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Abstract: Given high urbanization rates and increasing spatio-temporal variability in many 

present-day cities, exposure information is often out-of-date, highly aggregated or spatially 

fragmented, increasing the uncertainties associated with seismic risk assessments. This 

work therefore aims at using space-based technologies to estimate, complement and extend 

exposure data at multiple scales, over large areas and at a comparatively low cost for the case 

of the city of Bishkek, Kyrgyzstan. At a neighborhood scale, an analysis of urban structures 

using medium-resolution optical satellite images is performed. Applying image classification 

and change-detection analysis to a time-series of Landsat images, the urban environment  

can be delineated into areas of relatively homogeneous urban structure types, which can 

provide a first estimate of an exposed building stock (e.g., approximate age of structures, 

composition and distribution of predominant building types). At a building-by-building 

scale, a more detailed analysis of the exposed building stock is carried out using a  

high-resolution Quickbird image. Furthermore, the multi-resolution datasets are combined 

with census data to disaggregate population statistics. The tools used within this study  

are being developed on a free- and open-source basis and aim at being transparent, usable 

and transferable. 
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1. Introduction 

A standard seismic risk model is composed of hazard, exposure and vulnerability modules [1]. 

Exposure within the context of seismic risk assessment refers to the assets or population that is at risk 

when an earthquake occurs. Depending on the scale of analysis, exposure data may vary from detailed 

descriptions of characteristics and locations of structures that may be damaged, such as buildings or 

transportation lines, to aggregated composite models for larger geographical entities, such as administrative 

units, cities or countries. When significant structural characteristics are available (e.g., construction type, 

building age or building height), the vulnerability of structures can be assessed using one of the different 

methods that have been proposed in literature [1]. The location and characteristics of structures 

therefore provide a crucial basis for damage and economic loss calculations in the event of an 

earthquake. This furthermore gives information about human exposure since inhabited structures in 

hazardous areas imply that people are likely to be exposed to injury or death, for example, when a 

building collapses [2]. Due to the high spatio-temporal variability in many present-day cities, local 

governments are often unable to keep track of the exposed building stock and its population in order to 

adjust disaster risk reduction efforts accordingly. This is especially the case in developing countries 

where rapid urban growth is often accompanied by unplanned settlements, which rapidly change over 

short periods and are moreover often highly vulnerable to natural hazards in terms of both structural 

and social aspects. Within this context, satellite remote sensing is increasingly being recognized as a 

valuable addition to established, but time- and cost-intensive, ground-based screening procedures [3] 

to provide exposure data for disaster risk assessment. The main benefits of a satellite-based approach 

are its capabilities of analyzing the elements of interest at various spatial and temporal scales, while 

covering large geographical areas at comparatively low costs [2]. The possibility of process automation 

furthermore allows for rapid analyses.  

Two principle strategies for estimating exposure information can be distinguished in the literature: 

sampling and full enumeration. Sampling has the advantage that only small subset areas of an image 

need to be analyzed in detail to allow for estimating summary statistics for the entire city or for well 

defined strata, if a stratified sampling is used [4]. Ehrlich et al. [5] use a combination of texture-based 

image processing, statistical sampling and photo-interpretation to quantify a building stock in terms of 

the number of buildings, the distribution of built-up areas and building size. Full enumeration from 

satellite imagery refers to the detection and definition of every building within a study area. It can 

therefore potentially achieve high accuracies and levels of detail, but usually requires more work. 

However, this can be reduced by the automation of image processing chains. Approaches for localizing 

buildings and extracting their footprints from high-resolution satellite data range from manual 

digitization [6] to automated object-based classification methods [7]. The extraction and derivation of 

additional characteristics of the exposed building stock from remotely sensed data, such as the age of 

buildings, construction type or building density, enable a more refined definition of the exposed 

structures. In this context multi-sensor/multi-resolution approaches [8], which combine satellite images 

of different types and spatial resolutions, seem a promising addition to the purely high-resolution 

sensor-oriented approaches. For an estimation of human exposure in terms of population distribution 

many methods have been reported in the literature [9]. Besides bottom-up approaches, which make use 

of in situ survey data, studies on population estimation generally use ancillary data such as census 
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records as the primary data source. Remote sensing products (e.g., landuse/landcover classifications) 

can be used to disaggregate and extrapolate the census data, which are generally aggregated to 

artificial administrative units, to more meaningful geographical entities. A widely used approach in 

combination with remote sensing is the dasymetric method, which is commonly respected as a stable 

and accurate model that depends less on the imagery classification error than on the quality of the 

ancillary data used as input [9].  

The aim of this study is to analyze the urban environment with respect to its composition and 

temporal evolution patterns, and to extract structures together with their main characteristics from  

multi-sensor/multi-resolution satellite imagery for the case of Bishkek, Kyrgyzstan. At a neighborhood 

scale, medium-resolution optical satellite images are used to delineate the urban environment into areas 

of relatively homogeneous urban structure types, which can provide a first estimate of the exposed 

building stock. The approximate age of structures is derived from a multi-temporal change-detection 

analysis of a time-series of Landsat images. Composition and distribution of predominant building types 

is extracted from a recent Landsat image using supervised image classification. At a building-by-building 

scale, a full enumeration of the exposed building stock using high-resolution optical satellite images is 

carried out. This includes a detailed delineation of structures using a semi-automatic object-based 

image analysis procedure supported by statistical learning. Furthermore, the remote sensing products are 

integrated and combined with ancillary data to derive additional exposure information and to disaggregate 

population statistics coming from a census report. The tools used within this study are being developed on 

an open-source basis to allow for a high degree of transparency, usability and transferability. 

2. Study Area and Data Sets 

Bishkek, the capital of Kyrgyzstan, is the largest city in the country [10] and is located at about  

750 m above sea level at the northern fringe of the Kyrgyz Ala-Too mountain-range in the centre of 

the Chu basin. The city is placed in one of the most seismically hazardous zones in Central Asia 

(Figure 1(a)). The GSHAP Global Seismic Hazard Map [11] shows a peak ground acceleration (PGA) 

of 4 m/s² with a probability of 10% to be exceeded in 50 years for the area of Bishkek. A seismic risk 

scenario carried out at a city scale for Bishkek, which considers a magnitude 7.5 earthquake occurring 

along the Issyk-Ata fault along the southern outskirts of the city (Figure 1(b)), estimates that 30% of  

the buildings will collapse and 63% of the buildings will be severely damaged [12]. Over the latest 

decades, Bishkek has rapidly expanded and neither up-to-date exposure nor vulnerability data are 

available for large parts of the city. Also, the data used in Bindi et al. [12] are strongly aggregated for 

the city as a whole and do not allow for a spatially more detailed risk assessment that would be 

necessary to sufficiently plan and adjust risk reduction efforts. Therefore, remote sensing methods are 

proposed as a way to update and extend existing exposure data and to provide a basis for improved 

seismic risk assessment in Bishkek. 
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Figure 1. (a) Location and seismic hazard of the study area (GSHAP [11]); (b) Bishkek 

urban area overview, showing the extent of the Landsat and Quickbird images used 

(background image: Landsat TM, 2009). 

 

The analysis of remotely sensed data in this study is a multi-staged process using satellite sensors 

with different geometric, spectral and radiometric characteristics. For an analysis of urban structures at 

the neighborhood scale, we use images from the Landsat Thematic Mapper (TM) (0.45–12.5 μm in  

7 spectral bands; 8 bit radiometric resolution; 30 m (120 m in thermal band) geometric resolution) and 

Multi-spectral Scanner (MSS) (0.5–1.1 μm in 4 spectral bands; 6–7 bit radiometric resolution; 60 m 

geometric resolution). Both satellite sensors have a large swath-width that allows a city like Bishkek  

to be captured within just one image. A freely accessible data archive that dates back until 1972 in 

combination with a revisit period of the satellites of 16 days makes the Landsat series a valuable 

dataset for time-series analysis. For a more detailed building-by-building analysis of the exposed 

building stock a Quickbird image (0.45–0.90 μm in 4 spectral bands, plus 1 panchromatic band; 11 bit 

radiometric resolution; 0.61 m geometric resolution for panchromatic band and 2.4 m for multi-spectral 

bands) covering a spatial extent of 230 km² over the main urban area of Bishkek is used. 

3. Analysis of Medium-Resolution Optical Satellite Imagery 

Exposure information related to the building stock can be extracted either directly at a  

building-by-building scale from high-resolution satellite images, or indirectly based on the 

identification of the urban structure types in which the buildings are located [13]. Urban structure  

types are in this study defined as areas that are relatively homogeneous in medium-resolution  

satellite images in terms of their physical appearance (landcover) and usage (landuse) as well as their 

approximate age. Exposure estimates from medium-resolution satellite imagery can also be seen  

as a problem of estimating an unknown population [14]. In the case of exposure information, the 

population of interest is linked to the composition of the urban structure and will therefore most likely 

show great variability related to differences in landuse/landcover (LULC), age of structures and other 

socio-economic parameters. A stratification of the population into sub-populations as homogeneous as 



ISPRS Int. J. Geo-Inf. 2012, 1 73 

 

 

possible could therefore provide at a neighborhood scale a first reasonable estimate of an exposed 

building stock over large areas. The derivation of urban structures from remote sensing is carried out 

by combining a LULC classification with the age of structures into a new thematic layer by spatial 

intersection. The final output of this analysis step therefore represents urban structures that are  

at an aggregated neighborhood scale relatively homogeneous in terms of pre-dominant LULC and 

approximate age. When superimposed on a high-resolution Quickbird image, it can be seen that the 

approach is capable of delineating areas of different urban structure in the city based on an analysis of 

medium-resolution satellite images (Figure 2). Descriptions of the processing steps, which have been 

carried out to derive urban structures, are given in the following. A more detailed description of the 

workflow and the different analysis steps can be found in Wieland et al. 2012 [4]. 

Figure 2. Subset of urban structure types stratification from an analysis of  

medium-resolution satellite images (superimposed on the Quickbird image). 

 

3.1. Age of Structures 

To quantify changes in the urban environment and to extract information about the approximate  

age of structures, we apply change-detection to a time-series of Landsat TM and MSS images that 

cover the same spatial extent at different times (1977, 1994 and 2009). All satellite images have been 

geometrically corrected and co-registered to each other. Post-classification comparison was selected as 

the preferred change-detection method, because of the different input image types and the fact that it 

directly provides information about the change rate, direction and distribution [15]. For the  

post-classification comparison, binary LULC classifications that distinguish built-up from non-built-up 

areas for the three input images are generated and compared to each other on a pixel-by-pixel basis to 

derive a change matrix. The change matrix provides the “from-to” information of every LULC class, 

which allows one to identify and analyze change. The individual binary LULC classifications have 

been carried out using an object-based approach. The images were segmented using a graph-based 

segmentation algorithm [16] and automatically labeled by a Support Vector Machines (SVM) 
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statistical learning model. SVM is a classifier derived from statistical learning theory [17]. SVMs 

partition a feature space in a computationally efficient way by identifying an optimal separating 

hyperplane according to the properties of selected training-instances [18]. The classifier has been 

specifically trained to distinguish between built-up and non-built-up areas in Landsat images (Figure 3). 

Figure 3. Urban-extent of Bishkek in 1977, 1994 and 2009. The binary maps have  

been extracted from Landsat TM and MSS images using supervised object-based image 

classifications. 

 

 

 

Since the accuracy of a post-classification comparison depends mainly on the accuracy of the 

individual LULC classifications of the input images, receiver operating characteristics curves (ROC) [19] 
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have been derived from error matrices for the different urban-extent classifications (Figure 4).  

Test-instances have been randomly selected for each classification output following a stratified sampling 

with proportional allocation depending on the area of the classes. The identified test-instances have been 

manually labeled based on visual interpretation of the input images. Differences in performance of the 

classifier depend both on differences in the spectral and spatial resolution between Landsat TM (2009, 

1994) and MSS (1977), and on the training-instances used to train the learning machine (availability of 

reliable ground-truth data for 1977 is limited, for instance, with respect to more recent images). 

Figure 4. ROC curves for urban-extent classifications from Landsat TM and MSS. 

 

3.2. Building Types 

LULC provides information about the predominant building type. An analysis of existing  

building-inventory data and classification schemes for the building-stock of Kyrgyzstan [20] allows  

for the identification of 7 built-up LULC classes of interest for Bishkek that can be identified and 

distinguished from medium-resolution satellite imagery (Table 1). We use a SVM statistical learning 

algorithm to recognize the identified LULC classes and determine decision boundaries to partition the 

feature space according to the properties of selected training-samples. Since we label segments instead 

of individual pixels, the input feature vector is composed of both spectral and textural features, which 

also takes into account neighborhood relationships between pixels. This is particularly important when 

built-up areas need to be further distinguished by their pre-dominant building types. At the medium 

spatial resolution of the Landsat TM, individual buildings cannot be detected in the image, but the 

classes of interest can be defined by the spatial alignment and composition of buildings, streets and 

open-spaces. Therefore, different urban LULC classes can be adequately described by a combination 

of spectral responses and textures at the segment level. The input feature vector, which describes any 

segment to be classified, consists of 26 features, including mean and standard deviation of the values 

of 6 spectral bands of the input image, mean and standard deviation of the Normalized Difference 

Vegetation Index (NDVI) and two band-specific texture descriptors derived from the Gray-Level  
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Co-occurrence Matrix (GLCM). Training-instances for the learning algorithm have been manually 

selected based on local expert knowledge on construction practices and the distribution of building 

types as well as using visual image interpretation supported by GPS-photos and a high-resolution 

satellite image of the same acquisition year. The resulting LULC classification with the distribution of 

pre-dominant building types for Bishkek is presented in chapter 5. 

Table 1. List of identified predominant building types for Bishkek. 

Class 
Number  

of Storeys 
Main Construction Materials Description 

1 1–2 Masonry, brick Individual apartment house—detached alignment 

2 1–2 Masonry, brick Individual apartment house—attached alignment (2 sides) 

3 1–2 Masonry, brick Individual apartment house—attached alignment (3 sides) 

4 3–6 Brick, concrete, panel Multi-family apartment blocks 

5 7–9 Concrete, panel, frame, monolithic Multi-family apartment blocks 

6 1–2 Brick, concrete Industrial, commercial 

7 1–9 Mixed Mixed built-up areas 

8 - - Non built-up area 

The results of an accuracy assessment for the LULC classification of Bishkek show an overall 

accuracy of 81% (overall accuracy is defined as the total number of correctly classified segments 

divided by the total number of test-instances). A user accuracy of 50% for 7–9 storey, concrete, panel, 

frame, monolithic, multi-family apartment blocks (class 5) indicates a deficiency of the classifier  

to correctly detect this particular class. The other classes have been accurately classified with user 

accuracies of 70% and higher. The full error matrix is presented in Table 2. The test-instances 

(reference) used to create the error matrix have been randomly selected for each class following a 

stratified sampling with proportional allocation. The identified test-instances have been manually 

labeled based on the visual interpretation of the input image and a high-resolution image, as well as on 

the basis of GPS-georeferenced ground-based photos. 

Table 2. Error matrix for LULC classification of Landsat TM (2009). A description of the 

classes is given in Table 1. 

 
Class 

Reference 

C
la

ss
if

ic
a

ti
o

n
 

1 2 3 4 5 6 7 8 User’s Accuracy (%) 

1 9 0 0 0 0 0 1 0 90 

2 0 8 0 1 0 0 1 0 80 

3 0 0 8 0 0 0 2 0 80 

4 0 0 0 9 1 0 0 0 90 

5 0 0 0 0 5 1 2 2 50 

6 0 0 0 0 0 9 0 1 90 

7 0 0 1 2 0 0 7 0 70 

8 0 0 0 0 0 0 0 10 100 

Producer’s Accuracy (%) 100 100 89 75 83 90 54 77 81 
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4. Analysis of High-Resolution Optical Satellite Imagery 

Image processing applied to high-resolution satellite images is a potential source of exposure 

information on a building-by-building basis. The development of automated image processing chains 

allows for a full enumeration of the objects of interest over large areas while overcoming the time and 

cost constraints usually associated with manual processing. A crucial step in estimating exposure 

information from high-resolution satellite imagery is the extraction of a detailed built-up mask. The 

built-up mask provides information about the location of buildings and the area occupied by buildings. 

Furthermore, it can function as basis for an estimation of the number of buildings or, if it includes 

information about the height of structures, can be used to calculate building volume and floor space 

and therefore allow for a detailed disaggregation of population statistics. 

4.1. Detailed Built-Up Mask 

Following an object-based approach to image analysis, we deployed an automated image processing 

chain to extract a detailed built-up mask from the image data. In the initial stage of image analysis, the 

processing chain uses an efficient graph-based image segmentation [16] and combines it with a  

multi-scale optimization procedure to improve the delineation of building footprints of varying scales 

within the same image. The optimization creates a hierarchical set of segmentations and merges them 

into a single multi-scale segmentation based on the mean percentage difference of the weighted 

brightness values between sub-segments and super-segments. Optimal segmentation parameters are 

selected in an iterative process based on a supervised evaluation of segmentation quality using 

manually digitized building footprints as reference-objects. The optimization procedure is able to 

reduce over- and under-segmentation as well as the number of segments needed to describe buildings 

of different sizes. The outlined segments are labeled using a SVM statistical learning algorithm, which 

has been trained for 5 classes (built-up area, other sealed surfaces, bare soil, vegetation, shadows) on  

an extensive set of training-instances. The input feature vector used to describe the feature space is 

composed of spectral, textural and geometrical features. Feature selection has been carried out 

systematically and quantitatively using a Relief algorithm [21]. The trained SVM model is applied  

to each segment of the full Quickbird image of the Bishkek scene to automatically derive a LULC 

classification. In a post-classification stage, segments labeled as built-up are extracted from the 5 class 

output to derive a binary classification with built-up segments and non built-up segments. The final 

built-up unit mask is then derived from a connected components analysis of the built-up segments. 

This means that built-up units are composed of connected built-up segments. Figure 5 shows the 

resulting detailed built-up unit mask for Bishkek as well as the underlying built-up segments and the 

original input image for the classification. 

An accuracy assessment has been carried out on the resulting built-up mask using 978 manually 

digitized and evenly distributed building footprints to select the positive test-instances (built-up). 

Proportional to the area of the built-up and non built-up classes, 4986 negative test-instances (non 

built-up) have been randomly selected. The resulting built-up unit mask proves to be highly accurate 

with an overall accuracy of 90.24%, which equals 5283 correctly classified test-instances out of 5964 

(Figure 6 and Table 3). 
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Figure 5. Results of the analysis of high-resolution satellite imagery. (a) Built-up units for 

2009 in Bishkek and magnification of the rectangular area of (b) the built-up units, (c) the 

built-up segments composing the built-up units, (d) the input Quickbird image from 2009. 

 

Figure 6. ROC curve for high-resolution built-up mask, which has been extracted from 

Quickbird. 

 

Table 3. Error matrix for the built-up mask, which has been extracted from Quickbird. 

 
Class 

Reference 

Classification 

Built-up Non built-up User’s Accuracy (%) 

Built-up 706 272 72.19 

Non built-up 310 4,676 93.78 

Producer’s Accuracy (%) 69.49 94.50 90.24 
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4.2. Number of Buildings 

Even though the detailed built-up mask that has been generated is sufficiently accurate for delineating 

built-up segments, it does not directly provide the exact footprints for all buildings and can therefore not 

be directly used to count the number of buildings. As can be seen in Figure 7(a), the algorithm is able to 

accurately outline and detect detached single buildings, even in complex urban settings with high 

building densities, single buildings can be detected and outlined by the algorithm (Figure 7(b)). 

However, we observe that the number of built-up segments is correlated with the size of buildings and 

larger buildings are composed of a larger number of built-up segments (Figure 7(c)). In these cases, a 

simple count of the built-up segments would lead to an overestimation of the number of actual 

buildings. Counting the built-up units, on the other hand, would lead to an underestimation of the 

number of buildings, due to the clustering of attached buildings to larger units in more complex urban 

settings. Given these observations, we empirically derived for each building type a conversion factor to 

estimate the actual number of buildings from the number of built-up segments. Therefore, we used a 

set of 1950 manually digitized reference-buildings with an equal proportion for each building type and 

compared for each building type separately the number of built-up segments per reference-building. To 

calculate the actual number of buildings the conversion factors are applied to all built-up units that 

consist of more than one built-up segment. The built-up units, which are not further subdivided by 

built-up segments, can be assumed to be single detached buildings and can therefore be counted 

separately as individual buildings without applying a conversion factor. 

Figure 7. (a) Detached single buildings detected and outlined by built-up mask;  

(b) Appearance of complex urban settings with attached buildings in built-up mask;  

(c) Large buildings in built-up mask. 

 

Figure 8 shows the results of a comparison between the estimated number of buildings from the 

built-up mask and 15,098 manually digitized buildings for 49 test-areas. The test-areas were selected 

following a stratified sampling approach with proportional allocation using the urban structure types  

as strata [4]. They are therefore evenly distributed over the whole study area and are representative  

for different urban structure types. A comparison between the estimated number of buildings and the 

real number of buildings in the test-areas shows a good fit (Figure 8). In total, 15,031 buildings  

are estimated for the test-areas by applying the conversion factors to the detailed built-up mask. In 

comparison to the total number of buildings from manual digitization, the automatic procedure slightly 

under-estimates the total by 67 buildings. Linear regression indicates that 94% of the variance of the 

real number of buildings in the 49 test-areas was correctly estimated by the proposed procedure. 
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Figure 8. Comparison of the estimated number of buildings from the built-up mask with the 

real number of buildings in 49 test-areas from manual digitization. Test-areas have been 

selected following a stratified sampling approach using the urban structure types as strata. 

 

4.3. Spatial Disaggregation and Estimation of Population Statistics 

Earthquakes may damage the building stock in a selective way, depending on site-specific local 

ground-motion amplification [22] or the structural vulnerability of buildings and their distribution. 

Therefore, only fine scale population datasets can provide an accurate estimate of the population actually 

exposed in the event of an earthquake. Census information is usually aggregated in administrative units 

such as city districts, which are often too large to sufficiently take into account local ground-motion 

amplifications. Administrative units furthermore represent artificial boundaries that are not necessarily 

related to the actual urban structure and therefore do not allow for a more detailed link between the 

structural vulnerability of the building stock and its population. However, it is possible to spatially 

disaggregate the census information from a set of larger spatial units (source zones) to smaller spatial 

units (target zones) using remote sensing products such as LULC classifications or detailed built-up 

masks as a proxy for population presence [23]. Using a detailed built-up mask as proxy for population 

presence has the benefit that the built-up area and its distribution is clearly outlined and quantifiable 

(and not aggregated as, for example, in medium-resolution LULC classifications) and therefore allows 

for the direct calculation of population density. 

In this study we use population data from the Population and Housing Census of Bishkek carried 

out in 1999 by the National Statistical Committee of the Kyrgyz Republic [10]. The data refer to the 

resident population and are aggregated to administrative units (source zones), but are available only  

for parts of the urban area of interest. A spatial disaggregation is carried out for the areas where  

census data are available using the built-up units of the detailed built-up mask as target zones. For each  

built-up unit the most probable building type and number of storeys can be inferred from the urban 

structures layer based on the spatial location. Taking the average number of storeys in combination with 
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the built-up area derived from the high-resolution image analysis, it is possible to compute for each 

built-up unit i the average floor area FAi. The population density Dj can be calculated for each source 

zone j, which is defined as the administrative unit that fully overlaps with the detailed built-up mask 

and for which there is the total population Pj from the census report available, using 

D j=
P j

∑
i∈ J

FAi
 (1) 

Applying Equation (2) to each built-up unit in a source zone provides a proportional spatial 

disaggregation of the total population of the source zone to the built-up units. It provides the average 

population per built-up unit Pi as a product of floor area FAi and population density Dj of the specific 

source zone where i ∈ J and, 

Pi = Dj * FAi       (2) 

Population density and average population per built-up unit can be disaggregated from administrative 

units to built-up units for areas where census data are available. To estimate the population density of 

built-up units for parts of the city where no or incomplete population statistics are available, a 

regression model is deployed, using FAi and Pi as independent and dependent variables, respectively. A 

total of 70,768 built-up units, which overlap with the source zones and for which population numbers 

could be directly disaggregated from the census data, were used as input for the regression. This means 

that the population over all the source zones is used in the regression, therefore providing an estimation 

of the average population per floor area, which is independent of a specific source zone. With the 

regression model, 79% of the variance of the dependent variable can be explained for the 70,768 built-up 

units of the overlapping areas. Using the regression function, the population per built-up unit can also 

be estimated for the 42,088 built-up units not covered by census data.  

In this study only residential areas have been taken into account for population estimation, because 

the census data refers to the resident population. This provides information about the total estimated 

number of inhabitants per built-up unit of the residential areas and can therefore be seen as an estimate 

of the night-time population distribution in the study area. The day-time population distribution,  

at least during working hours, may differ from the night-time estimate due to the commuting of the 

working population between residential areas and industrial/commercial areas. Since information about 

the percentage of working people per source zone is currently not available, these population dynamics 

could not be taken into account at this stage. 

5. Results 

The analysis of multi-resolution satellite images allowed for an automated estimation of the 

physical and human exposure in the study area. Exposure characteristics extracted from remote sensing 

in this study include predominant building types, building footprints, number and distribution of 

buildings, number and distribution of population and approximate age of structures. For the study area, 

covered by the Quickbird image (Figure 1(b)), a total of 112,293 buildings with 847,639 inhabitants 

have been estimated (Table 4). With 77% of the building stock (86,842 buildings), 1–2 storey masonry, 

brick individual houses (including three sub-types depending on the spatial alignment of the buildings) 

are clearly the dominating building type in the study area. 3–6 storey brick, concrete, panel  
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multi-family building-blocks account for 8% of the building stock (8,469 buildings) and form the 

second most widespread residential building type followed by 7–9 storey concrete panel, frame and 

monolithic building-blocks with 2% of the total building stock (2,271 buildings). Industrial and 

commercial buildings account for 5% (5,583 buildings) of the buildings in Bishkek. The remaining 8% 

of the building stock (9,128 buildings) could not be attributed to a specific class based on remote 

sensing, and were classified as mixed building types (Figure 9). Despite the clear dominance of 1–2 

storey masonry, brick individual houses in the study area, the population is equally well distributed 

between this building type (292,207 people) and 3–6 storey brick, concrete, panel building-blocks 

(288,030 people). Focusing only on residential buildings for population estimates, 13% of the population 

(107,936 people) are furthermore estimated to live in 7–9 storey concrete, panel, frame and monolithic 

buildings and 19% (159,466 people) live in mixed building types (Figure 9). 

Table 4. Estimated number of buildings and population per building type for the Quickbird 

subset in 2009 (see Figure 1(b)). 

Building Type Estimated Number of Buildings Estimated Population 

1–2 storey masonry, brick individual house, type 

1,2,3 

86,842 292,207 

3–6 storey brick, concrete, panel multi-family block 8,469 288,030 

7–9 storey concrete, panel, frame, monolithic block 2,271 107,936 

1–2 storey brick, concrete industrial, commercial 5,583 - 

1–9 storey mixed built-up 9,128 159,466 

TOTAL 112,293 847,639 

Figure 9. Composition of the number of buildings and population per building type for the 

Quickbird subset in 2009 (see Figure 1(b)). 
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Figure 10. LULC classification of Bishkek showing the distribution of pre-dominant 

building types in 2009 (see Tables 1 and 4). The numbers are the estimated numbers of 

buildings per stratum. 

 

Figure 11. Population density per stratum in Bishkek. The numbers are the estimated 

population. Industrial areas are excluded. 
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Figure 10 shows the distribution of the different building types in the study area in 2009. The 

stratification has been derived from medium-resolution satellite images. For each stratum the number 

of buildings has been calculated from the detailed built-up mask extracted from the high-resolution 

satellite image. Furthermore, population data have been aggregated from the detailed built-up mask to 

derive population density and the estimated number of residents per stratum (Figure 11). 

An analysis of a time-series of Landsat images provides a temporal dimension of the exposure 

analysis and gives information about the approximate age of structures, change rate and change 

directions. Combined with the outputs of the high-resolution analysis, more detailed conclusions can 

be drawn about the spatio-temporal variability in the city, including information about changes in the 

number of buildings and the population. Of the building stock under observation, 77,292 buildings 

were classified as being built before 1977, with an estimated 579,594 inhabitants living in these 

buildings in 2009. A total of 93,497 buildings were classified as being built between 1977 and 1994, 

with 695,572 inhabitants. 112,293 buildings could be identified as being built between 1994 and 2009, 

housing 847,639 people. Looking at the spatio-temporal patterns of the urban sprawl (Figure 12), the 

urban expansion between 1977 and 1994 concentrated mainly on the suburban eastern and northern 

parts of the city. From 1994, three years after the Kyrgyz Republic became independent of the former 

Soviet Union, to 2009, the city of Bishkek expanded rapidly in the southern parts towards the Issyk-Ata 

fault. These areas close to the fault system, where many new buildings are still being constructed, show 

the highest seismic hazard in the study area [24]. Large quarters have also been built recently in the far 

northern parts of the city. 

Figure 12. Spatio-temporal development of the building stock in Bishkek from 1977 

to 2009. The approximate age of structures has been derived from a change-detection 

analysis of Landsat images and joined to the detailed built-up mask extracted from a 

Quickbird image. 
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6. Discussion 

Using satellite images as the basis for information extraction allows for a rapid exposure estimation 

over large areas at comparatively low costs. Apart from its benefits, a purely satellite based approach 

shows limitations, in that it can only provide information about exposure characteristics that can be 

assessed from the top view. For example, the building height, which is one of the most significant 

features for the assessment of the vulnerability of a particular structure, can be estimated from a single 

high-resolution optical satellite image only under specific conditions using shadow information [25]. 

Other vulnerability relevant features that cannot directly be analyzed for a single building from 

satellite imagery include detection of soft-storeys or vertical irregularities. Therefore, to create a basis 

for a more detailed assessment of the structural vulnerability and occupancy of an exposed building 

stock, an analysis of the facades of buildings from a street view should be taken into account. Using 

rapid visual ground-based surveys, such as omnidirectional imaging, within the framework of an 

integrated sampling scheme together with the proposed satellite-based approach, can further enhance the 

description of the exposed building stock, both in terms of the level of detail and accuracy, while still 

keeping a reasonable cost-benefit ratio [4]. Especially when integrating data coming from different 

sources with varying accuracies, uncertainties should be adequately taken into account. A transformation 

from a deterministic to a probabilistic description of exposure elements can be achieved by the use of 

Bayesian networks [26]. A probabilistic description of the exposure model and its vulnerability would 

therefore allow, in combination with probabilistic seismic hazard analysis (PSHA), for a fully 

probabilistic seismic risk assessment. The proposed methods and tools in this study have been 

developed on a free and open-source basis. Using free and open-source software (FOSS) can further 

improve the capabilities of less equipped institutions in developing countries, which are often 

especially vulnerable to natural hazards, to carry out risk-preventive analysis by themselves and 

therefore allow for a sustainable development in the sense of the United Nations International Strategy 

for Disaster Reduction (UN-ISDR). An important global initiative in this context is the Global 

Earthquake Model (GEM), which aims at providing open tools and standards to calculate and 

communicate earthquake risk worldwide [27]. 

7. Conclusions 

This paper proposes an approach to analyze an urban environment with respect to its composition 

and temporal evolution patterns and to extract structures, together with their main characteristics, 

based on multi-sensor/multi-resolution satellite imagery. The use of image segmentation as an initial 

step in an object-based approach to image processing provided the basis for a rich description of the 

objects of interest in terms of the dimensionality of feature vectors. In combination with quantitative 

feature selection and SVM statistical learning a detailed differentiation of the urban environment,  

even from medium-resolution satellite images, proved feasible. The use of statistical learning models 

allowed on the one hand for a high degree of process automation while on the other, it showed great 

flexibility and potential for the transferability of the method to other areas and/or image types. Local 

expert-knowledge can easily be integrated into the training-phase of the SVM learning models and the 
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selection of training-instances is a straight forward process that can be adjusted depending on the input 

image type and study area. 

For the city of Bishkek, the approach could provide a detailed spatio-temporal description of the 

exposed building stock and its population that can be used as input for seismic vulnerability and risk 

assessments. The results clearly show a dominance of 1–2 storey masonry, brick individual houses, 

which are mainly classified by local engineers as highly vulnerable (class A to B following the  

EMS-98 vulnerability classification [28]). Moreover, one third of the population live in this specific 

building type. Change-detection analysis furthermore shows that, especially in recent years, a majority 

of the newly constructed buildings of this highly vulnerable type expand towards the most hazardous 

areas in the region. This indicates a trend towards increasing seismic risk for Bishkek and emphasizes 

the need for a continuous update of the exposure and vulnerability datasets for the city. 

Current research work focuses on a refinement and extension of the exposure data using ground-based 

omnidirectional imaging and its integration into a probabilistic risk assessment framework by the use 

of Bayesian networks [26]. In this context it is planned to derive a probabilistic vulnerability map for 

Bishkek and other Central Asian towns and to combine it with the results of seismic hazard analysis [22] 

to update and improve risk scenarios [12] in a probabilistic framework. 
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