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ABSTRACT 

Based on cosmogenic 
10

Be and 
26

Al analyses in 15 individual detrital quartz pebbles (16-21 mm) and cosmogenic 

10
Be in amalgamated medium sand (0.25-0.50 mm), all collected from the outlet of the upper Gaub River 

catchment in Namibia, quartz pebbles yield a substantially lower average denudation rate than those yielded by 

the amalgamated sand sample. 
10

Be and 
26

Al concentrations in the 15 individual pebbles span nearly two orders of 

magnitude (0.22 ± 0.01 - 20.74 ± 0.52 x 10
6
 
10

Be atoms.g
-1

 and 1.35 ± 0.09 - 72.76 ± 2.04 x 10
6 26

Al atoms g
-1

, 

respectively) and yield average denudation rates of ~0.7 m.Myr
-1

 (
10

Be) and ~0.9 m.Myr
-1

 (
26

Al). In contrast, the 

amalgamated sand yields an average 
10

Be concentration of 0.77 ± 0.03 x 10
6
 atoms.g

-1
, and an associated mean 

denudation rate of 9.6 ± 1.1 m.Myr
-1

, an order of magnitude greater than the rates obtained for the amalgamated 

pebbles. The inconsistency between the 
10

Be and 
26

Al in the pebbles and the 
10

Be in the amalgamated sand is likely 

due to the combined effect of differential sediment sourcing and longer sediment transport times for the pebbles 

compared to the sand-sized grains. The amalgamated sands leaving the catchment are an aggregate of grains 

originating from all quartz-bearing rocks in all parts of the catchment. Thus, the cosmogenic nuclide inventories of 

these sands record the overall average lowering rate of the landscape.  The pebbles originate from quartz vein 

outcrops throughout the catchment, and the episodic erosion of the latter means that the pebbles will have higher 

nuclide inventories than the surrounding bedrock and soil, and therefore also higher than the amalgamated sand 

grains. The order-of-magnitude grain size bias observed in the Gaub has important implications for using 

cosmogenic nuclide abundances in depositional surfaces because in arid environments, akin to our study 

catchment, pebble-sized clasts yield substantially underestimated palaeo-denudation rates. Our results highlight 

the importance of carefully considering geomorphology and grain size when interpreting cosmogenic nuclide data 

in depositional surfaces. 
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1. INTRODUCTION 

In situ-produced cosmogenic nuclide analyses in both modern and buried sediment are widely used to quantify 

modern- and palaeo-denudation rates integrated over a wide range of spatial and temporal scales (e.g., von 

Blanckenburg, 2005; Dunai, 2010; Portenga and Bierman, 2011). Such studies assume that the sediment sample 

comprises grains originating from all parts of a catchment and that it records the average denudation rate of the 

sediment’s source (Bierman and Steig, 1996; Brown et al., 1995; Granger et al., 1996). The latter assumption 

implies that the cosmogenic nuclide concentration of the sample, and so the inferred denudation rate, do not 

depend on grain size. Numerous studies have found no dependence of nuclide concentration on grain size (e.g., 

Granger et al., 1996; Clapp et al., 2000; 2002; Schaller et al., 2001; Ouimet et al., 2009; Palumbo et al., 2010; see 

supplementary data), but substantial grain size effects have been observed in a few, mostly humid, environments, 

including Puerto Rico (Brown et al., 1998), the Appalachian Mountains (Matmon et al., 2003), the Olympic 

Mountains (Belmont et al., 2007), and the Amazon Basin (Wittmann et al., 2011). 

 

A possible grain size effect can also be observed in cosmogenic nuclide data from the Gaub River catchment in the 

arid central-western Namibia (Codilean et al., 2008) (Figure 1). Codilean et al. (2008) established the spatial 

pattern of denudation in the Gaub using in situ-produced cosmogenic 
10

Be (
10

Bec) in amalgamated sand samples 

(0.25-0.50 mm), showing that the spatial distribution of denudation is reflected in the shape of the frequency 

distribution of cosmogenic 
21

Ne (
21

Nec) concentrations in 32 quartz pebbles (16-21 mm) randomly collected from 

the catchment outlet (Figure 1C). Although the spatial pattern of denudation implied by the 
21

Nec in the pebbles is 

consistent with Codilean et al.’s (2008) 
10

Bec data from amalgamated sand samples (Figure 1), when amalgamated 

the 
21

Nec concentrations in the pebbles yield a substantially lower average denudation rate of ~1 m.Myr
-1

  as 

compared to the ~12 m.Myr
-1

 determined using the 
10

Bec in the sand (Bierman and Caffee, 2001; Codilean et al., 

2008). Identifying the cause of this apparent discrepancy between the 
10

Bec in the sand and 
21

Nec in the pebbles is 

hindered by the fact that it involves two separate isotopic systems. If the low 
10

Bec in the sand (relative to the 
21

Nec 

in the pebbles) is not a grain-size effect, it could indicate radioactive decay of 
10

Bec during long-term sediment 

storage, in both the colluvial and fluvial systems, at depths sufficient for cosmogenic nuclide production to cease. 

Conversely, the relatively high 
21

Nec concentrations in the pebbles, relative to the 
10

Bec in the sand, could indicate 

the presence of excess non-cosmogenic 
21

Ne that has not been identified during measurement (cf. Niedermann, 

2002). 

 

To establish the cause of this apparent grain size bias in the Gaub River catchment, we measured cosmogenic 
10

Be 

and 
26

Al (
26

Alc) in 15 of Codilean et al.’s (2008) 32 pebbles (Figure 1C). In the case of a mismatch between the 
10

Bec 

and 
21

Nec in the pebbles, measurements of 
26

Alc will determine whether this is the result of radioactive decay of 

10
Bec during long-term sediment storage, or the presence of excess non-cosmogenic 

21
Ne. In addition, to better 

constrain the spatial pattern of denudation and to confirm that the sediment leaving this catchment is a mixture of 

grains originating from all parts of the catchment, we complemented Codilean et al.’s (2008) 
10

Bec amalgamated 

sand data with a further eight samples: seven from tributaries and a further sample from the catchment outlet 

(Figure 1A). 
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2. FIELD SETTING 

The Gaub is a tributary of the ~15,500 km
2
 Kuiseb River, one of the major ephemeral rivers systems draining 

western Namibia. The study catchment has an area of ~1200 km
2
 and the geomorphology is that of a high 

elevation passive margin with an extensive low-relief upland region and a highly dissected, high-relief zone 

marking the Great Escarpment. Quartzites and granites of the Rehoboth group (1650-1860 Myr) and Sinclair group 

(1050-1400 Myr) are the dominant rock types in the study catchment (Ziegler and Stoessel, 1993). Quartz is an 

abundant component of all lithological units and quartz-vein outcrops are ubiquitous throughout the catchment 

(Figure 2). 

 

Overall, denudation rates in central-western Namibia are low, with the steeper escarpment area eroding more 

rapidly than either the more gently sloping coastal plain or the upland plateau. Cosmogenic nuclide-based bedrock 

erosion rates average around ~3 m.Myr
-1 

on the coastal plain and upland plateau (Bierman and Caffee, 2001; van 

der Wateren and Dunai, 2001), and the steeper escarpment area is eroding in the proximity of the study 

catchment at a rate of ~10 m.Myr
-1 

 (Cockburn et al., 2000). Denudation rates based on 
10

Bec analysis of sediment 

are higher than their bedrock counterparts but exhibit a similar regional pattern: ~8 and ~6 m.Myr
-1 

 on the coastal 

plain and upland plateau respectively, and ~16 m.Myr
-1

 on the escarpment (Bierman and Caffee, 2001; Bierman et 

al., 2007; Codilean et al., 2008). 

 

3. METHODS AND DATA 

Quartz samples were prepared according to the procedure described by Wilson et al. (2008) with the following 

modifications: (1) Inherent Al in quartz after etching was ≤35 ppm; (2) 260 or 320 µg 
9
Be and 2.46-2.50 mg 

27
Al 

were added as carrier to the main solution, and (3) Ti was removed by cation-exchange chromatography using 

sulphuric acid.  

 

The 
10

Be/
9
Be and 

26
Al/

27
Al ratios were measured with the 5MV NEC Pelletron accelerator mass spectrometer at 

SUERC (Freeman et al., 2004) as part of routine Be and Al runs. The measurements are described in detail by 

Maden et al. (2007), Freeman et al. (2007), Schnabel et al. (2007), and Xu et al. (2010). The NIST SRM4325 

standard (with a calibrated 
10

Be/
9
Be ratio of 3.0610

-11
; Middleton et al., 1993) was used for normalisation, which 

is 14% higher than the NIST certified value (
10

Be/
9
Be = 2.68 x 10

-11
). To make all subsequent calculations consistent 

with the updated 
10

Be half-life of 1.387 ± 0.012 Myr (Chmeleff et al., 2010; Korschinek et al., 2010), the 
10

Be data 

were re-normalised to the 2007 KNSTD standard (Nishiizumi et al., 2007). The 
10

Be/
9
Be ratios of the full chemistry 

procedural blanks prepared with the samples were 3.1 ± 1.0  10
-15

 for the amalgamated sands, and 5.3 ± 0.6  10
-

15
 and 5.1 ± 0.6  10

-15 
for the pebbles, respectively. This ratio was subtracted from the Be isotope ratios of the 

samples. Blank-corrected 
10

Be/
9
Be ratios of the amalgamated sands ranged from 5.02  10

-13
 to 3.63  10

-12
, and 

for the pebbles from 3.2  10
-14

 to 2.07  10
-12

. One-sigma uncertainties of the SUERC AMS measurement include 

the uncertainty of the sample measurement, the uncertainty associated with the measurement of the primary 

standard and the uncertainty of the blank correction. Total one-sigma uncertainties for the concentrations 



 4 

(atoms.g
-1

 quartz) determined at SUERC include the one-sigma uncertainty of the AMS measurement and a 2% 

uncertainty as a realistic estimate for possible effects of the chemical sample preparation which includes the 

uncertainty of the Be concentration of the carrier solution.  

 

Typical ion currents of 
27

Al were 250-420 nA. Z92-0222 (donated from PRIME Lab, Purdue University) with a 

nominal 
26

Al/
27

Al ratio of 4.1110
-11 

was used as primary standard. The measurements of this material agree with 

the measurements of standard material supplied by K. Nishiizumi (2002, 2004); Z92-0222 is equivalent to the 

KNSTD standard for Al in the CRONUS-Earth online calculator (Balco et al., 2008). The 
26

Al/
27

Al ratios of the 

processing blanks prepared with the samples ranged from 1  10
-15

 to 2  10
-15

.  An average ratio of 1.7  10
-15

 was 

subtracted from the Al isotope ratios of the samples. Blank-corrected 
26

Al/
27

Al ratios of the samples ranged from 

4.5  10
-14

 to 2.3  10
-12

. One-sigma uncertainties of the SUERC AMS measurement consist of the uncertainty of 

the sample measurement, the internal uncertainty of the normalization (reproducibility of the measurements of 

the primary standard) and the uncertainty of the blank correction. One-sigma uncertainties for the concentrations 

determined at SUERC include the one-sigma uncertainty of the AMS measurement and the one-sigma uncertainty 

of the determination of total Al with ICP-MS (typically between 2.0% and 2.1%). The uncertainty on the total Al is 

close to that of the one-sigma uncertainty (2.0%) of the carrier solution that was used in these analyses. The one-

sigma uncertainties of the ICP-MS measurements for inherent 
27

Al concentrations ranged from 2.5-3.8%. 

Expressed 
10

Be and 
26

Al AMS analysis uncertainties are consistent with the long-term measurement reproducibility 

of standard material of similar isotope ratio. The treatment of the uncertainties that contribute to the uncertainty 

of the 
26

Al concentration in atoms.g
-1

 quartz is described in Roberts et al. (2008). 

 

Catchment wide denudation rates were calculated using the re-normalised (2007 KNSTD) 
10

Be concentrations, and 

following the formalism of Schaller et al. (2001) with 
10

Bec SLHL production rates of:  4.5 ± 0.5 atoms.g
-1

.yr
-1

 for 

high-energy neutrons, 0.097 ± 0.007 atoms.g
-1

.yr
-1

 for slow muons, and 0.085 ± 0.012 atoms.g
-1

.yr
-1

 for fast muons. 

The 
10

Bec SLHL production rate for high-energy neutrons was recalculated from Balco et al.'s (2008) 
10

Bec 

calibration-site dataset, using the time-independent altitude/latitude scaling scheme of Dunai (2000) and a 
10

Bec 

half-life of 1.387 ± 0.012 Myr (Chmeleff et al., 2010; Korschinek et al., 2010). The 
10

Bec SLHL production rates for 

muons were taken from Kubik et al. (2009) and are based on Heisinger et al. (2002a,b). All 
10

Bec SLHL production 

rates were corrected for altitude and latitude using the time-independent scaling scheme of Dunai (2000) and for 

topographic shielding following Codilean (2006). All calculations were performed on a pixel-by-pixel basis using the 

90m SRTM DEM (http://srtm.csi.cgiar.org/). All previously published 
10

Bec data that are quoted in the text were 

also re-calculated following the procedure outlined above.  We use a 
21

Nec/
10

Bec production ratio of 4.08 ± 0.37 

(Balco and Shuster, 2009), yielding 
21

Ne SLHL production rates of 18.4 ± 2.7 atoms.g
-1

.yr
-1

 for high-energy neutrons, 

and 0.69 ± 0.19 atoms.g
-1

.yr
-1

 for slow and fast muons respectively. 

 

The results of the 
10

Bec analyses in the eight amalgamated sand samples are summarised in Figure 1A and Table 1. 

Sample N1, collected from the trunk channel at the catchment outlet, yields a catchment-wide erosion rate of 9.6 

± 1.1 m.Myr
-1

. Tributary samples (N2A to N3C) yield catchment-wide erosion rates that range from 3.8 ± 0.4 to 16.9 

http://srtm.csi.cgiar.org/
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± 1.9 m.Myr
-1

.
 
These rates are consistent with published data (Bierman and Caffee, 2001; Codilean et al., 2008) and 

confirm the strong relationship between erosion rate and mean catchment slope (Codilean et al., 2008) (Figure 

1B). 

 

The results of the 
10

Bec and 
26

Alc analyses in the 15 pebbles are summarised in Table 2. The 15 pebbles were 

selected such that the whole range of 
21

Ne concentrations obtained by Codilean et al. (2008) is covered (Figure 

1C). 
10

Bec and 
26

Alc concentrations span nearly two orders of magnitude: 0.22 ± 0.01 to 20.74 ± 0.52 x 10
6
 
10

Be 

atoms.g
-1

 and 1.35 ± 0.09 to 72.76 ± 2.04 x 10
6
 
26

Al atoms.g
-1

. To allow for a first order comparison between the  

10
Bec , 

26
Alc, and 

21
Nec data, without implying that such a procedure is appropriate with these data, we calculate 

catchment-wide denudation rates using the average of the nuclide concentrations in the pebbles, obtaining ~0.7, 

~0.9, and ~0.8 m.Myr
-1

 for 
10

Bec, 
26

Alc, and 
21

Nec, respectively. These values are virtually identical, and are one 

order of magnitude lower than that obtained from the amalgamated sand sample N1 from the catchment outlet, 

namely  9.6 ± 1.1 m.Myr
-1

 (Figure 1A).  

 

The plots in Figure 3 indicate the presence of a relative excess of 
21

Ne in six of the pebbles, namely, A1, A3, B6, C7, 

D0, and E1. These pebbles have 
21

Nec/
10

Bec ratios that plot in the complex exposure / burial domain in Figure 3B 

whereas with the exception of B6 and E1, the remaining pebbles have 
26

Alc/
10

Bec ratios that plot at one-sigma level 

within the erosion-island envelope in Figure 3A. The latter indicates that the relatively high 
21

Nec/
10

Bec ratios in the 

six pebbles are not the result of decay of 
10

Bec, but rather the result of the presence of a relative excess of non-

cosmogenic 
21

Ne. This excess of 
21

Ne however, is of minor importance for explaining the grain size bias observed in 

the Gaub River catchment given the first order agreement between the average abundances of the three nuclides. 

In this study we focus on the 
10

Bec and 
26

Alc results only, and will later discuss the geochemical subtleties of the 

21
Ne in the Gaub pebbles elsewhere. 

 

4. DISCUSSION AND CONCLUDING REMARKS  

Neither the presence of substantial unaccounted-for non-cosmogenic 
21

Ne in the pebbles nor radioactive decay of 

10
Bec during long-term sediment storage is the likely cause of the grain-size effect observed in the Gaub. The first 

order agreement between the three nuclides in the pebbles and the order-of-magnitude difference in 
10

Bec 

between the pebbles and the amalgamated sand, indicate that the pebbles cannot contain the substantial 

amounts of non-cosmogenic 
21

Ne necessary to explain the difference between the nuclide inventories of the two 

size fractions. Moreover, burial during long-term sediment storage would result in decay of 
10

Bec and 
26

Alc in both 

size fractions.  The 
26

Alc/
10

Bec ratios in the pebbles do not indicate obvious complex exposure histories, with all but 

three of the samples either intersecting at one-sigma or falling completely within the erosion-island envelope in 

Figure 3A. Thus, burial and storage at depth of the pebbles have very likely not been substantial. 

 

Two remaining mechanisms could explain the covariance between grain size and the cosmogenic nuclide 

concentrations observed in the Gaub.  The first involves substantially longer sediment transport times for the 

pebbles than for the sand-sized grains. Longer transport times would mean longer exposure to cosmic radiation 
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and thus higher nuclide concentrations in the pebbles. This mechanism is problematic for the Gaub, however. 

Firstly, the relatively high nuclide concentrations measured in the pebbles can be reproduced by measured 

bedrock erosion rates alone, and they do not require cosmogenic nuclide acquisition during transport through the 

drainage system (Codilean et al., 2008). Secondly, a simple calculation suggests that a difference in transport times 

on the order of 10
5
 years is necessary to produce the order-of-magnitude difference in nuclide concentrations 

between the two size fractions (see also Codilean et al., 2010). Given the small catchment size and lack of both 

accommodation space and sediment in storage, such long sediment residence times are unlikely for arid 

catchments such as the Gaub. 

 

A second mechanism for explaining the apparent inconsistency between the 
10

Bec and 
26

Alc in the pebbles and the 

10
Bec in the amalgamated sand is that of differential sediment sourcing. The average of the denudation rates 

obtained for the 11 Gaub tributary sand samples (Figure 1A) is 12.0 ± 1.7 m.Myr
-1

, overlapping at one sigma with 

that obtained from sample N1, collected at the catchment outlet (9.6 ± 1.1 m.Myr
-1

). This equivalence 

demonstrates that the sediment leaving the study catchment is well mixed and all areas of the catchment 

contribute to the total mix at the outlet. Thus, the amalgamated sands leaving the catchment are an aggregate of 

grains originating from quartz-bearing rocks in all parts of the catchment, and the cosmogenic nuclide inventories 

of these sands record the overall average lowering rate of the landscape.  

 

Unlike the surrounding bedrock that disintegrates into sand-sized grains, quartz-vein outcrops tend to break up 

episodically into larger clasts (Figure 2) (cf. Small et al., 1997; Muzikar 2008; 2009). We infer that the pebbles 

originate from the quartz-vein outcrops throughout the catchment, and the episodic erosion of the latter means 

that the pebbles have higher nuclide inventories than the surrounding bedrock and soil, and therefore also higher 

than the amalgamated sand grains (Figures 4 and 5). These quartz-vein outcrops, although ubiquitous, constitute 

only a minute percentage of the overall land surface in the study catchment, and so, despite higher nuclide 

concentrations, the cosmogenic ‘signal’ from quartz vein-sourced sand grains (derived presumably by break-down 

of larger clasts such as the pebbles we sampled) is diluted as they contribute only a small fraction of total 

cosmogenic nuclide concentration in the exported sediment. This second mechanism is supported by published 

data (Bierman and Caffee, 2001; Bierman et al., 2007; Cockburn et al., 2000; Codilean et al., 2008; van der 

Wateren and Dunai, 2001). Figure 6, a summary of all cosmogenic nuclide data from bedrock and amalgamated 

sand samples collected in central-western Namibia, indicates that amalgamated sand samples record higher 

erosion rates than their bedrock counterparts, and that quartz-vein outcrops account for the majority of the 

lowest measured bedrock erosion rates for this area. 

 

It is unlikely, however, that the second mechanism described above can alone explain the order-of-magnitude 

difference between the cosmogenic nuclide inventories of the amalgamated sands and individual pebbles, as this 

would require long time intervals between successive quartz-vein outcrop spalling events, and thus unrealistically 

tall outcrops. The latter is not observed in the field. It is more likely that the order-of-magnitude grain size bias 

observed in the Gaub is a result of the combined effects of both mechanisms described here (Figure 5). Pebbles 
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accumulate more cosmogenic nuclides than finer grains because of the episodic nature of the erosion of their 

source quartz-vein outcrops, and because they also spend relatively longer amounts of time in transport on the 

hillslopes than do sand grains, simply because the hydrological events that mobilise larger clasts occur more rarely 

than those that mobilise sand. 

 

Independent of the cause, however, the order-of-magnitude grain size bias observed in the Gaub has important 

implications for using cosmogenic nuclide abundances in depositional surfaces to quantify palaeo-denudation 

rates in arid environments akin to our study catchment in Namibia. Analyses of the distribution of cosmogenic 

nuclide concentrations in depth profiles on depositional surfaces such as fluvial terraces are useful for 

simultaneously determining both the depositional age of the surface and the palaeo-denudation rate that 

characterised the landscape prior to the deposition of the dated sediment (Anderson et al., 1996; Braucher et al., 

2009; Hidy et al., 2010). Amalgamated clasts are often preferred to sand-sized material for these studies mainly 

because they are less likely to be re-mobilised after deposition (Repka et al., 1997). The principle behind the 

method is that the cosmogenic nuclide concentration of each amalgamated clast sample in the depth profile is the 

sum of two components: (1) a post-depositional component reflecting the depositional age and the rate of erosion 

of the depositional surface, and (2) an inherited component reflecting the denudation rate prior to the deposition 

of the samples. The first component is acquired exclusively after deposition and so the age and erosion rate of the 

depositional surface are not affected by a covariance between cosmogenic nuclide activity and grain size. 

Determination of the palaeo-denudation rate, on the other hand, depends on the absolute cosmogenic nuclide 

concentrations in the depth profile samples, and so it will be affected by a grain size bias. In environments akin to 

our study catchment, pebble-sized clasts will yield substantially underestimated palaeo-denudation rates. 
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TABLE CAPTIONS: 

Table 1. Summary of amalgamated sand 
10

Be data. See text for details on denudation rate calculations. 

Table 2. Summary of individual pebble 
10

Be and 
26

Al data. 

 

FIGURE CAPTIONS: 

Figure 1. Field setting and cosmogenic nuclide data. (A) Map of study area showing denudation rates (m.Myr
-1

) 

inferred from 
10

Bec analyses in amalgamated sand samples by Codilean et al. (2008) and this study. (B) Plot of the 

10
Bec catchment-wide denudation rates obtained for the 11 Gaub sub-catchments in (A) versus the mean slopes of 

these sub-catchments. (C) Cumulative frequency distribution plot showing Codilean et al.’s (2008) 
21

Nec 

concentrations in the 32 pebbles. Circles in yellow indicate the pebbles that were selected for 
10

Bec and 
26

Alc 

measurements (this study). 

 

Figure 2. Typical view of the study area showing the ubiquitous nature of quartz-vein outcrops (white arrows).  
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Figure 3. Plots showing the 
26

Alc/
10

Bec  and 
21

Nec/
10

Bec  ratios (± 1) vs. 
10

Bec concentration in the 15 pebbles. 

Pebbles that have been exposed continuously to cosmic radiation (i.e., no burial) should plot within the erosion-

island envelope defined as the grey area between the erosion-island plots for the minimum and maximum 

cosmogenic nuclide production rates in the study catchment. Points plotting below or above the erosion-island 

envelope indicate either a complex exposure history (i.e., at least one episode of burial) or measurement error, 

respectively, for that sample. 

 

Figure 4. Accumulation of 
10

Bec  in an eroding surface under continuous erosion (blue) and episodic erosion (red). 

Under continuous steady erosion the surface 
10

Bec concentration reaches a constant value (dashed blue curve), 

and the amount of 
10

Bec produced by cosmic rays equals the amount removed by erosion and radioactive decay. 

Episodic erosion processes, on the other hand, result in the removal of discrete blocks of rock. The truncation of 

the exponentially decreasing 
10

Bec depth-profile means that a constant surface 
10

Bec concentration is never 

reached; instead the surface concentration fluctuates with time (red curve) as the amount of 
10

Bec produced never 

equals the amount removed by erosion. Under these conditions, the material removed by spalling of blocks from 

an outcropping quartz vein has a higher 
10

Bec concentration (1) than the quartz vein surface that becomes exposed 

(2). In addition to eroding episodically, a quartz vein outcrop is also exposed to cosmic radiation from all directions 

and so, material removed (e.g., quartz pebbles) will likely have a higher 
10

Bec concentration than the surrounding 

landscape that is both eroding continuously (dashed blue curve) and is only exposed to cosmic radiation from 

above. Based on Small et al. (1997) and Muzikar (2008,2009). 

 

Figure 5. (A) Numerical simulation showing the temporal evolution of the 
10

Bec concentration at the top of a 

quartz-vein outcrop (labelled (1) in Figure 4) that is eroded by the episodic spalling of blocks, as compared to the 

10
Bec concentration of the surrounding bedrock/soil that is subject to continuous erosion. In the simulation, the 

quartz-vein outcrop’s maximum permissible height is 50 cm. At each iteration the outcrop is truncated by 

removing a block of random thickness between 0 – 50 cm. (B) Plot showing the % increase in the 
10

Bec 

concentration of pebbles as a result of longer sediment transport times, as compared to the 
10

Bec concentration of 

their source.  The relative increase in the 
10

Bec concentration of pebbles depends on (1) their 
10

Bec at detachment, 

and therefore the erosion rate of their source, and (2) the elevations at which the pebbles are exposed to cosmic 

radiation during their transport through the catchment.   

 

Figure 6. Frequency distribution plots summarising 
10

Bec-based erosion rates obtained for central-western Namibia 

from bedrock and amalgamated sand samples by Cockburn et al. (2000), Bierman and Caffee (2001), van der 

Wateren and Dunai (2001), Bierman et al. (2007), Codilean et al. (2008), and this study. Frequency distribution 

plots show rates inferred from: (A) exposed bedrock excluding those samples where quartz-vein outcrops were 

sampled. Note that the large frequency in the first bin is partly the result of including Cockburn et al.’s (2000) 

samples collected from the summit of the Gamsberg, a flat-topped granite residual capped by a ~25 m thick 

quartzite unit that yielded erosion rates ~0.6 m.Myr
-1

; (B) Quartz-vein outcrops. Note the high skew towards low 
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values suggesting that quartz-vein outcrops account for the majority of the lowest recorded rates in central-

western Namibia; (C) Amalgamated sand. 















 
Table 1. Summary of amalgamated sand 

10
Be data. See text for details on denudation rate calculations. 

 
 

ID 

Longitude(1) Latitude Area Elevation (m) Production scaling factors(2) 10Be(3,4) Denudation rate(4) 

(degrees) (degrees) (km2) Min Max Mean Spallation Slow muons Fast muons 106 atoms.g-1 m.Myr-1 

N1 16.090390 -23.480911 1264.53 940 2353 1573 2.15 2.07 1.09 0.767 ± 0.025 9.6 ± 1.1 

N2A 16.089481 -23.478488 95.21 946 2351 1357 1.84 1.89 1.08 0.405 ± 0.014 16.6 ± 1.9 

N2B 16.090390 -23.480911 81.28 940 1980 1335 1.82 1.87 1.08 0.393 ± 0.014 16.9 ± 1.9 

N2C(*) 16.231486 -23.484712 45.77 1051 1938 1565 2.14 2.06 1.09 0.425 ± 0.016 18.0 ± 2.1 

N2D 16.245457 -23.482986 19.68 1067 1938 1359 1.84 1.89 1.08 0.402 ± 0.022 16.7 ± 2.0 

N2F 16.278043 -23.477074 73.80 1089 2187 1632 2.24 2.12 1.09 0.501 ± 0.016 15.8 ± 1.8 

N2G(*) 16.313166 -23.469645 91.47 1119 2099 1619 2.19 2.10 1.09 0.493 ± 0.016 15.7 ± 1.7 

N3A 16.459222 -23.365757 10.01 1728 1813 1764 2.42 2.24 1.10 1.916 ± 0.053 3.8 ± 0.4 

N3B 16.434851 -23.387140 18.43 1674 1884 1751 2.40 2.22 1.10 1.286 ± 0.038 6.0 ± 0.7 

N3C 16.433583 -23.357052 81.08 1717 1922 1817 2.51 2.29 1.11 1.243 ± 0.040 6.5 ± 0.7 

N3E(*) 16.419892 -23.342974 48.44 1731 1916 1835 2.53 2.30 1.11 1.294 ± 0.042 6.3 ± 0.7 

N3F(*) 16.344922 -23.325474 78.18 1770 2352 1867 2.60 2.33 1.11 0.904 ± 0.029 9.6 ± 1.1 

(*) From Codilean et al. (2008) 

(1) Longitude and latitude indicate the location of each catchment outlet on the 90m SRTM DEM (http://srtm.csi.cgiar.org/); Values referenced to WGS84 datum 

(2) Combined altitude/latitude/topographic shielding scaling calculated following Dunai (2000) and Codilean (2006) 

(3) Normalised to 2007 KNSTD standard (Nishiizumi et al., 2007), compatible with the updated 10Be half-life of 1.387 ± 0.012 Myr (Chmeleff et al., 2010; Korschinek et al., 2010) 

(4) Uncertainties at one-sigma level 

 
  

http://srtm.csi.cgiar.org/


Table 2. Summary of individual pebble 
10

Be and 
26

Al data. 
 
 

ID(1) 

Nuclide concentration (106 atoms.g-1) 
10Be(2,3) 26Al(3) 

A0 10.545 ± 0.264 53.760 ± 1.510 

A1 0.960 ± 0.030 6.308 ± 0.246 

A3 1.376 ± 0.034 8.401 ± 0.295 

A6 8.034 ± 0.201 42.080 ± 1.173 

B2 6.615 ± 0.193 35.290 ± 0.990 

B6 1.083 ± 0.036 6.123 ± 0.220 

C4 20.743 ± 0.518 72.760 ± 2.035 

C7 0.689 ± 0.022 4.562 ± 0.191 

D0 0.216 ± 0.013 1.348 ± 0.093 

D1 4.035 ± 0.113 24.650 ± 0.845 

D8 1.850 ± 0.049 12.130 ± 0.444 

E1 0.325 ± 0.014 1.712 ± 0.084 

E3 11.650 ± 0.291 53.340 ± 1.494 

E8 11.248 ± 0.281 36.950 ± 1.069 

F7 11.778 ± 0.295 49.510 ± 1.392 

(1) Location information same as for sample N1 

(2) Normalised to 2007 KNSTD standard 

(Nishiizumi et al., 2007), compatible with the 

updated 10Be half-life of 1.387 ± 0.012 Myr 

(Chmeleff et al., 2010; Korschinek et al., 2010) 

(3) Uncertainties at one-sigma level 

 
 




