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1. Introduction 

Imaging spectroscopy is used for a variety of applications such as the identification of surface 
cover materials and its spatiotemporal monitoring. Contrary to multispectral instruments 
more spectral information can be incorporated in the differentiation of materials. New 
generations of sensors are based on the pushbroom technology, where a linear array of sensors 
perpendicular to the flight direction scans the full width of the collected data in parallel as the 
platform moves. Contrary to whiskbroom scanners that collect data one pixel at a time 
pushbroom systems can simply gather more light as they sense a particular area for a longer 
time. This leads to a better Signal-to-Noise Ratio (SNR). In addition, the two dimensional 
photo detector array in pushbroom systems may enable different readout configuration 
settings, such as spatial and/or spectral binning, allowing a better control of the SNR. It 
follows from this that low reflective materials can be potentially sensed as well as high 
reflective materials without saturating the detector elements. However, the use of detector 
arrays requires a precise radiometric calibration as different detectors might have different 
physical characteristics. Any miscalibration results in visually perceptible striping and 
uncertainties increase in preceding analyses such as classification and segmentation (Datt et 
al., 2003). There are various reasons for miscalibration, for instance temporal fluctuations of the 
sensor temperature, deprecated calibration coefficients or uncertainties in the modelling of the 
calibration coefficients. In addition, ageing and environmental stresses highly affect the 
mechanical and optical components of a sensor system; its reliability is thus not such to grant 
unchanged calibration accuracies for the entire mission life span.  

Radiometric calibration and the estimation of the calibration coefficients can be considered 
as the assignment of known incident at-sensor radiance to measured digital numbers (DN). 
For this, physically known, different reflective targets are artificially illuminated by 
electromagnetic radiation of a specific spectrum and the reflected radiation is then recorded 
by the sensor that consists of a number of detectors. Then, the response of each detector is 
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modelled with respect to the incident radiation, the reflective target and the defined 
illumination of the target. The mathematical modelling is often performed by applying a 
linear least squares regression. Contemporary, differences of detectors are balanced. 

Consequently, calibration coefficients are obtained – shortly named as offset and slope. 
Offsets incorporate the unwanted detector-dependent dark current that is caused by 
thermally generated electrons (Oppelt and Mauser, 2007). In turn, slopes directly relate 
radiance to DN. Offsets are often measured before any image acquisition, but may change 
due to instabilities in the cooling system. Mechanical stress or uncertainties in foregoing 
laboratory calibration can cause changes in the physical characteristics of detectors as well. 
In order to support laboratory calibration, in-flight calibrations complement the calibration 
procedure, verifying the results obtained in the laboratory and, in addition, allowing the 
measurement of parameters that are only obtainable during flight (i.e. stability 
measurements, solar calibration, etc).  

For this, physically known targets have to be sensed and incident illumination should be 
measured during the overflight. Uncertainties in the measurement of hemispheric incident 
solar radiation and in the incorporation of illumination, sensing and wavelength dependent 
response of imaged calibrations targets on incident light aggravate then this type of calibration 
and may also lead to miscalibrations or visually perceptible image stripes. Hence, any striping 
reduction or retrieval of calibration coefficients should reduce stripes and at the same time the 
spectral characteristics of the imaged surface materials have to be preserved.  

In the literature, specific approaches for destriping of slope stripes, offset stripes or both 
exist, and these are primarily based on methods such as interpolation (Oliveira and Gomes, 
2010; Tsai and Chen, 2008), local or global image moments (Datt et al., 2003; Cavalli et al., 
2008; Le Maire et al., 2008; Liu et al., 2009), filtering (Garcia and Moreno, 2004; Shen et al., 
2008; Simpson et al., 1995, Simpson et al., 1998) or complex image statistics of log 
transformed slopes (Bouali and Ladjal, 2010; Carfantan and Idier, 2010; Gomez-Chova et al., 
2008). Most methods replace original, miscalibrated radiances. This should be only applied 
if information is completely missing or erroneous. 

In the following, a framework that efficiently reduces linear as well as nonlinear 
miscalibration is reviewed concurrently preserving the spectral characteristics of sensed 
surface cover materials. This framework, originally proposed by Rogass et al. (2011) and 
named as Reduction of Miscalibration Effects (ROME), consists of a linear and a nonlinear 
slope reduction and an offset reduction that are consecutively performed and does not 
require a priori information or scene and sensor specific parameterisation.  

Before any radiometric miscalibration reduction is applied, image gradients that are not 
orthogonal to the image are excluded if they do not represent the image content. Here, 
Minkowski metrics, gradient operators and edge extraction algorithms are combined to 
exclude discontinuities if they do not dominate the image content (Canny, 1986; Haralick et 
al., 1987; Rogass et al., 2009). The linear and the nonlinear slope reduction of ROME are 
performed for each detector element and band without any information from other detector 
elements. The offset reduction of ROME considers adjacent image columns and refers to a 
predefined image column (first column per default) that is assumed to be the reference. 
Specific image quality metrics, such as the change in SNR (Gao, 1993; Atkinson et al., 2005), 
were used to evaluate the necessity of such preceding reduction.  
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After these preceding reductions the image is radiometrically band wise rescaled to recover 
the radiometric scale. This is necessary since uncertainties in the estimation of parameters 
(e.g., detector resolution in the linear slope reduction) and in the incorporation of 
miscalibrated reference areas (e.g., potential miscalibration of the first image column as 
reference for the offset reduction) remain. The rescaling of ROME assumes that image 
columns that were less corrected than others can be used as reference for the whole image. 
After all reductions a detrending is performed reducing across track brightness gradients 
caused by reduction related frequency undershoots of low SNR bands. In this work an 
extension of ROME’s detrend approach is presented evidencing an effective reduction of 
undershoots when compared to the original approach. 

In order to test the robustness of the algorithm due to different types of miscalibration, four 
grey valued images as well as 12 multispectral and hyperspectral scenes were considered. 
The grey valued images were randomly striped by linearly varying slope and/or offset. One 
HyMAP scene was three times differently and artificially striped by offset stripes. The 
simulated EnMAP scene was not corrected for nonlinear effects and, hence, the nonlinear 
correction facilities were tested. Miscalibrated scenes acquired by AISA DUAL (3 scenes), 
Hyperion (2 scenes), ASTER (1 scene), CHRIS/Proba (1 scene) and APEX (1 scene) were 
additionally processed. 

2. Materials 

In Rogass et al. (2011) four grey valued images (Fig. 1) from the image database of the Signal 
and Image Processing Institute (SIPI) of the University of California (Weber, 1997), 512 × 512 
pixels in size, and six hyperspectral scenes (3 AISA DUAL, 2 Hyperion and 1 EnMAP) were 
selected to test and to evaluate the performance of the proposed ROME framework. The 
grey valued samples as well as the EnMAP scene were considered as noise free. However, 
the ‘Lenna’ image (Fig. 1a) and the ‘Mandrill’ image (Fig. 1b) are excluded from further 
considerations due to their unique spectral and spatial properties as detailed described in 
Rogass et al. (2011). 

 

    
a) b) c) d) 

Fig. 1. Grey scaled image samples from the USC SIPI image data base considered in the 
following as a) ‘Lenna’, b) ‘Mandrill’, c) ‘Aerial’ and d) ‘Sailboat on lake’ 

To simulate different types of miscalibrations and to evaluate their impact on the proposed 
work, the two grey valued images (Fig. 1 c and d) and the EnMAP scene were artificially 
degraded. The grey valued images were randomly degraded by applying 800 different sets 
of multiplicative (slope) and/or additive (offset) Gaussian white noise (Box and Muller, 
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1958). These 800 noisy matrices were transformed to provide always a mean equal to zero 
and standard deviations ranging from 0.0001 to 10000 for the multiplicative parts and from -
10000 to 10000 for the additive part. Such high noise levels were chosen to also simulate low 
SNR scenarious that are noise dominated. More details on the noise matrices and the 
hyperspectral scenes are given in Rogass et al. (2011). 

In this work additional scenes from APEX, ASTER and CHRIS/Proba were inspected, 
destriped and evaluated. Contemporary, one HyMAP scene was selected and three times 
artificially and additively degraded by Gaussian white noise to extend the testing of 
correction facilities for airborne sensors. After degrading three mean SNR levels of 7.6, 76 
and 760 were simulated.  

The HyMAP sensor is a hyperspectral whiskbroom airborne sensor that consists of one 
detector column and, hence, offset miscalibrations cannot be perceived as image stripes 
since each image column has the same offset. Therefore, HyMAP image acquisitions can be 
used to test correction approaches for pushbroom sensors. 

In the following, an image column or across track is considered as x and an image row or 
along track is considered as y. 

3. Methods 

3.1 Calibration basics 

Radiometric calibrations are often performed in laboratory and basically assign known 
incident at-sensor radiance to measured digital number (DN). The association is usually 
realised by a linear least squares regression that minimises the difference between modelled 
at-sensor radiance and known at-sensor radiance. The regression coefficients are also used 
in the reverse process to assign measured DN to at-sensor radiance that is considered as 
radiometric scaling (Chander et al., 2009).  

However, uncertainties in the laboratory measurements, in the mathematical modelling and 
in the incorporation of temporal changes of the detector characteristics lead to 
miscalibrations and, hence, to visually perceptible image stripes in y-direction. In the 
following it will be exemplarily shown how to suppress miscalibrations in accordance with 
the ROME framework. This framework consists of multiple steps that are consecutively 
processed (Fig. 2). 
 

 
Fig. 2. Workflow of ROME destriping per band 

Pushbroom sensors have detector arrays. Each detector pixel of the array has different 
physical characteristics. It follows from this that an uncalibrated hyperspectral image is 
striped. The radiometric calibration and the reverse process - radiometric scaling - aim at the 
assignment of incident radiance to DN and vice versa. Usually, radiometric calibration can 
be performed in-flight, vicariously (Biggar et al., 2003; Bruegge et al., 2007), over a flat field 
(Bindschadler and Choi, 2003) or in laboratory.  
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In the process of calibration each detector of the detector array must be solely considered. 
Known incident radiation reaches a detector pixel and once the incident photons have 
sufficient energy to excite electrons into a certain energy level, electron-hole pairs are 
generated – a phenomenon that is known as the photoelectric effect. These free charges are 
then transmitted and read out through sensor electronic. Dispersive optics placed in front of 
the sensor disperses the incident radiation into different wavelenghts that is further 
projected into each row of the detector array. The physical response, considered as signal S 
in electrons, of one detector element of a pushbroom sensor to incident radiation L can be 
approximated by a nonlinear relation (Dell`Endice, 2008; Dell`Endice et al., 2009): 
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where L is the at-sensor-radiance, A is the optical aperture of the sensing instrument, FOV is 
the field of view, T is the integration time, SSI is the Spectral Sampling Interval in respect to 
the Full Width at Half Maxima, h is the Planck constant, c is the speed of light, ne−is the 
number of collected electrons, τ is the optical transmission, λ is the centre wavelength, η is 
the quantum efficiency and F is the filter efficiency. This can be then related to the recorded 
digital number DN as follows: 
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where N is a noise term incorporating Shot-Noise, read-out noise and dark noise, DNmax is 
the radiometric resolution, FWC is the Full Well Capacity that defines the detector 
saturation and DN0 is the dark current. To enable a mathematical modelling relating 
incident radiation and measured DN, either the illumination is changed in a defined way or 
the integration time is changed or targets of different reflective properties are sensed. The 
association of at-sensor radiance L to DN is broadly considered as radiometric calibration or, 
reversely, as radiometric scaling (Chander et al., 2009). To reduce the influence of noise, a 
specific number of measurements is required. Then, the association can be realised, e.g., by 
least squares polynomial fit that minimises the differences between modelled and measured 
at-sensor radiance (Barducci et al., 2004; Xiong and Barnes, 2006). The minimisation of the 
merit function gives then the transformation coefficients for the association. This can be 
achieved by applying the following model: 
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where Ntargets denotes the number of calibration targets, c0 is the offset regarding the dark 
current, and M is the polynomial degree. The more the detector response differ from a linear 
response, the more it is necessary to use a polynomial degree higher as one. Mostly, detector 
responses can be mathematically modelled. Potential changes in the characteristics of 
detectors require frequent calibrations that are not practicable.  
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However, if then along track stripes in radiometrically scaled images are perceptible 
miscalibration is indicated. In that case, it is necessary to determine the type of 
miscalibration – multiplicative or additive – linear or nonlinear. In ROME this is performed 
by comparing the output SNR to the input SNR due to the specific processing step (Brunn et 
al., 2003; Gao, 1993). If the SNR is increased, a successful operation is indicated and finally 
applied. In the following the stripe types are distinguished with respect to equation 3 – 
additive c0 and multiplicative c1..M miscalibration and reduction. In any case the reduction of 
miscalibration should be applied before rectification. 

3.2 Edge exclusion 

Discontinuities such as impulse noise, edges or translucent objects like tree vegetation 
should be excluded from further processing unless they contribute a high spatial 
distribution. This is relevant for approaches that aim on the reduction of miscalibration by 
relying on statistical analyses of spatial and spectral differences in homogeneous regions. 
Edges can be generally excluded if they do not coincide with along track or across track 
direction. Since uncertainties in the impact of edges on the reduction process remain edges 
should be excluded if they do not dominate image content (compare Fig. 1b). In ROME this 
is performed by a combination of edge detection algorithms with morphological dilation 
with respect to Minkowski metrics. Potential edge detection algorithms for single banded 
images must be then adapted to incorporate only along track gradients, because gradients of 
radiometric miscalibration might superimpose across track gradients. In Rogass et al. (2011) 
the Canny algorithm (Canny, 1986) is used for single banded images and the Hyperspectral 
Edge Detection Algorithm (HEDA) is used for multi banded images (Rogass et al., 2010). 
After obtaining binary edge maps morphological dilations (Haralick et al., 1987; Rogass et 
al., 2009) are additionally applied to minimise edge adjacency effects caused by Point Spread 
Function (PSF) related blooming of edges into adjacent regions. The reversed edge map 
gives then the mask. In case of tree vegetation indices are computed and pixel wise 
thresholded by the highest two likelihood quartiles of containing vegetation. This binary 
vegetation map is reversed and multiplied with the reversed binary edge map. Hence, edges 
and translucent vegetation is excluded. Related equations are given in Rogass et al. (2010) 
and Rogass et al. (2011). The application of the reverse edge map gives than an edge filtered 
image. 

3.3 Linear c1 slope reduction 

In case of linear miscalibration each pixel of one detector (one column) of the same channel 
is scaled by the same c1 slope (the term ‘gain’ is often misleading used and corresponds to 
the maximisation of the radiometric resolution; Chander et al., 2009). A simple differential 
operation between two pixels from the same column leads to the mathematical elimination 
of the c0 offset. This difference is then equivalent to the difference of radiance levels. This 
corresponds to the c1 slope of this detector times the spectral difference of surface cover 
materials constrained by the detector resolution. Hence, a reduction of c1 miscalibration 
must recover both c1 slope and the spectral characteristics of the surface cover material. In 
ROME this is performed per detector or column and band by applying a multistep 
approach. Here, the radiances are sorted in ascending order. Then, unique radiance values 
are extracted and ascendingly sorted. Next, all adjacent differences are extracted, i.e. the 
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second unique value is subtracted from the first one, the third unique value from the second 
one and so on. Then, the probability distribution of these differences is estimated by a 
histogram. The first frequency category (first bin) contains the smallest difference of unique 
values. The smallest difference is given as the minimum of all differences of this bin and 
represents the slope times the smallest difference of unique values (SDUV) of a perfectly 
calibrated band. The SDUV can be considered equivalent t0 the spectral detector resolution 
of the considered band. To estimate the slope, it is now necessary to assess the SDUV. This 
can be straightforwardly performed by computing the median of all binned differences. 
After dividing this smallest difference by the SDUV the slope for this band and detector is 
recovered. This is performed for each band and detector. After obtaining the slope 
coefficients the applicability is validated. This is performed by considering adjacent detector 
columns. For this, the shapes of the histograms of adjacent columns are inspected. If the 
number of frequency categories and the positions of the maxima are not equal, then the 
slope reduction is applied for the considered column. This evaluation bases on the 
assumption that significant different slopes of similar and adjacent detectors cause stretches 
(broadening) and shifts in the histogram since considered columns mostly cover the same 
regions and the related point spread functions (PSF) of each detector are stable during 
image acquisition and, hence, contribute to their neighbouring pixels the same fraction of 
their center pixel. In presence of c0 offset miscalibration these offsets are reduced 
concurrently to c0/c1. Subsequently, SNR is computed to indicate whether previous 
operation is necessary or not. However, radiometric rescaling is then applied to reduce 
uncertainties in the estimation of SDUV (see section 3.5). 

3.4 Linear c0 reduction 

In the following it is assumed that the thermally induced offset is constant during one image 
acquisition and that homogeneous regions are spectrally homogeneous. It follows from this 
that the offset of one detector element and wavelength contributes the same fraction to all 
pixels of one detector column and wavelength. Hence, spectral homogeneous regions that 
appear spectrally different indicate c0 miscalibration if linear c1 or nonlinear c2..M reductions 
were performed beforehand. To reduce c0 miscalibration, it is necessary to spectrally 
compare adjacent image columns and to relate succeeding reduction to a predefined column 
(ROME uses per default the first column). In ROME the differences between adjacent 
columns are computed and binned in a histogram. Then, it is assumed that the bin 
(frequency category) with the highest frequency most likely contain the offset difference. To 
finally assess the offset difference, it is only necessary to average the differences of each bin 
by the median, to weight the bin according its frequency and to sum all weighted and 
averaged differences. After c0 reduction a radiometric rescaling should be applied as in 
ROME to avoid erroneous radiometric levelling due to the used reference column. However, 
after applying an offset reduction, it is necessary to check whether this operation was 
necessary or not. In ROME this is performed by considering the evolution of the SNR. 

3.5 Radiometric rescaling 

Previous described approaches to correct data for miscalibration can change the mean 
radiation of a band that is only acceptable if the new mean is closer to a perfect calibrated 
band compared to the mean of the uncorrected band. This is not known yet and, hence, it is 
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necessary to recover the physical meaning of such. A simple rescaling to the old maximum 
and minimum cannot be applied since it can be assumed that the old maximum and 
minimum are biased or erroneous due to miscalibration. In order to preserve the spectral 
characteristics a specific approach was proposed within the ROME framework as detection 
of lowest reduction zones. In this approach the correction vectors are inspected in a moving 
window. In each window the mean of the first and last reduction is rationed by the middle 
window reduction. After computing all windowed ratios the ratio that is closest to one is 
selected as reference. Then, the middle column of the reference is considered with regard to 
its maximum and minimum. The old maximum and minimum, i.e. before any reduction, is 
compared with the extrema of the reference. These are used to obtain linear transformation 
coefficients for the whole band that are subsequently applied. 

3.6 Extended detrending 

In Rogass, et al. (2011) a detrending approach is proposed that aims on the reduction of 
across track brightness gradients that are caused by offset reduction related frequency 
undershoots or by material, illumination and viewing geometry dependent surface 
responses on incident light. These undershoots have a medium frequency on average in 
comparison to the spatial distribution of the image content.  

In ROME the detrending is realised per band by computing the median average of each 
column, by smoothing and mean normalising this column to its related average vector and 
by applying this vector on the image by row wise division. 

However, lower frequencies are not considered in ROME as they can be perceived as broad 
brightness gradients. In this work, the new detrending approach is extended to capture 
lower frequency undershoots. For this, the column median per band of the uncorrected 
image and the corrected image is computed. This then gives one vector per band and image 
of the same length as the number of detectors. Each vector is then fitted to a second order 
polynomial with regard to least squares principles. Consequently, polynomial coefficients 
for each vector and image are obtained. The polynomial coefficients of the uncorrected 
image are subtracted from the coefficients of the corrected image. This gives differential 
coefficients for each band of the corrected image. After this an index vector is created that 
contains the same number of elements as detectors and consists of detector numbers (i.e. 0, 
1, 2, 3… etc.). This could be considered as a x-vector. The x-vector is used to obtain 
functional values of the differential polynomials. This then gives the differential low 
frequency trend of this band with respect to the corrected and the uncorrected image. This 
trend is applied contrary to the detrending of ROME by row wise addition. Both the original 
detrending of ROME and this extension of the detrending enable a correction for medium 
and low frequency undershoots. A comparison of this approach and the originally proposed 
approach of ROME will be given in the results chapter. 

3.7 Image quality metrics 

In Rogass et al. (2011) several image quality metrics were combined to evaluate destriping 
results on the one hand and to avoid potential drawbacks associated with relying on a single 
type of evaluation on the other hand. In this work the same metrics are used. Those were the 
global Peak-Signal-to-Noise-Ratio (PSNR) (Rogass et al., 2010; Wang and Bovik, 2009), the 
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global Shannon Entropy (Rogass et al., 2010, Frank and Smith, 2010) and the local Modified 
Structural Similarity Index (MSSIM) (Tsai and Chen, 2008; Wang and Bovik, 2009, Wang et 
al., 2004). In case of available ground truth as for the HyMAP scene the metrics were applied 
on the result and on ground truth. In case of missing ground truth the metrics were applied 
on both the input and the output, but can only be relatively considered. 

4. Results and discussion 

The ROME framework is the most recent approach to recover radiometric calibration in 
presence of miscalibration. In this work more tests were included to show that ROME is able 
to reduce miscalibration of broadly used sensors. The summarised results of Tab. 1 show 
how miscalibration was reduced that is detailed discussed per newly considered sensor in 
the next sections. All newly tested sensors were miscalibrated due to varying dark current. 
 

Sensor Scene PSNR Entropy MSSIM Average 

APEX 1 4 % 19 % 1 % 8 % 

ASTER 1 4 % 19 % 1 % 8 % 

CHRIS 1 1 % 0 % 3 % 1 % 

HyMAP SNR=7.6 -5 % 4% 6 % 5 % 

 SNR=76 0 % 3 % 5 % 3 % 

 SNR=760 0 % 2 % 5 % 2 % 

AISA1,2 1 -2 % 9 % 8 % 5 % 

EnMAP1,2 1 2 % 8 % 7% 6 % 

Grey images1,2 3,4 4 % 4 % 2 % 3 % 

Hyperion1,2 1 2 % 5 % 7 % 5 % 

1 compared to ground truth; 2 from Rogass et al. (2011) 

Table 1. Destriping results 

4.1 Grey valued images 

The grey valued images that have been selected for testing in Rogass et al. (2011) cover a 
broad range of spectral and spatial image properties. In this work 2 out of 4 of the test 
images were selected due to their similar spatial and spectral distributions compared to 
remote sensing scenes. The ‘Aerial’ image is characterised by leptokurtic grey value 
distribution. The ‘Sailboat on lake’ image has a balanced grey value distribution and edge 
quantity. With regard to Rogass et al. (2011) ROME achieved a destriping accuracy of 97 % 
(compare Tab. 1 and Fig. 3) for the two grey test images. As perceptible in Fig. 3 all stripes 
were removed and the results differ from ground truth (Fig. 1c and d) only by 3% on 
average (Tab. 1). 

4.2 Artificial striped HyMAP 

The HyMAP whiskbroom sensor was three times differently offset striped, ROME destriped 
and the results were evaluated based on the metrics of section 3.7. The offset stripes were 
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generated as described in Rogass et al. (2011) and scaled to achieve an overall SNR of 7.6, 76 
and 760. The offset stripe type was selected since this type is most common to broadly used 
pushbroom sensors. However, about 97 % of a perfect calibration could be recovered 
(compare Tab. 1). Hence, the accuracy assumption of Rogass et al. (2011) that 97 % of a 
perfect calibration can be recovered by ROME is confirmed. With regard to the results 
visually presented in Fig. 4 the stripes were completely removed.  

 

  
a) b) 

Fig. 3. Striped (left) and destriped images (right) for a)’Aerial’ and b) ‘Sailboat on lake’ 

 

   
a) b) c) 

   
d) e) f) 

Fig. 4. False coloured image subset of band 30 (874 nm) of a HyMAP scene (subset a and 
zoom d), striped representation with a SNR of 7.6 (subset b and zoom e) and the ROME 
result adaptively detrended (subset c and zoom f) 

Uncertainties remain in the assessment of the true radiometric scale as well as in the correct 
trend. This is visualised in Fig. 5. Considering both the transect and the spectral profile of 
Fig. 5 leads to the perception that small differences between ground truth and the destriping 
result persist. These differences approximately amounts 3% due to Tab. 1. This underlines 
the robustness of the ROME approach and contemporary shows that miscalibration can be 
efficiently suppressed. 
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Fig. 5. Random arbitrary transect a) and spectral profile for a random point due to the 
subsets of Fig. 4 a), b) and c) 

4.3 ASTER 

The ASTER sensor was selected for destriping since it has broader bands as an typical 
hyperspectral sensor and the potential miscalibration is often underestimated in the 
literature. However, the visible and near infrared bands were selected since these bands 
were mostly preceptible miscalibrated as exemplarily shown in Fig. 6. With regard to the 
results of Tab. 1 the destriping of the ASTER scene improved the radiometric calibration by 
8 % on average. That is significant in comparison to the CHRIS/Proba related destriping 
results. As perceptible in Fig. 6 all stripes were removed.  

As shown in Fig. 6 and 7 miscalibration is mostly visually perceptible in contrary to 
arbitrary transects as presented in Fig. 7a). However, the ROME framework and the 
adaptive detrending reduced the miscalibration. In consequence, the spectral profile has 
changed as given in Fig. 7 b). Contrary to airborne sensors miscalibrations of satellite 
sensors such as ASTER slowly vary over time. It follows from this that correction sets 
obtained by the ROME framework can be reused for scenes that are timely close. 

4.4 CHRIS/Proba 

As shown in Fig. 8 the test scene acquired by the CHRIS sensor is well calibrated. However, 
remaining miscalibration is visually perceptible as given in Fig. 8 c).  

With regard to Tab. 1 ROME improved the radiometric calibration by 1 % on average. This 
shows on the one hand that the scene of this sensor was well calibrated and on the other 
hand that ROME is also able to detect and to reduce small variations of miscalibrations.  
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a) b) 

  
c) d) 

Fig. 6. False coloured image subset of band 3 (807 nm) of a striped ASTER scene (subset a 
and zoom c) and the ROME result adaptively detrended (subset b and zoom d) 
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Fig. 7. Random arbitrary transect a) and spectral profile for a random point due to the 
subsets of Fig. 6 a) and b) 
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a) b) 

  
c) d) 

Fig. 8. False coloured image subset of band 44 (803.8 nm) of a striped CHRIS/Proba scene 
(subset a and zoom c) and the ROME result adaptively detrended (subset b and zoom d) 
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Fig. 9. Random arbitrary transect a) and spectral profile for a random point due to the 
subsets of Fig. 8 a) and b) 
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The transect as well as the spectral profile given in Fig. 9 show that ROME preserved spatial 
and spectral shapes. Contrary to ASTER it appears that the ROME destriping of 
CHRIS/Proba scenes is only necessary if succeeding processing consider adjacent image 
columns. In relation to Rogass et al. (2011) 97 % of a perfect calibration can be recovered by 
ROME. It follows from this that the decision whether ROME is applied on CHRIS/Proba or 
not should be application driven. 

4.5 APEX 

The APEX sensor belongs to the recently developed pushbroom sensors and offers a high 
SNR for a broad set of applications. However, as most pushbroom sensors APEX 
acquisitions also show perceptible variations in dark current as offset stripes although it is 
well calibrated like CHRIS/Proba. These stripes are difficult to be detected due to the high 
SNR of APEX and to the overall low contribution of miscalibration to image spectra. To 
additionally test the new detrending approach, a subset of a scene (400 lines) was used. In 
consequence, the results of Tab. 1 that show an overall improvement of calibration of about 
8 % are not fully representative for the APEX sensor. In this case it is assumed that 97 % of a 
perfect calibration has been achieved. The respective results are exemplarily represented in 
Fig. 10 and 11. Comparing the along track transect of Fig. 11 a) and the spectral profile of 
Fig. 11 b) with the false coloured image representations of Fig. 10 it appears that changes of 
spectra are mostly visually perceptible. That supports the assumption that APEX 
acquisitions are not dominated by dark current variations contrary to Hyperion or AISA 
DUAL. The assumption that potential frequency undershoots caused by, e.g. offset 
reductions, are minimised by the new detrending approach is also supported (compare also 
next chapter). 

 
 

  
a) b) 

  
c) d) 

Fig. 10. False coloured image subset of band 19 (557.3 nm) of a striped APEX scene (subset a 
and zoom c) and the ROME result adaptively detrended (subset b and zoom d) 
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Fig. 11. Random arbitrary transect a) and spectral profile for a random point due to the 
subsets of Fig. 10 a) and b) 

4.6 Results for extended detrending 

The ROME framework as proposed in Rogass et al. (2011) has limited facilities for short 
scenes. In this work the impact of short scenes is inspected and an extension to its 
detrending proposed. Since the effect varies from scene to scene and sensor to sensor it is 
not possible to quantify the impact. To qualify the impact of short scenes on ROME, one 
artifically offset striped HyMAP scene subset (SNR=7.6) was destriped. Then, the result was 
ROME detrended and detrended by the nex approach. The respective results are given Fig. 
12 and 13. As perceptible in Fig. 12 b) and e) compared to Fig. 12 c and f significant 
reduction related brightness gradients are significantly reduced by the new approach. 

 

   
a) b) c) 
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d) e) f) 

Fig. 12. False coloured, small image subset of band 30 (874 nm) of a HyMAP scene (subset a 
and zoom d) that war artificially offset striped (SNR=7.6), ROME result (subset b and zoom 
e) and the ROME result adaptively detrended (subset c and zoom f) 

The across track transect as well as the spectral profile given in Fig. 13 clearly show the 
impact of the detrending on the spectral scale. Comparing the old detrending approach with 
the new detrending approach leads to the perception that the new detrending preserves the 
spectral profile in both directions the spatial domain - across track (correction direction) and 
the spectral domain – along the spectrum. 
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Fig. 13. Random arbitrary transect a) and spectral profile for a random point due to the 
subsets of Fig. 10 a) and b) 

It follows from this that relatively short scenes are more difficult to correct as long scenes. In 
Rogass et al. (2011) it was assumed that the ROME correction facilities are dependent on the 
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along track dimension. This is supported and can be clearly demonstrated, e.g. by transects 
and spectral profiles of corrected short scenes as presented in Fig. 12 and 13. The subsets for 
detrending comparisons had a size of 400 lines. 

5. Conclusions 

Pushbroom sensors must be carefully calibrated and miscalibrations aggravate succeeding 
operations such as atmospheric correction (Richter, 1997), classification and segmentation 
(Datt et al., 2003). Therefore, it is necessary to efficiently reduce them. The ROME 
framework and the extended detrending proposed in this work significantly reduce 
miscalibrations of any type. Like other methods there are also limitations. These limitations 
mostly relate to offset and nonlinear reductions, not the linear slope reduction. 

However, a calibration recovery rate of about 97 % still remains uncertainties. High spatial 
densities of translucent objects such as trees reduce offset reduction facilities and should be 
excluded beforehand. Tests with different data sets also showed that dense haze or clouds 
may hinder offset reduction. These effects can be minimised by destriping subsets and by 
applying estimated correction coefficients on the whole image. In case of clouds or dense 
haze a reference column for offset reduction that is haze or cloud free is suggested. 

With regard to tests of Rogass et al. (2011) and tests performed for this work it can be 
assumed that the ROME framework is capable to reduce miscalibrations for most 
pushbroom sensors. With regard to the high processing speed and the freedom of 
parameters it can be operationally used. The nonlinear correction has to be improved but 
represents the current state of the art method as the other methods implemented in ROME. 
However, further research is necessary. This is particularly applicable for high frequency 
undershoots that are currently not considered. 
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