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Abstract. Earthquake simulators become increasingly important with respect to
seismic hazard assessment. It is, therefore, a crucial question whether the imposed
simplifications, e.g. reducing fully dynamic to quasi-dynamic rupture propagation,
may lead to unrealistic results. In the present study, we focus on the role of rupture
velocity vr in an earthquake simulator governed by rate-and-state dependent fric-
tion as proposed by [8]. In particular, we investigate the range of possible values
of vr within the model. As an end-member scenario, we consider the existence of a
steady-state solution of a one-dimensional rupture front propagating with vr on an
idealized two-dimensional fault of infinite dimension discretized into uniform cells.
We find that, in principle, values of vr between 0 and ∞ are possible depending
on the values of slip speed δ̇0 and pre-stress τ0 ahead of the rupture front. In this
view, values of δ̇0 close to the slip speed during an earthquake δ̇EQ lead to small
values of the time-to-failure and can thus generate ruptures with unrealistic high
values of vr, if the model is close to the steady-state conditions. These results are
useful to provide constraints for the parameter space of a reasonable earthquake
simulator.

1 Introduction

In recent decades, numerical models for simulating earthquake occurrence have been used to
improve the understanding of the earthquake process and to estimate the resulting seismic
hazard in the future. Different models cover a broad range between two end-member classes;
first, detailed physical simulations of the dynamic rupture process [2,4] of a specific event
and second, calculations of thousands of years of earthquake evolution in models with reduced
complexity. The pros and cons are obvious: The first model class allows for realistic description
of a particular event, but is related with high numerical effort and several poorly-constrained
parameters. In contrast the latter class provides less realistic simulations; these models, however,
allow for robust statistics, because a large number of events may be generated. Models of this
type, generally labeled as “earthquake simulators” [3,8,11,13,17,18,20,21], become increasingly
popular for seismic hazard calculations, since they overcome the problem of small data sets
(earthquake catalogs), at least to some degree. The tightrope walk is now to find the most
relevant mechanisms that govern the dynamics of the earthquake process and to keep the model
as simple as possible, simultaneously. Less important processes may be neglected or plugged
into a stochastic component [11,12,20] leading to a hybrid-model (deterministic/stochastic).
We note that purely stochastic models are also widely applied; here, the empirical knowledge of
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the frequency-size distribution, aftershock decay and productivity is accounted for and provides
constraints for Monte-Carlo simulations [13,19,12].

The central question with respect to the use of an earthquake simulator is: To what extent
does a model simulate realistic earthquake histories, despite the imposed simplifications? These
include mainly: first, the deformation process including continuous evolution from locked fault
segments which start to nucleate and finally end up in an earthquake, is replaced by the in-
stantaneous transitions between three discrete states (locked, nucleating, slipping); second, the
dynamic Green’s function is replaced by the static Green’s function. This question has been ad-
dressed for many seismicity features like the Gutenberg-Richter law [10] and the Omori law [15].
In this study, we focus on a physics-based earthquake simulator firstly proposed by [8], which
reduces a time-continuous to a time-discrete model based on rate-and-state dependent friction
(RS friction) [6,7,9,16]. The model allows to simulate the inter- and co-seismic propagation of
stress and displacement in finite time on a discrete spatial grid. This is in contrast to other
models like cellular automata models [1], where co-seismic process occur instantaneously. The
goal of this work is to identify regions in parameter space which are characterized by almost
realistic behavior of rupture evolution in terms of rupture speed. To keep the model setup as
simple as possible, we a study one-dimensional rupture front of infinite size traveling through an
elastic full-space governed by RS friction and address the question, which values of the rupture
speed vr are possible.

In Section 2, we give a description of the model, including geometrical setup, the basic
features of RS friction and the implementation of two model versions for a one-dimensional
rupture front. In Section 3, the simulations and the results are provided. Finally the results are
discussed, especially with respect to their impact for improving earthquake simulators.

2 Model

In this Section, we describe the geometrical setup of the model, the framework of RS friction,
and the algorithm of the model. More details are provided in [8] and [9].

2.1 Geometrical setup

The geometry of the model is visualized in Fig. 1. It includes a vertical strike slip fault embedded
in a homogeneous elastic half-space. In an idealized picture a rupture front of infinite dimension
travels along the space in negative x direction. Since we impose symmetry with respect to depth
(z axis), the half space becomes effectively a full-space, in this limit.

2.1.1 Rate-and-state dependent friction (RS friction)

In this work, we follow the Ruina formulation [16] of Dieterich’s law [5] for the frictional
resistance during the earthquake process. During slip the shear stress τ and the effective normal
stress σ follow

τ = σ

[

µ0 + A ln

(

δ̇

δ̇∗

)

+ B ln

(

θ

θ∗

)

]

. (1)

Here, µ0, σ, A, and B are constants determined from experiments, δ̇ is the slip speed, and δ̇∗

and θ∗ are normalizing constants, where θ∗ can be expressed by the characteristic slip distance
Dc,

θ∗ =
Dc

δ̇∗
. (2)

The state variable θ in Eq. (1) follows the evolution law [16]

dθ

dt
= 1 −

θδ̇

Dc

. (3)



Will be inserted by the editor 3

In [6] Eq. (1) and (3) are used to simulate earthquake nucleation on a fault patch with stiffness
K and linear remote stressing rate τ̇ t τ(t),

τ(t) = τ0 + τ̇ t, (4)

resulting in the following relation for the evolution of slip speed:

δ̇ =

{[

1

δ̇0

+
Hσ

τ̇

] [

exp

(

−
τ̇ t

Aσ

)]

−
Hσ

τ̇

}−1

, τ̇ 6= 0. (5)

where δ̇0 is the initial slip speed, H = B/Dc − K/σ.

2.1.2 Cellular automaton version

A space-discrete fault model may be designed by solving the equations from the previous
subsection on a discrete grid with heterogeneous parameters. To reduce the computational
effort and thus to allow for long simulations of earthquake history, [8] proposed a model with
three states: a computational cell in state 0 is locked; that is, the cell is not slipping in an
earthquake. The transition from state 0 to state 1 occurs, when the stress τ in the cell equals
the steady-state friction τss. This condition can be expressed in terms of the slip speed δ̇ss and
the corresponding state variable θss, i.e. θss = Dc/δ̇ss. From Eq. (1) the steady state friction
becomes

τss = σ
[

µ0 + (A − B) ln (δ̇ss/δ̇∗)
]

= σ [µ0 + (B − A) ln (θss/θ∗)] .

(6)

The time ∆t that elapses until a cell in with state variable θ changes from state 0 to 1 can be
calculated by equating Eq. (6) with remote stressing (Eq. 4):

τ0 + τ̇∆t = σ [µ0 + (B − A) ln (θ + ∆t/θ∗)] . (7)

This equation can be solved numerically for ∆t, e.g. by a Newton scheme. The transition to
state 1 marks a breakdown of the cell or the begin of the nucleation towards the earthquake.
At transition time, the slip speed is set to δ̇0 = Dc/θ and evolves according to Eq. (5), until

a predefined value δ̇EQ is reached. The cell changes to state 2, i.e. it slips in an earthquake

associated with the redistribution of stress to other cells. When the stress is again below the
steady-state stress, the cell changes from state 2 to 0.

The model algorithm can be described as follows. First, we consider a spatial grid, where
each cell is represented by an index n. Shear stress, state variable and slip speed are thus
denoted by τn, θn, and δ̇n. The stress loading rate τ̇n is calculated from the static Green’s
function Gnm of the elastic half-space [14]:

τ̇n = δ̇EQ

∑

m 6=n

Gnm. (8)

The numbers Gnm correspond to the response on a static dislocation of a rectangular fault patch
in an elastic Poisson solid with rigidity 30 GPa. Since the Green’s function is only calculated
within a plane, the diagonal elements have are negative, while the off-diagonal elements have
positive sign; that is, if a cell slips, the stress in all other cells increases.

1. Set initial conditions for τn, δ̇n, and θn. All cells are in state 0.
2. Calculate ∆tn,0→1 from Eq. (7) for all cells. The cell k with the smallest value ∆t

0→1,min
changes to state 1. Update stress and state variable of remaining cells:

τn → τn + ∆t
0→1,minτ̇n

θn → θn + ∆t0→1,min
(9)
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and set
δ̇0,n = Dc/θn. (10)

3. Calculate ∆tn,0→1 and ∆t0→1,min for all cells in state 0, and the time ∆tn,1→2 of the
potential transition of the nucleating cell k from state 1 to state 2

∆tk,1→2 =
Aσ

τ̇k

ln

(

1

δ̇k,0

+
Hσ

τ̇k

)

−
Aσ

τ̇k

ln

(

1

δ̇EQ
+

Hσ

τ̇k

)

(11)

(a) If ∆tk,1→2 is smaller than all potential transition times form state 0 to 1, perform
transition of cell k from state 1 to 2: Update stress values for all cells and state variables
θn for locked cells:

τn → τn + ∆tk,1→2τ̇n

θn → θn + ∆tk,1→2.
(12)

According to [8], the stress loading rates are assumed to be constant during a time step
and only change when a cell starts (or stops) slip. In particular, if cell k changes to state
2, the stress loading rates for cells n 6= k are increased:

τ̇n → τ̇n + Gnk δ̇EQ. (13)

(b) If ∆t0→1,min (related to a cell m) is smaller than tn,1→2, perform step 2 (transition
0 → 1) for cell m and proceed.

4. When the stress in a cell with state 2 drops to the steady-state value,

τn ≤ τss
n , (14)

perform transition from state 2 to 0 for this cell. Update τn, δ̇n, and θn and set stressing
rate back according to Eq. (8). Proceed with step 2.

We note that the computational effort is reduced drastically compared to the model version
with differential equations, because the elastostatic interaction enters only in state 2, while in
states 0 and 1, the cells do not interact with each other. In particular, the stress interaction
during the nucleation period is neglected. For further discussion, we refer to [8]

2.1.3 1D model versions

The setup of the 1D model is illustrated in Fig. 1. It is assumed that the extension of the fault
towards depth is infinite; this symmetry along depth reduces the model essentially to a one
dimensional chain along strike. The question is now: Can a stable solution evolve from n = −∞
to n = +∞ along the chain? If this is possible, we further study whether the framework of
RS friction leads to constraints of the rupture velocity. Two implementations of the 1D model
are considered: 1. Model A: An infinite half-chain is in state 1 and ruptures cell-by-cell to
state 2 (see Fig. 2); 2. Model B: An infinite half chain is in state 0; due to tectonic loading,
transitions to state 1 are initiated at the breakdown front. The subsequent rupture evolution
is characterized by transitions from state 0 → 1 or from state 1 → 2 depending on the smallest
time-to-failure. After some time, the chain will include a number of slipping cells (state 2),
followed by a nucleation zone (state 1) and the remaining cells which are still locked (state 0);
see Fig. 3.

2.1.4 Parameters

In this study, we use commonly adopted values for RS friction [8]. All parameters of this study
as listed in Tab. 1.
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3 Simulations and Results

We now consider the two versions of the 1D model described above with respect to the existence
of a stable steady state solution traveling from −∞ to +∞.

3.1 Model A

In the simple model (model A) illustrated in Fig. 2, where only transitions from the nucleating
regime (state 1) to the slipping regime take place, the model evolution is governed by Eq. 11:
the cell at the front separating nucleating and slipping regime, which is still in state 1, will
change to state 2 after the time ∆tk,1→2, which depends on the difference of the actual slip

rate δ̇k,0 and the imposed earthquake slip rate δ̇EQ. A steady-state solution is defined by the

condition that the spatial distribution of slip speed δ̇ remains the same relative to the rupture
front for evolving time, i.e. δ̇n,t=0 = δ̇n,t=t1 for all times t1 (see Fig. 2). Here and in the following
n denotes the number of cells relative to the front. This requires that the map

δ̇n+1 =

{[

1

δ̇n

+
Hσ

τ̇n+1

] [

exp

(

τ̇n+1∆t

Aσ

)]

−
Hσ

τ̇n+1

}−1

(15)

based on the inversion of Eq. (5) has a fix point, i.e. a point δ̇∗ with δ̇∗n+1 = δ̇∗n. It is found that

lim
n→∞

δ̇n = 0 for all parameter choices. Consequently, rupture velocity vr = ∆x/∆t is determined

by the time step in Eq. (11); ∆x is the width of a cell. In particular, vr depends on the slip

speed just before the rupture front and can take values between vr = 0 (δ̇0 = 0) and vr → ∞

(δ̇0 ≈ δ̇EQ).

Now a (non steady-state) distribution δ̇n is imposed and ∆t (or vr = ∆x/∆t) is iterated.
Assuming a decaying initial distribution

δ̇n = δ̇n=0 exp (−βn∆x) (16)

1. ∆t is calculated at the rupture front (Eq. (11)),

2. δ̇n is updated (Eq. (15)) and
3. ∆t is calculated at the new rupture front etc.

It is found that all initial distributions of δ̇n converge to a steady state in terms of a specific
value vr. Figure 4 shows an example with δ̇n=0 = 2 · 10−5 m/s and two different values for the
decay rate β.

In sum, we find that this version of the model obeys stable steady-state solutions for 1D
rupture propagation. Clearly, an initial distribution of slip speeds along the chain has to decay
with increasing distance from the rupture front in order to allow for a steady state. Again, we
find that all rupture velocities are, in principle, possible. A weakly decaying distribution will
result in high values of vr; in the limit of a constant distribution, vr will diverge to ∞. In a
rapidly decaying distribution, more time is needed for the cells to reach the earthquake slip
speed δEQ and vr will thus be smaller.

Finally, we emphasize that in model A the evolution of the stress τ is not yet considered.
Implicitly we assume that the stress of cells in state 2 is high enough that a transition from
state 2 to state 0 (locked) is not possible and the rupture continues for all times. This, however,
requires a constraint for the initial stress τ0: Because a cell in state 1 does not exchange stress
with other cells, the stress increases linearly with time. For this reason, the spatial distribution
of stress τn requires

τn = τn+1 + τ̇n+1∆t. (17)

or
τn+1 = τn − τ̇n+1∆t. (18)
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The solution of this linear difference equation with initial value τ0 is given by

τn = τ0 − ∆tτ̇n−1 − ∆tτ̇n−2 − . . . − ∆tτ̇1

= τ0 − ∆t
n−1
∑

i=1

τ̇i

= τ0 − ∆tδ̇EQ

n−1
∑

i=1

∞
∑

j=0

Gij =: τ0 − τa

(19)

Choosing τ0 > τss + τa, the stress τn will exceed the steady-state stress τss for all times leading
thus to an infinite rupture.

3.2 Model B

Model B represents a more realistic framework of earthquake dynamics governed by RS friction
than model A, because three different states (locked, nucleating, and slipping) are considered.

Therefore, simulations include the following steps arising from simplification of the model
algorithm described in Sec. 2.1.2:

1. Calculation of the potential transition time t1→2 (state 1 → state 2) before the rupture
front as in model A.

2. Calculation of the potential transition time t0→1 using Eq. (7) numerically.
3. If t0→1 < t1→2, perform transition 0 → 1, otherwise perform transition 1 → 2.
4. Update slip, stress, state variables and stress loading rates and go to 1.

Using uniform distributions of initial stresses τn(t = 0) ≡ τ0 and initial state variables θn(t =

0) ≡ θ0, the results indicate that vr depends mainly on δ̇EQ and τ0. Transforming δ̇EQ to the
dynamic stress drop in a cell where rupture starts, ∆τ , leads to

∆τ =
G

2vs

δ̇EQ, (20)

with the shear modulus G = 30 GPa and the shear wave velocity vs = 3 km/s [8]. We consider
results of vr depending on ∆τ and τ0. An example for the evolution of rupture velocity is
shown in Fig. 5. Again, the value of vr approaches a constant value after some time. Figure 6
illustrates the dependence of vr on ∆τ and τ0. Three regimes with different physical meaning are
distinguished by means of the shear wave velocity vs = 3 km/s and the pressure wave velocity
vp = 5.2 km/s. While the regimes with sub-shear ruptures (vr < vs) and super-shear ruptures
(vs < vr < vp) resemble physically plausible behavior, a large fraction of the parameter space
spanned by ∆τ and τ0 is characterized by vr > vp, that is a non-causal model.

In general, the rupture velocity can become arbitrarily high (for τ0 close to the steady-
state stress τss), there is a lower bound vr 6= 0 for an unloaded state-0-region (τ0 = 0). For
commonly assumed values of the dynamic stress drop ∆τ = 10 MPa . . . 50 MPa and initial
stresses τ0 ≤ 0.7τss, the rupture velocity take values vr = 1 km/s . . . 11 km/s.

A main goal of this work is to provide constraints for model parameters leading to realistic
model earthquake dynamics. Setting up an earthquake simulator for a specific region, model
parameters leading to non-causal model behavior should be excluded. Whether or not sub-shear
or super-shear can be considered as realistic, depends on the region under consideration.

4 Conclusions

Earthquake simulators are models for earthquake evolution with reduced physics that allow
for the calculation of long earthquake sequences. While traditional seismic hazard calculations
are based on the memory-less Poisson process and do not account for clustering in space and
time, earthquake simulators are capable to include physical properties to some extent. An
important challenge is to find a reasonable balance between realistic earthquake evolution on
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the one hand, and simplicity in the sense of low computational effort and only few adjustable
parameters on the other hand. RS friction has turned out to be a key ingredient for earthquake
physics, because of the experimental evidence (lab scale) and the ability to reproduce observed
earthquake clusters in numerical models on the scale of fault systems [7]. The earthquake
simulator proposed by [8] and extended by [18] may serve therefore as an attractive tool for
modern seismic hazard assessment.

In this study, we have simplified the two-dimensional model to a one-dimensional model
obeying symmetry along depth. In order to provide constraints for model parameters, we study
the existence of stable steady-state solutions of one-dimensional ruptures with well-defined
rupture velocity vr. The follow-up question is, whether reasonable values of vr can be attributed
to parameters of the model. Two implementations are considered: 1. an infinite half plane, which
is already nucleating, breaks down cell-by-cell; 2. the half plane is locked initially and undergoes
nucleation and breakdown in series. The latter model is a 1D simplification of the original model
of [8].

The results indicate that stable steady-state solutions of a 1D rupture exist in both models.
The framework of RS friction alone does not provide constraints for the rupture velocity vr. The
value of vr mainly depends on the initial state of the system: For a near-to-critical state, vr can
be arbitrarily high, while the value will be small, if the system is far from criticality at the begin
of the simulation. In the more realistic model, vr also depends on the earthquake slip speed, or
the corresponding value of the local stress drop. Imposing reasonable values for the velocities
of the seismic waves, vs and vp, it becomes possible to distinguish regimes in parameter space
that are characterized by sub-shear, super-shear, and non-causal rupture propagation. These
findings will have impact for the adjustment of the earthquake simulator to a specific fault
zone.

Future research in this direction includes both, theoretical and practical aspects. With
respect to the fix point in model A, it is interesting to conduct a more detailed analysis of the
stability of the fix point. So far, we have demonstrated that each spatially decaying distribution
of slip speeds leads to the convergence of vr. However, if the distribution is disturbed, it has to
be investigated, whether vr converges to the same value or to a different value. Regarding the
practical research, we have focused on a small part of the parameter space. Further constraints,
e.g. for parameters related to RS friction, have to be employed.
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Fig. 3. Model B: 1D Rupture evolution from state 0 (locked) via state 1 (nucleating) to state 2
(earthquake).
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Fig. 6. Model B: Transition from sub to super shear rupture (based on vs = 3 km/s) is indicated as a
blue contour line, the transition to non causal behavior (vr > vp with vp = 5.2 km/s) is marked as a
green contour line.

Table 1. Model parameters.

parameter value

normal stress σ 15 MPa
friction coefficient µ0 0.6
A 0.005
B 0.015
Dc 10−5 m
θ∗ 1 s
cell size ∆x 1 km
shear modulus G 30 GPa

earthquake slip speed δ̇EQ 1 m/s
(in model A)
vs 3 km/s
vp 5.2 km/s


