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Abstract 
We propose an integrated approach to estimating building inventory for seismic vulnerability 
assessment, which can be applied to different urban environments and be efficiently scaled 
depending on the desired level of detail. The approach employs a novel multi-source method for 
evaluating structural vulnerability-related building features based on satellite remote sensing and 
ground-based omnidirectional imaging. It aims to provide a comparatively cost- and time-efficient 
way of inventory data capturing over large areas. The latest image processing algorithms and 
computer vision techniques are used on multiple imaging sources within the framework of an 
integrated sampling scheme, where each imaging source and technique is used to infer specific, 
scale-dependent information. Globally available low-cost data sources are preferred and the tools 
are being developed on an open-source basis to allow for a high degree of transferability and 
usability. An easily deployable omnidirectional camera-system is introduced for ground-based data-
capturing. After a general description of the approach and the developed tools and techniques, 
preliminary results from a first application to our study area, Bishkek, Kyrgyzstan, are presented. 
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 1  Introduction 

Rapidly growing spatial concentrations of people, infrastructure and financial values in earthquake 
prone areas over the last decades have lead to drastically increased seismic risk [1]. In particular, in 
developing countries, such as many Central Asian countries, rapid urban growth is often 
accompanied by unplanned and highly vulnerable settlements, which dynamically change over short 
time-scales (a few years). This short time-scales, in combination with the large spatial extent and 
fragmentation over which the modification to vulnerability scenarios occur, represent a great 
challenge for local governments, which are often unable to continuously update the exposed 
building stock in order to adjust disaster risk reduction efforts accordingly. Therefore, an efficient 
vulnerability model should be able to cope with the increasing spatio-temporal variability of the 
dynamics of urban areas in order to successfully contribute to the main seismic risk model [2]. 
Commonly used procedures to analyse building inventory with respect to its vulnerability, such as a 
thorough (inside and outside) building-by-building analysis by structural engineers [3], may provide 



high quality vulnerability information, but can not adequately cope with the rapidly changing 
spatio-temporal conditions in many present-day cities [4]. On the other hand, an approximate 
evaluation computed on a much broader scale, for instance based on census data, provides only a 
rough estimate of the average vulnerability and does not allow small-scale hazard information such 
as local amplification effects to be exploited. As a result, inventory data and thus vulnerability data 
is often out-of-date, spatially fragmented or highly aggregated. Therefore, there arises the need for 
new approaches to estimating building inventory in a rapid, standardized, transferable and 
comparable manner. This need is furthermore underlined by the fact that also within the Global 
Earthquake Model (GEM) there is a global component focusing explicitly on the development of 
new tools for inventory data capture [5]. 
Many features that can influence the seismic performance of a building are visible from the outside, 
and can therefore be captured remotely by images and be quantified using a visual assessment. 
Within this context, satellite remote sensing shows great potential for rapid vulnerability assessment 
over various spatial and temporal scales, covering large geographical areas at comparatively low 
costs. Previous studies have largely focused on techniques for extracting building footprints from 
high-resolution optical satellite imagery (e.g. Quickbird, Ikonos) [6,7]. Other satellite sensors have 
been sparsely tested for their applicability to inventory estimation for vulnerability assessment and 
only a few studies have used remote sensing to develop a comprehensive multi-parameter database of 
inventory features [8]. In this context, the potential of multi-sensor and multi-scale analysis, which combine 
satellite images of different types and geometrical resolutions, needs to be further explored [9,10]. A pure 
satellite remote sensing approach has limitations in that it is only capable of providing information 
about vulnerability-related features that can be assessed from the top view. To provide a 
comprehensive analysis of structural vulnerability, analysis of the façades of buildings should also 
be taken into account. Omnidirectional imaging can provide the necessary street view and shows 
great potential for georeferenced information extraction [11,12]. Nevertheless, its potential is still 
not fully tapped and further research is neccessary to improve its applicability for building feature 
extraction in the context of seismic vulnerability assessment. Integrated approaches, which combine 
satellite and street view data are rare and have so far mainly focused on image-capturing rather than 
on feature extraction [13]. 
In this paper, we propose a new approach to the estimation of building inventory as basis for 
seismic vulnerability assessment which is able to cope with the spatio-temporal dimension and 
dynamics in present-day cities. The novelty of the approach is that it combines multiple imaging 
sources and techniques from satellite remote sensing and omnidirectional imaging within the 
framework of an integrated sampling scheme, where each imaging source is used to extract specific, 
scale-dependent information. In an initial top-down analysis step, processing flows downwards from block 
scale (medium-resolution satellite images) to building scale (high-resolution omnidirectional and satellite 
images). Across this pyramidal searching, only the necessary data is acquired, processed and the focused 
geographical extent is narrowed. The aim is to minimize acquisition costs and processing time and to guide 
more detailed building-by-building surveys. The analysis of high-resolution satellite and omnidirectional 
images allows for a detailed quantification of vulnerability-related inventory features on a building-by-building 
basis whereas the analysis of medium-resolution satellite data is used to detect homogeneous urban structures at 
block scale and to identify representative sample areas for the high-resolution analysis. Therefore, in a 
subsequent bottom-up analysis, the high-resolution information (extracted from the identified sample areas) can 
be extrapolated to the corresponding homogeneous urban structures. This leads to an improved level of detail of 
inventory information at block scale and can provide a comprehensive vulnerability dataset for a whole city. As 
a case study, we present our results of applying this technique to Bishkek, the capital of Kyrgyzstan. 

 2  Outline of the approach 

Our approach is based on a multi-stage stratified sampling (Fig. 1). We focus on two different levels 
of scale, which we will refer to throughout this article as building scale and block scale (Table 1). 
At building scale, any information will be defined at the most detailed level, while at the broader 



block scale, we will usually refer to aggregated information. 
 

Table 1. Considered spatial scales, corresponding available input data and vulnerability-related features. 
Scale Description Input data (Imagery) Vulnerability-related features Assessment

Building 
Small scale, detailed 

information 
High-resolution from satellite 

or airborne, ground-based 
from omnidirectional 

Construction type, building-
footprint, area, shape, height, 

number of storeys, age, use, etc. 

Local 

Block 
Medium scale, partly 

aggregated information 
Medium-resolution from 

satellite 
Landuse / landcover, age of 

built-up areas 
Regional 

 
We propose on the block scale, a regional assessment of urban structures on the basis of medium 
spatial but high temporal and spectral resolution satellite images (see Chapter 3). Using image 
segmentation, multi-temporal change detection and machine-learning based image classification, 
the urban environment can be delineated into areas of homogeneous urban structure, which define 
the strata composing our stratified sampling scheme. For each stratum, a simple random sample is 
drawn, whose size is chosen following a proportional allocation scheme, as described in Chapter 4. 
The block scale is particularly suitable for most of the subsequent stages towards the analysis of the 
building inventory and thus the assessment of its vulnerability, since it provides a meaningful 
aggregation of the exposed stock information based on physical factors, therefore potentially 
reducing the estimation error. Moreover, such an aggregation could greatly reduce the 
computational burden usually associated with risk and loss assessment for cases where the exposed 
inventory involves a large portfolio of buildings.  
Inside the identified sample areas, a more detailed local assessment on building scale is carried out 
using high-resolution omnidirectional and satellite images. The analysis of ground-based 
omnidirectional images provides a street view of the objects of interest and therefore allows the 
extraction of detailed building features such as building-height, vertical shape or detection of soft-
storeys. Additional vulnerability-related features can be extracted from high-resolution satellite 
images, which provide the top view of the objects of interest. A rapid data acquisition and analysis 
based on omnidirectional imaging is described in Chapter 5. Given the assumption that each stratum 
is composed of homogeneous urban structure, the extracted vulnerability-related inventory features 
can be back-propagated from building scale to block scale using the corresponding stratum as a 
basis.  
Due to the type of input data and standardized analysis techniques, the approach can deliver 
comprehensive inventory data over large areas, with consistent quality. It can therefore provide a 
transparent and comparable data basis for vulnerability assessments, which can be applied over 
various scales to different urban environments.  

 
Fig. 1. Outline of the approach to multi-scale inventory data capture for rapid seismic vulnerability assessment. 



 3  Analysis of urban structures on block scale from remote sensing 

'Urban structure types' are groups of buildings, open spaces and streets, which form a unit since 
they show strong similarities in the three components. Urban structure types are in the following 
defined as spatial units on block scale, which are homogeneous in medium-resolution satellite 
images in terms of their physical appearance (landcover) and usage (landuse) as well as their 
approximate age. The delineation of a city into areas of homogeneous urban structure types aims at 
creating the strata for the identification of representative sample areas for the detailed analysis of 
the building stock with high-resolution satellite and omnidirectional imaging. It can furthermore 
provide an estimate of the value and distribution of crucial vulnerability indicators at the block 
scale, such as predominant building-types and building-ages. The analysis of urban structures via 
remote sensing at block scale is carried out in three successive stages of stratification (Fig. 2). 
 

Fig. 2. Analysis of urban structures from medium-resolution satellite images. 
 

The input data used for this analysis are images from the Landsat Thematic Mapper (TM) and 
Multispectral Scanner (MSS), with 30 m spatial resolution for TM and 60 m for MSS. Landsat TM 
data covers a spectral range of 0.45-2.35µm in 6 bands, whereas MSS data covers a range of 0.5-
1.1µm in 4 spectral bands. Both satellite sensors have a large swath-width of 185 km, which allows 
for capturing a city as a whole within one or a few images. Furthermore they are characterized by a 
high temporal resolution with repeat periods of 16 days, global coverage and a publicly accessible 
image archive which dates back until 1972 and is free-of-charge. 

 3.1  Segmentation 

The first stage of stratification is image segmentation. The segmentation outlines areas in the 
satellite image, which are homogeneous in terms of their spectral response. These areas cluster the 
original image pixels into segments, based on similarity criteria. Ideal segments are considered as 
singular entities composing the image (sometimes also called superpixels), but they can provide 
additional information compared to a single pixel. Geometrical and textural information can be 
derived from segments and later be used as additional input features for further processing [14].  
In this study we use an efficient graph-based image segmentation algorithm developed by 
Felzenzwalb and Huttenlocher [15]. The brightness values of the image pixels in the six spectral 
bands of Landsat TM are taken as input features for segmentation. It should be commented that the 
brightness of a pixel refers to a 6-dimensional vector containing the intensity of the pixel (usually 
an integer in the range 0-65535) in each of the 6 spectral bands. The segmentation algorithm is 
based on selecting edges from an undirected graph, where each pixel represents a node in the graph, 
and the neighbouring pixels are connected by edges. The dissimilarity between pixels is measured 
by weights on each edge. As an edge weight function, we use the L2 euclidean distance in the 6-



dimensional space spanned by the spectral components of pixels connected by an edge. The 
algorithm therefore measures the evidence for a boundary between two regions by comparing the 
brightness differences across the boundary with those between neighbouring pixels within each 
region. A single parameter k conditions the average size of the resulting segments, therefore 
defining the scale of analysis [15]. Appropriate parameter values have been selected on a trial-and-
error-basis using visual scene interpretation. The algorithm is computationally efficient and has the 
ability to preserve detail in low-variability image regions while ignoring detail in high-variability 
regions. It is therefore highly applicable to remotely sensed images, which are usually rather 
computationally intensive and characterised by image regions of diverse variability. The 
segmentation of the Landsat images is fully automated. A more detailed description of the 
segmentation algorithm can be found in [15]. 

 3.2  Landuse / landcover (LULC) classification 

In the second stratification stage, the segments are labelled with their predominant landuse / 
landcover (LULC) and approximate age of built-up areas. Object-oriented LULC classification 
provides information about the predominant building types. The predominant building type can be 
seen as proxy for the vulnerability of an area, which can be extracted from medium-resolution 
satellite images at block scale, and is therefore an important information layer, that can help to find 
suitable sample areas for the high-resolution analysis of earthquake vulnerability at the building 
scale. 
Within a supervised classification framework, we use a support vector machines (SVM) statistical 
learning algorithm to label the segments according to the desired LULC classes [16]. Among the 
most commonly available supervised learning approaches (neural networks, logistics regression, 
decision trees to name only a few), SVM has been chosen because it is a well known and 
mathematically sound technique, able to determine the optimal decision boundaries that partition 
the feature space according to the properties of selected training samples [17].  
When training the SVM´s model, training samples for each LULC class are manually selected 
based on ground-truth information. In general, the information comes from experts, who are 
familiar with local building construction, from visual interpretation of high-resolution aerial and 
satellite images or from the interpretation of ground-based GPS-photos. During the training phase, 
the optimal SVM parameters are selected automatically according to a standard k-fold cross-
validation method. The training samples are randomly split into ten-fold subsets, where one subset 
is used to train the model and the others form the test samples. An optimal SVM parameter selection 
is reached when the cross-validation estimate of the test samples error is minimal. Using a k-fold 
cross-validation moreover further decreases the risk of over-fitting [18]. 
The feature vector describing any segment to be classified is composed of 26 components, which 
include the mean and standard deviation of the spectral values for the 6 Landsat bands, the mean 
and standard deviation of the Normalized Difference Vegetation Index (NDVI) [19] and 2 band-
specific texture descriptors derived from the Gray-Level Co-occurrence Matrix (GLCM) computed 
over the segment [20]. The texture descriptors take into account neighbourhood relations between 
pixels, and are of particular importance when analysing the urban landscape, where LULC classes 
are mainly defined by the visual pattern of buildings, streets and open-spaces. All descriptors of the 
feature vector are calculated separately for each segment. 
To ensure a higher degree of transferability of the method, a classification hierarchy is set up. The 
hierarchy consists of three levels of increasing spatial resolution ( l 1 ,

l 2 ,
l 3 ) that give step by step 

guidance to find the number and value of classes that best fit a specific study area. For l 1 the four 
classes 'urban / built-up land', 'vegetation', 'water' and 'other (rocks, bare soil, etc.)' are 
distinguished. Because the focus of our approach is urban built-up areas, only the class 'urban / 
built-up land' is further refined and split into more detailed classes in l 2 ('residential', 'industrial / 
commercial', 'mixed built-up land') and l 3 levels. The classes in l 1 and l 2 are fixed and can be 



applied to any study area worldwide, whereas the l 3 classes are dynamic and are dependent on the 
specific study area and existing local building classifications (see Fig. 5 for the l 3 classes defined 
for the study area). 

 3.3  Multi-temporal change detection 

The age of built-up areas is the outcome of a multi-temporal change detection. Change detection is 
a process that identifies spatio-temporal differences in the state of an object by observing it at 
different times. It allows for detecting if a change has occurred, identifying the direction, 
quantifying the spatial extent, and assessing the spatial pattern of the change [21]. To assess changes 
in the urban environment and therefore obtain information about the approximate age of built-up 
structures, we use multi-temporal change detection based on a quantitative analysis of Landsat TM 
and MSS images, which cover the same spatial extent but are taken at different times.  
Among the different change detection methods available, post-classification comparison was 
chosen, as it directly provides not only information about the spatial distribution and rate of change, 
but also about the change direction [21,22]. Within this change detection method, LULC 
classifications that distinguish built-up from non-built-up areas for the individual Landsat images 
are compared on a pixel-by-pixel basis and a change matrix is generated. This change matrix 
provides the 'from-to' information of every LULC class, which allows for identifying and analysing 
changes. The accuracy of this change detection method depends mostly on the accuracy of the 
individual LULC classifications of input images. 
LULC classification for each input image is carried out using the same approach described in 
Chapter 3.2 with l 1 as the scale of classification hierarchy. A more detailed level of classification, 
which further divides the urban areas according to their use, is not necessary for an analysis of the 
age of built-up structures in general. In fact, a more detailed classification could result in a decrease 
of the overall accuracy, as the selection of high-quality and sufficiently numerous training samples 
gets more difficult with increasing numbers of classes, in particular for historical image data [21]. 
After implementing the post-classification comparison, the generated change matrix is prepared in a 
way that only changes of the urban built-up structures are highlighted. By analysing the changes 
between the different acquisition times of the input images, the approximate age of built-up areas 
can be derived. The age of built-up structures is of particular interest when selecting sample areas 
for a more detailed seismic vulnerability assessment, because seismic building codes and 
construction practises change over time and can significantly influence the vulnerability of 
structures. Therefore the age of built-up structures is often considered as additional proxy when 
assessing their vulnerability for example according to the European Macro-seismic Scale (EMS-98) 
[23]. 
 
In the third stage of stratification, the LULC classification is combined with the age of built-up 
areas into a new thematic layer by spatial intersection. The final output of this stage is thus the 
partitioning of the urban environment into urban structures types, which are at block scale 
homogeneous in terms of LULC and approximate age. This thematic layer represents the final strata 
for sampling. 

 4  Sampling and routing for efficient omnidirectional imaging surveys 

A careful identification of sample areas for a more detailed analysis of the building stock is 
important in order to achieve the best trade-off between observation area, acquisition time and 
costs. To allow for better efficiency of ground-based data-capturing, street data inside the sample 
areas is also taken into account. Optimal driving routes, which cover all the streets inside the sample 
areas using the shortest-path, are calculated for easy and rapid in-field navigation.  



 4.1  Sampling 

From a statistical point of view, estimating inventory information at block scale can be regarded as 
the problem of estimating an unknown population [24]. Usually estimation is based on a sampling 
frame, which defines the composition of the population, how to draw samples from it and what kind 
of information each sample is composed of. Let us observe that the considered population has the 
following attributes: 
 

1. It is functionally dependent on several physical attributes of the building stock.  
2. It can be estimated at building scale by visual observation. 
3. It can be approximated by a spatial function of the geographical position. 

 
Therefore, in our sampling frame, we will draw samples from the building population, where each 
sample will involve the measure of several physical attributes of the selected buildings (at building 
scale). Different sampling methods are in principle available: systematic sampling or simple random 
sampling (SRS) for instance would provide a reasonable scheme in absence of any other 
information. We know, nevertheless, that the population of interest is connected to the composition 
of the urban morphology, thus will likely exhibit a great variability related to LULC, the time of 
construction of the buildings and other social and economic parameters. An estimate based on a 
simple random sample would be affected by such variability in term of precision and mean square 
error. In this case, a stratification of the sampling would instead achieve a much greater precision, 
provided that it is possible to suitably partition the population into sub-populations as homogeneous 
as possible with respect to the features of interest [24]. In stratified sampling the samples are drawn 
from different disjoint subsets of the population, called strata, instead of from the sampling frame 
as a whole. In our approach, the urban structure types form the strata for sampling. Therefore, for 
each urban structure type, a simple random sample is drawn. 
The actual sampling process is based on a proportional allocation scheme. Proportional allocation 
is important in order to obtain an unbiased estimate of the features of interest, and to ensure that 
sub-populations of different size will be evenly represented in the sampling process [24]. In a first 
step the largest segment of each stratum is selected for a closer inspection. The selected 
representative segment is then further analysed in a second step to define the final sample area for 
the related stratum. Preference is given to square-shaped sample areas due to shape-constraints in 
the data ordering process for high-resolution satellite images, which are used for a local assessment. 
The location of the sample area inside the representative segment is chosen randomly. The 
algorithm designed to calculate the sample areas takes a minimum and maximum threshold for the 
desired size of a sample area as input values, which are defined proportional to the stratum size. To 
determine the sample size for a desired level of statistical reliability the Coefficient of Variation 
(CV) is used [25]. Due to a lack of information about the actual composition of the building 
population from previous surveys, a CV for each stratum is first approximated from the mean and 
standard deviation of the brightness values of the Landsat image. Variations in the image reflect the 
underlying urban structure, but more detailed conclusions about the composition of the building 
population can not be drawn only from the image information and the actual building population 
may have a larger variability. Therefore, the largest CV approximated from the image information is 
used for the calculation of the minimum size threshold. To account for a possibly larger variability 
of the building population the maximum size threshold is set to the stratum size. Choosing a range 
of acceptable sample sizes allows for giving tolerance to the sampling size while giving preference 
to the sampling shape. If a maximum sized, square shaped sample does not fit into a segment at the 
randomly selected location, another location is chosen until the sample area fits. If no location can 
be found inside the representative segment for the desired sample size and shape, the sample size is 
linearly reduced by 1 m² and the location search is repeated. These steps are iteratively carried out 
until a square sized sample fits into the segment or until the minimum size threshold is reached. If 
the minimum threshold is reached and a sample area still does not fit into the segment, the whole 
segment will be taken as sample area.  



The representative sample areas, which are automatically identified by this procedure, form the 
spatial extent for a detailed local assessment of the building stock with high-resolution satellite and 
omnidirectional imaging on building scale.  

 4.2  Routing 

Once representative sample areas are identified, optimal driving routes for a ground-based 
omnidirectional imaging survey need to be calculated within these areas. An optimal route within 
the context of this study means a driving path which covers all street-segments in the sample areas 
with the shortest overall driving length. Calculating routes in advance aims to reduce the overall 
driving length of a ground-based survey and therefore to minimize costs and time for the field-trip. 
Furthermore, data gaps and overlaps can be reduced and therefore disk space can be optimized by 
avoiding the capture of redundant data.  
We use freely available georeferenced street-data in digital vector-format from OpenStreetMap 
(OSM) as a basis for the routing. OSM is a free editable map of the world that aims at creating and 
providing free geographic data, such as street maps [26]. OSM works after the 'wiki-principle', 
which means that quality assessment of the content is assured by the self-regulating mechanism of a 
user community. Contributors to OSM bring in their local knowledge and create and edit 
geographic data by digitizing from aerial images (provided by OSM) or by GPS tracking. Because 
the quality and completeness of the provided data vary from place to place, a final check of the 
desired dataset and its topology is needed and manual corrections or extensions may be necessary 
before using OSM data. The cleaned and updated street vector data is then used to create a routable 
geometric network with cost-factors for travelling along a specific street-segment. The major cost-
factor used is the length of a street-segment, but also additional cost-factors and restrictions, such as 
street quality, turn restrictions, traffic information, etc., can be added to the network if available. 
In the context of this study, the routing problem can be reduced to the common Travelling Salesman 
Problem (TSP). The TSP is a well-studied combinatorial optimization problem, in which a traveller 
is required to minimize the total travelling distance in order to visit all the stops on his list only once 
[27]. As we want to cover all street-segments inside each sample area, stops are set at the central, 
start and end node of each street-segment. To solve the routing problem we use the ArcGIS 9.3 
network analyst route solver tool. The underlying algorithm determines the best route through a 
series of stops with a minimum cost by using a modified Dijkstra algorithm [28]. The calculated 
routes are used during field-surveys in combination with real time GPS-tracking to navigate the car 
with the omnidirectional imaging system through the pre-selected sample areas in the most efficient 
way. 

 5  Ground-based omnidirectional imaging 

In the last few years omnidirectional imaging has increasingly gained attention, boosted by 
applications such as Google StreetView, which clearly showed how powerful this technique can be 
in aiding people to visually explore an unknown environment [11]. 
Omnidirectional images are projections of a spherical field of view onto a central point [29]. 
Therefore, their natural representation should be a curved manifold [30]. Due to the inherent 
difficulties in handling and processing such a structure, omnidirectional images are usually mapped 
onto a planar, equirectangular representation. This mapping, also known as plate carrée, is an 
equidistant cylindrical projection that maps meridians onto equally spaced vertical straight lines, 
and circles of latitude into equally spaced straight horizontal lines [31]. This representation can be 
processed as a conventional image, taking into account that the spatial resolution of the image is 
different from point to point and that there is a strong distortion around the poles. The 
equirectangular representation is widely used, mostly due to the very simple relationship between 
the location of a point on the map and its corresponding location on the sphere that has been 
mapped [32]. 



 
Omnidirectional imaging is particularly convenient for any application related to environmental 
modelling [12,30], in particular due to the following reasons: 
 

1. Capturing all at once a very wide (360°) field of view means that there is no need to choose 
what to capture. Were a conventional camera to be used instead, the operator would consider 
a number of choices, favouring for instance certain buildings or not following them enough 
to capture important details. This could bias the outcomes of the survey and also affect the 
overall speed of the survey operation. 

2. There is no need of experienced operators, and the whole image capturing process can be 
performed almost automatically by simply driving around an area of interest with the system 
fixed onto the roof of a car. The system is easily mounted on different car types and can be 
monitored by an operator inside the car. Therefore, such a system can be deployed and 
operated very easily and extensive surveys can be performed in a reduced amount of time.  

3. In the perspective of an automated analysis and interpretation of the images, the extended 
field of view of the omnidirectional camera allows for the more robust detection and 
tracking of geometrical features that can be used to infer 3D characteristics of the objects 
depicted. 

 
The system is basically composed of a camera, a GPS receiver and a laptop. A simple yet effective 
mounting system, featuring a light-weight aluminium frame and 4 high-power suction cups, allows 
the rapid and easy mounting on different cars. A Ladybug3 omnidirectional camera from Point Grey 
Research Ltd. made up of 6 colour CMOS cameras has been selected. The camera has a single ieee-
1394B interface link for high-throughput data capturing. Image sequences described in this paper 
have been captured at a sampling rate of 10 Hz, full resolution (5700x2700 pixels) colour JPEG 
format. The GPS receiver includes a low-cost, patch antenna and a small board connected via USB 
to the laptop, and provides positions with a 1 Hz sample rate. Position is then associated to each 
frame of the sequence by interpolation of available GPS data using b-splines. A custom software 
application has been developed to capture, synchronize and save the different data streams. The 
synchronization of the data is based on the high-quality timer embedded in the ieee-1394B 
hardware controller, which provides a basic 125 microsec time-frame, reasonable for our purposes. 

 5.1  Automated estimation of building height from omnidirectional imaging 

Image processing applied to omnidirectional imaging is a potential source of information related to 
seismic vulnerability. As a matter of fact, many features that can influence the seismic performance 
of a building are visible from the outside, and are therefore subject to quantification by means of a 
suitable, possibly automatic, visual assessment. Among such features we can (not exhaustively) 
mention height, number of storeys, presence of weak/soft storeys, number and distribution of 
openings (windows and doors), 3D shape, symmetry and distribution of vertical and horizontal 
elements.  
An extensive assessment of the application of advanced computer vision techniques to the task of 
automatically extracting such features from an omnidirectional image stream is currently in 
preparation. In the following, we will describe a proposed processing pipeline for inferring 
information about the height of a building, assuming that we know its position. Let us consider, 
inside a longer sequence, three omnidirectional images captured sequentially, and assuming that one 
or more buildings are visible in the sequence. GPS-based positioning is available for each frame of 
the sequence. Since the camera is moving while capturing the images, each available frame will 
represent a coordinate reference frame encoding a different point of view. By computing the optical 
flow, the vector field describing the apparent displacement of each pixel between two images is 
obtained [33], providing spatially dense information about the 3D structures visible in the images 
[34]. In order to achieve this, we compute the optical flow first on the frames f 0 , f + 1 and then on 



the couple f 0 , f − 1 . The two different vector fields, combined, describe the apparent displacement 
of each pixel from frame f − 1 to frame f + 1 . Therefore for any point pa in the frame f − 1 , a 
displacement vector is computed which maps to a point pb in the frame f �1 (Fig. 3). We consider 
three frames (instead of two) in order to obtain a longer baseline T (defined as the actual distance 
between two observation points), therefore reducing the uncertainty in the evaluation of the 3D 
coordinates.  
If we suppose that most of the image pixels are related to fixed structures (typically buildings), we 
can use their apparent displacement to compute the change in pose (rotation) and the displacement 
(translation) of the camera between the two frames [32]. The matrix which encodes this information 
is called the essential matrix [33] and can be computed by the set of correspondences provided by 
the combined optical flow fields [35]. The two matrices explicitly describing rotation and 
translation are then extracted from the essential matrix following the method described by Horn 
[36].  
As pointed out by Horn [36], the resulting translation matrix is defined up to a scale factor, 
therefore we need a calibration factor to obtain metrically valid estimates. The calibration factor is 
provided by the absolute magnitude of the real displacement of the camera, provided by comparing 
the GPS position of the considered frames. 
Once we have successfully characterised the 3D transformation binding the two reference systems, 
we can obtain the 3D coordinates of the (real) points that have been mapped onto the image pixels 
by applying a suitable triangulation. For each couple of pixels pa , pb above defined, using the 
already computed 3D transformation, we define two lines stemming from the two centres of the 
projections (the origins of the two reference systems related to the two positions of the camera) and 
passing by the 3D point on the surface of the sphere related to the pixel coordinates in the images 
(Fig. 3). 
 

Fig. 3. Two omnidirectional frames are represented as spherical images whose centres and orientations define two 
reference systems. The positions of the centres are given by GPS positioning and take into account the movement of the 

camera while acquiring the images. 
 

The two lines would theoretically cross in the 3D position of the point that generated the two 
projections. Due to the inherent uncertainties, the lines are not likely to exactly cross, but it is 
common to define the crossing point as the median point of the minimal segment joining the two 
lines. The reconstructed 3D point p is defined in the reference system of the camera at frame f − 1 . 
Since we know the coordinates of the centre of projection and the orientation of the camera in the 
external coordinate reference frame (by the GPS information embedded in frame f − 1 ), we can 
describe the point p in a common reference system, G where a sparse grid is defined. 
The considered grid is defining a Cartesian coordinate system G , depicted in Fig. 4. The 
reconstructed 3D points are instead defined within a moving coordinate system attached to the 
camera, and indicated as G in Fig. 4. (for sake of simplicity all reference systems are considered 



two-dimensional for positioning purposes). The two reference systems are linked by the simple 
relationship: 

�PG= R− 1 �PC+ �T (1)

Where �T and R are respectively the translation vector and the rotation matrix between the grid and 

the camera reference systems, and �PC and �PG are the horizontal projections of the same 3D point in 
the two coordinate systems. The origin of the camera system is located in its optical centre, and its 
direction is defined by the versor of the instantaneous velocity vector, as computed from the camera 
GPS trajectory. Once the coordinates of the point are defined in the G reference system, the active 
element of the grid Gij is selected and the measurement is added (Fig. 4).  
 

Fig. 4. The different coordinate reference systems (RS) considered; G is the Grid RS, C is the Camera RS, oriented 
according to the instantaneous camera velocity versor. The curved path represents the camera trajectory. The 

square Gij represents the i,j element of the grid, where the measurement with horizontal coordinates
�PC would be 

stored. 
 
For sake of simplicity, we consider each reconstructed 3D point as a single measurement, and 
aggregate all measurement in the grid spanning the area of interest. Every cell of the grid, by default 
of size 10m, will be given a value depending on the measurements falling in the cell. The value is 
obtained by computing the cumulative histogram of the z-component zi of the 3D points pi falling 
in the cell, where the bins range from max (zi) to min (zi) , and choosing the first bin whose 
occupancy is over a threshold (usually from 20 to 40 pts). Such a threshold is useful to filter out 
outliers or 3D points related to punctual features such as, for instance, antennas or small chimneys. 
Depending on the quality of the 3D reconstruction, the step of the grid can be changed in order to 
consider extracted features at a different scale. Since we focused on the height of the buildings as 
the most significant geometrical parameter related to vulnerability, a coarse grid has been chosen to 
filter out high-frequency noise in the measurements.  
If the position of a building is already known, for instance resulting from the manual or automatic 
analysis of high resolution satellite images, the 3D measurements can be used to assign the most 
likely height to the building. This is accomplished by taking the average value of the non-empty 
grid elements overlapping the building, if the footprint is available, or just the one containing the 
building location if specified by a point. 

 5.2  From building inventory to seismic vulnerability 

If significant inventory features are available for one or more buildings (e.g. construction type, 



building age or building height) an estimate of their seismic vulnerability is possible. Different 
approaches have been proposed to estimate vulnerability [2], and a discussion about the specific 
choice is beyond the scope of the present article. We just remark that often information about the 
building inventory is available, relating specific features with a most likely vulnerability 
description. Hence we can refer to those features as vulnerability proxies, and use the collected data 
about the inventory to infer vulnerability. Following the approach proposed in this article, for 
instance, it is possible to obtain an estimate of the approximate building age from the multi-
temporal analysis of medium-resolution satellite images and a precise estimate of the building 
height for those buildings which have been captured by the omnidirectional camera. The LULC 
classification based on medium-resolution satellite images can furthermore give a first 
approximation of the pre-dominant building type of an area. A more precise estimate of the building 
type for a specific building can be automatically inferred from the previous parameters, where 
enough a-priori information is available, or manually assessed by inspecting the omnidirectional 
video stream. An exemplification of a procedure which links these inventory features with a local 
building taxonomy to classify building vulnerability according to EMS-98 is given in Chapter 6 for 
the city of Bishkek, Kyrgyzstan. 

 6  Case study: Bishkek, Kyrgyzstan 

Bishkek, the capital of Kyrgyzstan, is situated in one of the most seismically hazardous zones in 
Central Asia. The city developed primary during the 20th century and therefore only a relatively 
short record of strong earthquakes in the area is available in comparison to other parts of Central 
Asia. A probabilistic seismic hazard assessment computed at regional scale for Kyrgyzstan confirms 
the high hazard of the region and shows that a peak ground acceleration of up to 4.5 m/s² has a 
probability of 10% to be exceeded in the next 50 years [37]. Taking into account the centralized 
design and construction practices in the former Soviet Union, the buildings in Bishkek are moreover 
highly vulnerable to earthquake hazard. A seismic risk scenario carried out on city scale for 
Bishkek, which considers a magnitude 7.5 earthquake occurring over the Issyk-Ata fault, estimates 
that 30% of the buildings will collapse and 63% of the buildings will be severely damaged [38]. 
A crucial part of the seismic risk assessment involves the analysis of the existing building stock 
with respect to its vulnerability. During a time period of five years from 1999 to 2004, a thorough 
inside and outside building-by-building assessment was carried out by civil engineers for central 
parts of Bishkek. This kind of assessment proved to be sufficient in determining the vulnerability of 
these buildings to earthquakes, but it is highly time- and cost-consuming and as a result the dataset 
is spatially fragmented and not complete. Furthermore, given the rapid growth of Bishkek in recent 
years, there is neither up-to-date inventory data nor vulnerability classification data available for 
large parts of the city. Updating the existing inventory data using a traditional civil engineering 
approach to provide a complete earthquake vulnerability assessment of the whole city would not be 
feasible due to cost and time constraints. On the contrary, the data used in Bindi et al. [38] for 
Bishkek is highly aggregated for the city as a whole and does not allow for a spatially more detailed 
vulnerability model. This lack of inventory data significantly impedes progress in seismic vulnerability and 
risk assessment. To overcome the lack of data, satellite- and ground-based remote sensing are proposed 
as a way to provide an up-to-date and realistic inventory assessment for the city of Bishkek on 
different scales. 
An analysis of the urban environment at block scale using remote sensing has been carried out to 
delineate Bishkek into urban structure types. In the first stratification stage, a Landsat TM image 
from 08.07.2009 was segmented based on the brightness values in the 6 spectral bands. 
Superimposing the resulting segmentation output onto a high-resolution Quickbird image from 
09.11.2009 allowed for a qualitative assessment of the accuracy by visual inspection (Fig. 5). Urban 
areas of different complexity, which appear homogeneous in terms of their spectral response in the 
Landsat TM image, could be outlined properly. 
 



Fig. 5. Segmentation of Landsat TM superimposed on a) and b.1) Landsat TM (30 m) and b.2) Quickbird (0.6 m). 
 

In the second stratification stage, the segments were labelled according to their predominant LULC. 
Following the classification hierarchy and taking into account expert knowledge on local building 
construction [39], 10 different LULC classes could be identified for the city of Bishkek (Fig. 6). A 
total of 200 ground-truth points have been collected by visual interpretation of GPS-photos and 
high-resolution aerial and satellite images from Google Earth. For each LULC class, 10 training 
samples were randomly selected from the ground-truth points to feed as input for the SVM learning 
machine. The rest of the ground-truth points have been used as test samples to assess the accuracy 
of the resulting classification. An overall accuracy (defined as total number of correctly classified 
segments divided by the total number of test samples) of 71% was assessed for the classified image. 
Misclassifications were mainly related to a partial overlap of the textural and spectral signatures of 
bare soil and rock with certain LULC classes of the built-up areas, and occurred mostly outside of 
the city borders of Bishkek in rural areas with large fallow agricultural fields or in mountainous 
areas with large patches of bare rock. These areas were falsely classified as 'industrial / 
commercial'. Through only minor manual post-classification refinement the overall accuracy could 
be increased to 81%. Covering 67.4% of the total built-up area of Bishkek, 1-2 storey masonry, 
brick individual apartment houses (subdivided into three different classes: low, medium and high 
built-up density) are clearly the dominating building type. 3-6 storey masonry, brick, concrete, 
panel buildings with 11.4% are the second most wide spread building type followed by 7-9 storey 
concrete panel, frame and monolithic buildings with 2.4% of the total built-up area. Mixed built-up 
areas account for 7.4%, whereas industrial / commercial areas cover 11.4% of the built-up area in 
Bishkek. 
 



Fig. 6. LULC classification of Landsat TM image from 08.07.2009 for Bishkek superimposed on Quickbird. 
 

Multi-temporal change detection using a post-classification comparison method was carried out to 
assess the approximate age of built-up areas and to obtain information about the degree and 
directions of urban sprawl (Fig. 7). Landsat MSS and TM images from three different time-steps 
(1977, 1994, 2009) covering the same spatial extent were co-registered and used as input. Due to 
different spatial resolutions between the sensor systems, the MSS images were resampled to 30 m 
resolution of Landsat TM. Every image was segmented and classified separately into the four 
classes of l 1 of the classification hierarchy (Chapter 3.2). Within the change detection method, the 
different LULC classifications were compared on a pixel-by-pixel basis and change matrices were 
generated for the time-periods from 1977 to 1994 and from 1994 to 2009. The change matrices 
provide the 'from-to' information of every LULC class, which allowed for identifying and analysing 
the changes of the built-up areas separately. When using a post-classification comparison, the 
accuracy of the change detection result depends strongly on the accuracy of the individual LULC 
classification of the input images. Table 2 shows the results of accuracy assessments for the three 
classifications based on a comparison of the individual classification with independently selected 
test samples. 
 

Table 2: Accuracy assessment of the LULC classifications used as input for post-classification comparison (overall 
accuracy is defined as total number of correctly classified segments divided by the total number of test samples). 

Image (acquisition date) Overall accuracy 

Landsat MSS (22.08.1977) 88,33% 

Landsat TM (15.07.1994) 87,67% 

Landsat TM (08.07.2009) 90,00% 

 
In 1977 a total area of 117 km² was classified as built-up. In 1994 the built environment in Bishkek 
and its surroundings accounted for 152 km², while in 2009 the city reached a total built-up area of 
235 km². The urban sprawl between 1977 and 1994 was mainly concentrated on the suburban 
eastern and northern parts of the city with an absolute growth of 35 km² (urban growth rate of 
29.91%) and an annual percentage growth rate of 1.75%. Between 1994, three years after the 
Kyrgyz Republic became independent of the former Soviet Union, and 2009, Bishkek expanded 
rapidly with an annual percentage growth rate of 3.64% and an absolute growth of 83 km² (urban 



growth rate of 54.60%). Most of the buildings built during that time period are residential 1-2 storey 
buildings of varying construction material and were constructed mainly in the southern parts 
expanding rapidly towards the Issyk-Ata fault system. These areas close to the fault system, where 
many new buildings are still being constructed, show the highest seismic hazard [39]. Large 
quarters have also been constructed recently in the far northern parts of the city in the direction 
towards the Ala-Archinskoye Reservoir. 
 

Fig. 7. Approximate age of built-up areas from post-classification comparison of Landsat MSS and TM for Bishkek 
superimposed on Quickbird. 

 
In the third stratification stage, the two thematic layers of the LULC classification and the age of the 
built-up areas were intersected onto a new thematic layer representing urban structure types, which 
are on a block scale homogeneous in terms of LULC and approximate age. The urban structure 
types layer (Fig. 8) therefore provides a more detailed delineation of the city compared to the single 
LULC (Fig. 6) or age (Fig. 7) layers. A total of 21 urban structure types could be identified for the 
built-up area of Bishkek. The urban structure types consist of 7 different LULC classes of the built 
environment in combination with three different building age classes. Fig. 8 shows the urban 
structure types as well as distribution and extent of the 21 automatically identified representative 
samples. The total calculated sample area for Bishkek is 12.3 km². 
 



Fig. 8. Urban structure types forming the strata for automated selection of representative sample areas for Bishkek 
superimposed on a) and b.2) Quickbird and b.1) Landsat TM. 

 
To guide an efficient ground-based image capturing campaign in the most efficient way, optimal 
driving routes were calculated inside the sample areas based on modified OSM street-data. The only 
cost-factor used in this study is the length of a street-segment. Other cost-factors and restrictions, 
such as street quality or turn restrictions, could not be added to the network, because this 
information was not available beforehand. Stops were selected automatically at the central, start and 
end nodes of each street-segment and the best sequence of visiting the stops was calculated for each 
sample area separately using the ArcGIS network analyst route solver tool. The calculated routes 
were then used during a field-survey in Bishkek in combination with real time GPS-tracking to 
navigate omnidirectional image capturing from a car through the pre-selected sample areas in the 
most efficient way. The calculated route length accounted for only 125 km of the overall street-
length of 1468 km for the main urban area of Bishkek. This means a reduction of the observation 
route by 91.5% compared to the overall street-length. 
During the ground-based acquisition campaign of one week, almost 3 TByte of georeferenced 
images were collected, and are currently being processed. As an example of the type of outcome 
that we can envisage, we provide some results from the height assessment procedure. As shown in 
Fig. 9, it is possible to obtain a fairly accurate 3D reconstruction of the façade of a building from 
three contiguous georeferenced omnidirectional frames. The 3D reconstruction is defined in the 
reference system of the camera relative to the first frame of the subsequence. Since we know from 
the GPS track the position and the orientation of the camera at the same time frame, we can define 
the 3D coordinates of the reconstructed points in an external reference frame. Note that in this case 
it would be possible to assess several different geometrical characteristics of the building from a 
detailed analysis of the façade. Since here we are interested in the height of the buildings, we can 
define a two-dimensional height distribution over a local Cartesian grid. Each cell of the grid is 
given a value based on the reconstructed 3D points whose x / y coordinates are inside the area 
spanned by the cell itself. The 3D reconstruction based on three frames can be repeated, sampling 
the original frame sequence at equal intervals and upgrading each time the 2D measurement grid 
accordingly. Fig. 10 shows the 2D height distribution superimposed on a georeferenced satellite 
image.  
This example is representative of the quality of results that can be obtained in standard operational 
conditions: where buildings are mostly visible in the input images, the results from this height 
assessment procedure are satisfactory. Moreover, there is space for further and more advanced 
applications of computer vision techniques for automated extraction of vulnerability-related 
inventory features. 
 



Fig. 9. 3D reconstruction of the facade of a building (left) from three contiguous frames (f-1, f0, f1) of an omnidirectional 
sequence. The small step-back of the facade and the nearby building are clearly visible. At the base of the main building 

it is possible to notice two trees. 
 

Fig. 10. The estimated heights of the buildings are mapped as a 2D distribution on a georeferenced map (source: 
GoogleEarth). The estimated height is consistent with the manually assessed number of storeys of the considered 

buildings. 
 

An exemplification of how seismic vulnerability could be estimated is given in the following. The 
information we are starting from is the footprint of a small set of buildings, manually digitised from 
a high-resolution satellite image. The building footprints provide information about the buildings 
location and size. The buildings can furthermore directly inherit the features described by the strata 
they intersect, namely LULC and age. By intersecting the building footprints with the grid, that is 
storing the 3D measurements, it is possible to assign a height value to the building. The latter 
assignment is obtained by computing the weighted mean of the values in the grid cells having a 
non-empty intersection with the building footprint. The weight used is the normalised number of 
measurements in each cell of the grid. The uncertainty on the estimated height is the squared root of 
the weighted, unbiased variance.  
The number of storeys for each considered building is estimated considering a typical storey height 
of 3 m and an additional 1 m of cornice / roof structure, namely:  

nstoreys= �(height− 1)÷ 3� (2)

All the data collected, estimated or inferred about the small set of buildings considered in this 
example are shown in Table 3. The number of storeys has been correctly estimated and even 
considering that no ground-truth is available for a more rigorous validation of the photogrammetry, 



the estimated height values are reasonably satisfying. 
A preliminary estimate of the seismic vulnerability of the buildings according to EMS-98 has been 
obtained by analysing the most common building types in Kyrgyzstan, as described by the World 
Housing Encyclopedia (WHE) [40]. For each building the most compatible building type could be 
selected from the WHE based on its inventory features. Finally the vulnerability class, which is 
most commonly associated to the selected building type (also indicated in the WHE reports) has 
been assigned to the specific building. As shown in Table 3, the buildings #1 and #2 (Fig. 11) are 
compatible with building types described either by vulnerability classes E or C. The buildings #3 
and #5 are very likely to be described by vulnerability class E, and building #4 has been assigned 
vulnerability class C (Fig. 12, Fig. 13).  
Since our purpose is to test the feasibility of an automated estimation of the seismic vulnerability, 
the assignment has been done purely on the basis of the available data and does not involve any 
engineering consideration of the specific buildings. In the case of buildings #1 and #2, further 
analysis or a manual assessment (for instance by inspecting the omnidirectional images of the 
buildings) would provide a more reliable estimate of the vulnerability. Nevertheless, it is interesting 
to note that in the case of the building stock of Kyrgyzstan the height of a building, or better the 
number of storeys, is a key parameter in order to correctly infer the specific building type. This 
parameter may not be directly connected to the seismic vulnerability estimation, but it is proving 
critical to link the considered buildings to their most likely taxonomic description. 
 

Table 3. Example of building inventory data collected for a subset of buildings in Bishkek. 

Building # 

Dimensions  
from digitised 

footprints  
(m, length x width)

LULC of area 
from Landsat 

Age of area  
from Landsat

Height  
from omnidirectional 

(m, estimated ± σ) 

Nr. of storeys 
from height 

Most likely EMS-
98 vulnerability 
class inferred  

from WHE 

1 25 x 18 
7-9 storeys 

concrete panel, 
frame or 

monolithic 

1994-2009 

15,2 ± 1,6 4 E / C 

2 25 x 21 14,7 ± 2,6 4 E / C 

3 42 x 13 28,8 ± 1,6 9 E 

4 26 x 11 17,0 ± 2,5 5 C 

5 47 x 13 28,9 ± 2 9 E 

 
Let us remark that these estimates are preliminary and mostly aim at exemplifying the possible 
processing steps involved and the potentials of the proposed approach in the collection of valuable 
information on the building inventory stock. A more sound approach to the vulnerability estimation 
based on a fully probabilistic analysis of the available taxonomy is currently undergoing. 
 



Fig. 11. Building #1 and #2 as captured by the omnidrectional camera. 
 

Fig. 12. Building #3 as captured by the omnidrectional camera. 
 

Fig. 13. Buildings #4 and #5 as captured by the omnidrectional camera. 



 7  Conclusions 

The approach outlined within this paper allows for a fast and systematic data acquisition and 
analysis process for a multi-scale building inventory estimation. The integrated combination of 
satellite remote sensing and ground-based omnidirectional imaging provided a rich visual 
description of the urban environment. It therefore overcomes the limitations of purely satellite based 
approaches. By joining the advantages of the multiple imaging sources within the framework of an 
integrated sampling scheme, the proposed methodology is able to cope with the increasing spatio-
temporal variability in present-day cities.  
The case study of Bishkek showed that an initial analysis of medium-resolution satellite images 
from Landsat can provide a rapid standardized and transferable way to suitably partition a 
previously unknown city into homogeneous urban structure types. It therefore allowed for a 
systematic stratified sampling to identify representative sample areas for a local assessment at 
building scale. Therefore, acquisition costs and processing time could be reduced, because the required 
geographical extent is narrowed and only the necessary high-resolution data is acquired and processed. For 
Bishkek, a significant reduction of the geographical extent from 235 km² (total built-up area) to 12.3 
km² (total sample area) could be achieved in a guided and meaningful way. Moreover, the analysis 
of medium-resolution satellite images allowed for an initial assessment of vulnerability-related 
features at block scale. For Bishkek, LULC classification showed a clear dominance of 1-2 storey 
apartment houses, which are mainly classified as highly vulnerable (A to B following the EMS-98 
vulnerability classification) by local engineers. In combination with the results of the change 
detection analysis, it became clear that most of the newly built-up areas consist of this specific 
building type and that the urban sprawl is directed towards the most hazardous areas in the region 
close to the Issyk-Ata fault system. Therefore, a trend towards increasing seismic risk for the city of 
Bishkek could be already seen from a first regional assessment (see also [38]). Speed and direction 
of urban growth in recent years furthermore emphasise the need for a continuous update of the 
building inventory and vulnerability datasets for the city. 
For a local assessment, ground-based omnidirectional image-capturing proved to be fast and easy to 
deploy in the field. The system can be operated even by non-skilled operators without affecting the 
expected outcomes. Routing and in-field car navigation allowed the effective navigation through the 
city without having prior knowledge of the place. During a one week field-trip in Bishkek, we were 
able to cover all of the pre-selected sample areas along the pre-calculated routes (125 km). To cover 
an area of similar size with a manual rapid visual screening by four skilled civil engineers would 
take about 9 weeks of fieldwork (personal communication, A. Duisheev, IntUIT, Bishkek). The 
captured omnidirectional video footage is a valuable and up-to-date source of diverse information 
about the current state of an urban area. Therefore, in addition to the proposed usage, it could also 
be used in the aftermath of an event to assess damages. 
As a preliminary result for a small subset of buildings we showed, that based on a fully automatic 
processing of the captured omnidirectional images, it is possible to extract georeferenced 
information about geometrical and structural features of buildings. In combination with the outputs 
of suitable analyses of satellite images, these methodologies allowed to compile a multi-parameter 
database of inventory features. The automatically extracted features coming from multiple imaging 
sources in combination with information coming from the WHE allowed for a first vulnerability 
classification of the observed buildings according to EMS-98. However, to improve and further 
automatise this process more research is necessary. To strengthen the decision for a certain 
vulnerability class more inventory features (e.g. detection of soft-storeys, regularity and symmetry 
in shape, wall openings) need to be extracted from the images and further information about 
construction practises and the behaviour of different building types under earthquake ground-
motion coming from local experts or external data sources needs to be taken into account. In the 
context of data integration and vulnerability classification the use of Bayesian networks seems a 
promising approach, which would also allow to account for uncertainties. It should furthermore be 
noted that a ground-based local assessment is not necessarily limited to an analysis of image data 



only. Within the proposed approach, a local assessment could be extended to a further sampling 
level, where representative building samples are selected on the basis of the results of the high-
resolution image analysis. The sampled buildings could than be further analysed from outside and 
inside by structural engineers following established standards such as the ASCE/SEI 31-03 seismic 
evaluation of existing buildings [41] to further enhance the quality of the inventory data. 
Due to the high temporal resolution of the input data and the speed of the ground-based data-
capturing, it would be possible to regularly update the inventory database in a standardized and 
guided way. Moreover, due to the structure of the sampling approach there is the possibility to 
extrapolate the building scale information to block scale and therefore provide with an estimate of 
the building inventory for the whole city. Such a city-wide inventory estimate for Bishkek on a 
block scale is not existing until now. The proposed approach makes use of both supervised and 
unsupervised processing, and in order to be fully effective it must be complemented by local expert 
knowledge and tailored to the specific application. However, it needs to be pointed out that almost 
no technical knowledge of data mining or advanced image processing is required in order to fully 
exploit its potential advantages. 
The proposed methods and tools are developed on an open-source basis and low-cost, globally 
available data sources are preferred. This allows for a high degree of transferability and usability. It 
may also help to empower less equipped institutions in developing countries, which are especially 
vulnerable to natural hazards, to perform the necessary risk-preventive analysis by themselves. 
Future research will include automated vulnerability classification of the identified buildings 
considering uncertainties and the extrapolation of the results from building scale to block scale to 
cover the whole town. Furthermore, it is planned to combine a probabilistic vulnerability map for 
Bishkek with the results of seismic hazard analysis [42] to update and improve risk scenarios for the 
city [38] in a probabilistic framework. 

 8  Acknowledgements 

This research has been funded by CEDIM (Center for Disaster Management and Risk Reduction), 
PROGRESS (Georisiken im Globalen Wandel) and Helmholtz-EOS (Earth Observation System). 
The authors would like to thank CAIAG (Central Asian Institute for Applied Geoscience) and 
IntUIT (International University for Innovation Technologies) for their support during the ground-
based data-capturing. 

 9  References 

[1] R. Bilham, The seismic future of cities, Bulletin of Earthquake Engineering 7:4 (2009) 839–887. 
[2] G. M. Calvi, R. Pinho, G. Magenes, J. J. Bommer, L. F. Restrepo-Velez, H. Crowley, 

Development of seismic vulnerability assessment methodologies over the past 30 years, ISET 
journal of Earthquake Technology 43:472 (2006) 75–104. 

[3] FEMA 154, Federal Emergency Management Agency, Rapid visual screening of buildings for 
potential seismic hazards: a handbook, second ed., ATC, Washington, 2002. 

[4] A. Fekete, M. Damm, J. Birkmann, Scales as a challenge for vulnerability assessment, Natural 
Hazards 55 (2010) 729-747. 

[5] Global Earthquake Model (Online), accessed 08.07.2011 (http://www.globalquakemodel.org). 
[6] H. Taubenböck, T. Esch, A. Roth, An urban classification approach based on an object-oriented 

analysis of high resolution satellite imagery for a spatial structuring within urban areas, 1st 
EARSeL Workshop of the SIG Urban Remote Sensing, Berlin 2006. 

[7] K. Saito, R. Spence, C. Going, M. Markus, Using high-resolution satellite images for post-
earthquake building damage assessment: A study following the 26.1.01 Gujurat earthquake, 
Earthquake Spectra 20:1 (2004) 145-170. 

[8] H. Taubenböck, C. Münch, J. Zschau, A. Roth, L. Stempniewski, S. Dech, H. Mehl, Assessing 



building vulnerability using synergistically remote sensing and civil engineering, in: A. Krek, 
M. Rumor, S. Zlatanova, M. Fendel (Eds.), Urban and Regional Data Management, Taylor & 
Francis Group, London, 2009, pp. 287-300. 

[9] H. Taubenböck, T. Esch, M. Wurm, M. Thiel, T. Ullmann, A. Roth, M. Schmidt, H. Mehl, S. 
Dech, Urban structure analysis of mega city Mexico city using multi-sensoral remote sensing 
data, Proceedings of SPIE, Cardiff 2008. 

[10] F. Yamazaki, T. Vu, M. Matsuoka, Dual-scale approach for detection of tsunami-affected areas 
using optical satellite images, International Journal of Remote Sensing 28:13-14 (2007) 2995-
3011.  

[11] A. Torii, M. Havlena, T. Pajdla, From google street view to 3D city models, IEEE 12th 
International Conference on Computer Vision Workshops, Kyoto 2009. 

[12] S. Teller, Toward urban model acquisition from geo-located images, Proceedings of Pacific 
Graphics, Singapore 1998. 

[13] U. Neumann, L. Wand, S. You, Large-scale urban modeling by combining ground level 
panoramic and aerial imagery, Proceedings of the Third International Symposium on 3D Data 
Processing, Visualization, and Transmission, Chapel Hill 2006. 

[14] T. Blaschke, Object based image analysis for remote sensing, ISPRS Journal of 
Photogrammetry and Remote Sensing 65 (2010) 2–16. 

[15] P. Felzenzwalb, D. Huttenlocher, Efficient graph-based image segmentation, International 
Journal of Computer Vision 59 (2004) 167-181. 

[16] V. Vapnik, The nature of statistical learning theory, second ed., Springer, New York, 2000. 
[17] C. J. C. Burges, A tutorial on support vector machines for pattern recognition, Data mining and 

knowledge discovery 2 (1998) 121–167. 
[18] H. Yang, B. Ma, Q. Du, and C. Yang, Improving urban land use and land cover classification 

from high-spatial-resolution hyperspectral imagery using contextual information, Journal of 
Applied Remote Sensing 4:1 (2010) 041890. 

[19] T. Lillesand, R. Kiefer, J. Chipman, Remote Sensing and Image Interpretation, sixth ed., Wiley, 
Sussex, 2008. 

[20] R. Haralick, K. Shanmugam, I. Dinstein, Textural features for image classification, IEEE 
Transactions on system, man and cybernetics 3:6 (1973) 610-621. 

[21] D. Lu, P. Mausel, E. Brondizio, E. Moran, Change detection techniques, International Journal 
of Remote Sensing 25 (2004) 2365–2401. 

[22] J. Mas, Monitoring landcover changes: a comparison of change detection techniques, 
International Journal of Remote Sensing 20 (1999) 139-152. 

[23] G. Grünthal, R. Musson, J. Schwarz, M. Stucchi, European macroseismic scale 1998 (EMS-
98), Cahiers du Centre Européen de Géodynamique et de Séismologie 15 (1998). 

[24] W. G. Cochran, Sampling techniques, third ed., Wiley, Sussex, 1977. 
[25] G. van Belle, D. C. Martin, Sample size as a function of coefficient of variation and ratio of 

means, The American Statistician 47:3 (1993) 165-167. 
[26] OpenStreetMap (Online), accessed 21.11.2010 (http://www.openstreetmap.org). 
[27] J. K. Lenstra, A. H. G. Rinnooy Kan, Some simple applications of the travelling salesman 

problem, Operational Research Quarterly 26:4 (1975) 717-733. 
[28] E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik 1 

(1959) 269–271. 
[29] S. S. Lin and R. Bajcsy, Single-viewpoint, catadioptric cone mirror omnidirectional imaging 

theory and analysis, Journal of the Optical Society of America 23:12 (2006) 2997-3015. 
[30] H. Haggrén, H. Hyyppä, O. Jokinen, A. Kukko, M. Nuikka, T. Pitkänen, P. Pöntinen, P. 

Rönnholm, Photogrammetric application of spherical imaging, Panoramic Photogrammetry 
Workshop, Dresden 2004. 

[31] D. Maling, Coordinate systems and map projections, Pergamon Press, Oxford, 1992. 
[32] A. Torii, A. Imiya, and N. Ohnishi, Two-and three-view geometry for spherical cameras, 

Proceedings of the Sixth Workshop on Omnidirectional Vision, Camera Networks and Non-



classical Cameras, Beijing 2005. 
[33] I. Stratmann, Omnidirectional imaging and optical flow, Proceedings of the Third Workshop on 

Omnidirectional Vision, Kopenhagen 2002. 
[34] Z. Arican, P. Frossard, Dense depth estimation from omnidirectional camera, Signal Processing 

Laboratory LTS4 Technical Report, no. TR-LTS-2009-006. 
[35] M. Mainberger, A. Bruhn, and J. Weickert, Is dense optic flow useful to compute the 

fundamental matrix?, Image Analysis and Recognition (2008) 630–639. 
[36] B. K. P. Horn, Recovering baseline and orientation from essential matrix, Journal of the Optical 

Society of America (1990). 
[37] K. Abdrakhmatov, H.B. Havenith, D. Delvaux, D. Jongmans, P. Trefois, Probabilistic PGA and 

arias intensity maps of Kyrgyzstan (Central Asia), Journal of Seismology 7 (2003) 203–220. 
[38] D. Bindi, M. Mayfield, S. Parolai, S. Tyagunov, U. Begaliev, K. Abdrakhmatov, B. 

Moldobekov, J. Zschau, Towards an improved seismic risk scenario for Bishkek, Kyrgyz 
Republic, Soil Dynamics and Earthquake Engineering 31:3 (2011) 521-525. 

[39] M. Erdik, T. Rashidov, E. Safak, A. Turdukulov, Assessment of seismic risk in Tashkent, 
Uzbekistan and Bishkek, Kyrgyz Republic, Soil Dynamics and Earthquake Engineering 25 
(2005) 473-486. 

[40] World Housing Encyclopedia (Online), accessed 10.04.2011 (http://www.world-housing.net). 
[41] ASCE/SEI 31-03, American Society of Civil Engineers, Seismic evaluation of existing 

buildings, ASCE, Reston, 2003. 
[42] S. Parolai, S. Orunbayev, D. Bindi, A. Strollo, S. Usupayev, M. Picozzi, D. Di Giacomo, E. 
 Augliera, C. Milkereit, B. Moldobekov, J. Zschau, Site effect assessment in Bishkek 

(Kyrgyzstan) using earthquake and noise recording data, Bulletin of the Seismological Society 
of America 100:6 (2010) 3068-3082. 


