fit well the observations, including the strong
velocity reduction prior to the final macroscopic failure (Fig. 5c).

6 D I S C U S S I O N

We present theoretical results of a non-linear damage rheology for
brittle rock deformation in relation to laboratory observations ob-
tained in fracturing experiments of granite. The examined quanti-
ties include evolving stress–strain relations and anisotropy of elastic
waves induced by material damage and stress during several defor-
mation cycles (Fig. 1). A linearization of a non-linear stress–strain
relation (eq. 2) in the vicinity of this pre-defined state of stress leads
to connections (eq. 6) between small wave-related perturbations of
the stress and strain fields. These relations have a tensorial structure
with a forth-rank tensor of the effective elastic moduli depending
explicitly on the pre-existing load. Analytical expressions for the
associated elastic waves have propagation velocities that depend on
the load and the level of material damage.

Propagation of seismic waves in linear anisotropic elastic media
has been studied extensively in the past (e.g. Mavko et al. 1998). In
the general linear anisotropic case, three different types of elastic
waves—quasi-longitudinal, quasi-shear and pure shear—with dif-
ferent velocities that depend on the direction of the wave propaga-
tion are expected (e.g. Aki & Richards 2002; Schubnel & Gueguen
2003). Due to the specific structure of the tensor of elastic moduli
in the employed damage model, the pure shear wave in the obtained
results is isotropic. The velocities of the other two waves strongly
depend on the direction of wave propagation (Fig. 2).

The pure shear wave becomes anisotropic in a damage model
with tensorial damage variable based on a crack-density tensor (e.g.
Kachanov 1980, 1992; Sayers & Kachanov 1991). Such tensorial
damage models are associated with two tensors of material prop-
erties; one is a second-rank and the other being fourth-rank ten-
sor, related to the normal and tangential crack compliances. Sayers
(2002) suggested a procedure based on six independent measure-
ments of the S-wave velocity (V12, V21, V13, V31, V23, V32) and three
measurements of the P-wave velocity (V11, V22, V33) to invert ob-
servations for the crack density and the effective elastic properties
of the damaged material. Hall et al. (2008) modified this procedure
and suggested a new mathematical algorithm for the crack density
tensor inversion, based on a limited number of measured veloci-

ties. Although these procedures can be used to estimate the crack
density tensor for a given material state, they do not account for
evolutionary processes leading to changes in the crack population.
The damage model used in this work is associated with a scalar
isotropic damage variable, but the non-linearity of the stress–strain
relations stemming from the employed generalized elastic potential
leads to the emergence of wave anisotropy. In addition, the model ac-
counts for the evolution of material damage during deformation that
exceeds the purely elastic regime. Laboratory results indicate that
there is a significant difference between the values of elastic moduli
calculated from wave velocities and from the stress–strain curve
measured during the same experiment (see, e.g. fig. 9 in Stanchits
et al. 2006). These discrepancies are ignored by the linear tensorial
damage rheology models but accounted for by the non-linear scalar
damage model employed in this paper.

Using the results of the first deformation cycle in the labora-
tory experiment, we constrain the parameters of the damage model
that are appropriate for the Aue granite. Using the same set of
parameters, we are able to fit the overall features of the second
and third deformation cycles almost up to the final macroscopic
failure. The calculated P-wave velocities and stress- and damage-
induced anisotropy, using the model parameters constrained by the
stress–strain relation, fit well the measured velocity values. Thus,
the employed damage model accounts quantitatively for the over-
all aspects of the stress–strain fields beyond linear elasticity, while
simultaneously reproducing the main features of the damage- and
stress-induced elastic wave anisotropy measured during the experi-
ments.

The employed model ignores small changes in the P-wave ve-
locity associated with reduction of the confining pressure (e.g.
Stanchits et al. 2006). For low porosity rocks like granite, the
pressure-induced P-wave velocity change is relatively small, but
for high porosity rocks like basalt or porous sandstone this effect
can be much more significant. Stanchits et al. (2006) explained this
effect previously, using the model of Soga et al. (1978) with penny-
shape cracks having planes oriented parallel and perpendicular to
the compression direction. In this model, a slight increase of the ax-
ial P velocity right after the application of axial load is related to the
closure of horizontally oriented cracks, and the appearance of stress-
induced anisotropy (accompanied by a significant decrease of the
transverse P velocity) is related to the opening of vertically oriented
cracks. A modified version of the damage rheology model that ac-
counts for the evolution of both cracks and porosity of the type used
by Hamiel et al. (2004b) may be used to model the pressure-induced
P-wave velocity changes. This effect exists only for relatively low
confining pressures and disappears for pressures of the order of tens
MPa, corresponding to depths of the seismogenic zone. Neverthe-
less, it is important to account for this effect since recorded seismic
data are strongly affected by the properties of the shallow crust
where the confining pressure is low (e.g. Peng & Ben-Zion 2004;
Liu et al. 2005; Boness & Zoback 2006). Our continuing work will
focus on adding the pressure-induced P-wave velocity changes to
the analysis of the laboratory data and using 3-D numerical simula-
tions to model additional aspects of the results that depend strongly
on spatial variations within the laboratory samples.
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