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S U M M A R Y
Observations of the ocean-induced magnetic field by the CHAMP magnetic space mission
have the potential to be used as a constraint when examining ocean dynamics. This has initiated
theoretical studies on the prediction of the poloidal magnetic field induced by the horizontal
ocean-circulation flow. This study deals with the computation and analysis of the toroidal
magnetic field induced by the tidal ocean-circulation flow on the background of the main
Earth’s geomagnetic field. Since the induced toroidal magnetic field cannot be modelled by
the single-layer approximation model used to predict the poloidal magnetic field, we treat the
ocean as a spherical layer of a finite thickness and compute the toroidal magnetic field by a
matrix-propagator technique with a source of electric currents in the ocean layer.

Our numerical simulations based on the OMCT tidal ocean velocities show that the in-
duced toroidal magnetic field is extremely sensitive to the vertical gradient of horizontal ocean
flow. The larger this gradient, the stronger the induced toroidal magnetic field. Specifically,
its magnitudes vary from 10−2 nT for barotropic flow to several nT for baroclinic flow. We
show that the induced toroidal magnetic field generated by M2 tidal forcing is comparable in
amplitude to the induced poloidal part of the field. The induced toroidal and poloidal magnetic
fields differ, however, in their spatial behaviour.

Key words: Numerical solutions; Tides and planetary waves; Electromagnetic theory;
Geomagnetic induction; Magnetic field; Marine electromagnetics.

1 I N T RO D U C T I O N

Sea water contains a high concentration of dissolved salts. Therefore, the oceans act as an ionic fluid where the electric charges are carried by
dissolved cations and anions, making sea water highly conductive. As oceans flow through the Earth’s main magnetic field, the ion content
in the oceans induces an electric current. As these electric currents flow around the globe, they, in turn, generate secondary magnetic fields,
which evolve in terms of both magnitude and geometry through time. This effect, called motional induction, depends on the geometry and
spatial scales of the ocean flow, as well as the electrical conductivity of sea water and the Earth’s underlying crust and mantle (Sanford 1971).

The ocean-induced, that is motionally induced, magnetic field can be decomposed into its poloidal and toroidal components based on the
Helmholtz representation of a solenoidal vector field. The poloidal magnetic field component results from toroidal electric currents flowing
in horizontal planes, whereas the toroidal magnetic field component is generated by the poloidal electric currents flowing in vertical planes
(e.g. Chave 1983; Chave & Luther 1990). Both magnetic fields depend on sea water transport by ocean flow, but respond in different ways
to the ocean flow velocity structure. The poloidal magnetic component is predominantly sensitive to the depth integrated ocean velocities
weighted by the ocean’s electrical conductivity (Sanford 1971), whereas the toroidal magnetic component is largely sensitive to the vertical
gradient of ocean flow velocities. The toroidal magnetic field component can only be detected inside the oceans, for example, at the seafloor,
since it vanishes at the ocean surface, whereas the poloidal magnetic field component is observable outside the oceans by land observatories
and satellite.

Observations of the ocean-induced magnetic field have the potential to be used as a constraint when examining ocean dynamics (Tyler
et al. 1997b; Vivier et al. 2004). A number of studies have, therefore, been concerned with the forward modelling of the ocean-induced poloidal
magnetic field (e.g. Sanford 1971; Chave & Luther 1990; Larsen 1992; Tyler at al. 1997a; Kuvshinov & Olsen 2005; Manoj et al. 2006).
These studies predict the poloidal magnetic field induced by the horizontal ocean-circulation flow by employing a single-layer approximation
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Toroidal magnetic field induced by tidal flow 783

with the electrical conductivity proportional to the depth integrated ocean velocities. The predicted ocean-induced magnetic field due to the
lunar semi-diurnal M2 tide and a few other tidal waves have been validated by CHAMP satellite magnetic observations (Tyler et al. 2003),
land-based magnetic measurements (Maus & Kuvshinov 2004) and sea surface magnetic field measurements (Lilley et al. 2004), despite the
poloidal field being rather weak, reaching an intensity of up to a few nT.

On the other hand, the toroidal component of the ocean-induced magnetic field has been estimated to reach amplitudes of 100 nT (Sanford
1971). Since it is not directly observable outside the oceans, no detailed theoretical study of it has been conducted. However, interest in the
motionally induced magnetic fields inside the ocean arises from the fact that seafloor geomagnetic observatories can detect electromagnetic
variations associated with ocean dynamics, such as tsumani passages (Toh et al. 2011). In addition, the toroidal magnetic field couples with
the large conductivity contrast between the oceans and continents and generates a secondary poloidal magnetic field which contributes to the
poloidal magnetic field observations on land and at satellite altitudes. We may, therefore, say that the toroidal component of the ocean-induced
magnetic field can indirectly be observed outside the oceans. In particular, a non-trivial contribution of the secondary poloidal magnetic
signals to the geomagnetic field at ground-based magnetic observatories situated close to oceanic shorelines necessitates accounting for it in
geomagnetic coastal-effect modelling.

This paper deals with the modelling of the toroidal magnetic field induced by ocean tidal flow. Since the toroidal magnetic field cannot
be modelled by approximating the oceans by a single layer, as in the case for the poloidal magnetic field, we treat the ocean as a layer of a finite
thickness. Our model assumes a spherically symmetric distribution of electrical conductivity inside the ocean and underlying earth model to
make the problem tractable and obtain a first estimate of the toroidal ocean-induced magnetic field. We model the toroidal magnetic field by
a matrix-propagator technique with a source of electric currents in the ocean. We perform model studies to answer the following questions.
(i) What amplitude has the toroidal magnetic field induced by the M2 tide inside the ocean? (ii) How sensitive is the M2 induced toroidal
magnetic field to the vertical gradients of ocean-flow velocities and ocean electric conductivity? (iii) What is the expected magnitude of the
geomagnetic coastal effect due to the M2 tide? and (iv) How does the underlying conducting crust and mantle affect the toroidal magnetic
signal of the M2 tide?

2 T H E M O T I O NA L LY I N D U C E D M A G N E T I C F I E L D E Q UAT I O N S

An electric charge q moving with ocean flow with a velocity u across the main magnetic field B0 experiences a motional electromotive force
given by the magnetic force (qu × B0) component of the Lorentz force. This magnetic force pushes the charges through the conductive ocean
and creates the electromotive force given by the electric force (q E) component of the Lorentz force. In turn, this electric force induces a
magnetic field B. The total force exerted on an electric charge in the ocean is the sum of the motional and induced electromotive forces. The
electric current generated by this force is expressed by Ohm’s law for the current density j

j = σ (E + u × B0), (1)

where σ is the electrical conductivity of oceans. For j , the form of the Maxwell’s equations for the quasi-static approximation reduce to the
inhomogeneous magnetic diffusion equation for the induced magnetic field B:

1

μ0
curl

(
1

σ
curlB

)
+ ∂ B

∂t
= curl(u × B0), (2)

where μ0 is the magnetic permeability of a vacuum. In the Earth’s solid mantle, the motional electromotive force vanishes and the electric
current density is given by the induced part only, that is j = σ E. The induced magnetic field, B, in the mantle is then governed by a
homogeneous magnetic diffusion equation.

We will be dealing with the magnetic field induced by ocean flows generated by tidal forcing with an angular frequency ω. We will
assume that the ocean responds to the tidal forcing by a steady-state periodic circulation with an ocean velocity field u whose temporal
variations are represented by the time-harmonic dependency eiωt, that is u(r, t) = u(r )eiωt , where r = (r,�), � = (ϑ , ϕ) and i = √−1.
Consequently, the induced magnetic field will be expressed in the form B(r, t) = B(r )eiωt .

We approximate the Earth by a conducting sphere of radius r = a with a spherically symmetric distribution of electrical conductivity
and divide this spherical conductor into a number of homogeneous layers, each of which is characterized by a constant electrical conductivity,
σ . The magnetic diffusion equation within a homogeneous layer transforms to the Helmholtz equation

∇2 B + k2 B = −μ0σcurl(u × B0), (3)

where k is the wavenumber, k2 = −iωμ0σ . The fundamental solution of a homogeneous Helmholtz equation is (Abramowitz & Stegun 1970)

Bhom(r, �) =
∑
jm�

α�
jmw�(z)Y �

jm(�), (4)

where z = kr, Y �
jm(�) are the vector spherical harmonics (Varshalovich et al. 1989), and α�

jmw�(z) stands for a linear combination of the
spherical Bessel functions of the 1st and 2nd kind. The summation in eq. (4) runs over j = 1, 2, . . . , ∞, m = −j, −j + 1, . . . , j, and � = j −
1, j, j + 1.

To find a particular solution of the inhomogeneous Helmholtz equation (3), we denote the right-hand side of this equation by

F := curl(u × B0). (5)
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784 J. Dostal, Z. Martinec and M. Thomas

In Section 2.2, we will show that F can be expressed in the form

F(r,�) =
∑
jm�

[
(1) F�

jm

( r

a

)�

+ (2) F�
jm

(a

r

)�+1]
Y �

jm(�), (6)

where the expansion coefficients (1) F�
jm and (2) F�

jm are given by eq. (35). By this, a particular solution of the inhomogeneous Helmholtz eq.
(3) is searched by the ansatz

Bpart(r,�) =
∑
jm�

[
(1)b�

jm

( r

a

)�

+ (2)b�
jm

(a

r

)�+1]
Y �

jm(�). (7)

Substituting the ansatz to eq. (3) and realizing that functions r �Y �
jm(�) and r−�−1Y �

jm(�) are harmonic, we obtain k2 Bpart = −μ0σ F, which
yields the solution for the coefficients (α)b�

jm ,

(α)b�
jm = − i

ω

(α) F�
jm, (8)

α = 1, 2. The complete solution of the inhomogeneous Helmholtz eq. (3) is given by the sum of a homogeneous solution Bhom, expressed by
eq. (4), and the particular solution Bpart, expressed by eq. (7), that is B = Bhom + Bpart.

To complete the specifications, boundary conditions are prescribed at spherical interfaces across which the electrical conductivity σ

changes discontinuously. The continuity of the tangential components of magnetic induction and electric intensity are required (e.g. Stratton
1941):

er × [B]+− = 0,

er × [E]+− = 0, (9)

where er is the unit vector in radial direction, the symbol ( f )+− indicates the jump of the quantity f at a discontinuity and the electric intensity
is expressed in terms of B by Ampere’s current law in the quasi-static approximation,

E = 1

μ0σ
curl B. (10)

2.1 The representation of ocean velocity u and the main magnetic field B0

To represent the source vector F in the form of a harmonic series (6), the ocean velocities u and the main magnetic field B0 need to be
specified in an explicit way.

As a matter of fact, the radial component of ocean flow generated by tidal forcing is significantly smaller in comparison to the horizontal
velocity components. We will, therefore, approximate the ocean flow velocity u by its horizontal components uϑ and uϕ ,

u = uϑ eϑ + uϕeϕ, (11)

where eϑ and eϕ are unit base vectors in the colatitude and longitude directions, respectively. The velocity u can alternatively be represented
as a series of vector spherical harmonics,

u(r,�) =
∑
jm�

u�
jm(r )Y �

jm(�). (12)

In the Appendix, we present the least-squares method for estimating the coefficients u�
jm(r ) from gridded ocean velocities (uϑ , uϕ). As far as

the radial dependence of u is concerned, we assume, without loss of generality, that for baroclinic flow, u is a linear function of r without a
change in flow direction with depth. In the case where u is a more complex function of r, the ocean layer may be divided into a set of layers
(as is the case for ocean conductivity, see Section 3.2), in each of which u can be represented as a linear function of r. Hence, we write

u�
jm(r ) = g�

jm + h�
jm r (13)

for rbot ≤ r ≤ rtop, where rtop and rbot are the radii of the ocean and bottom surfaces, respectively. The coefficients g�
jm and h�

jm can be
determined from a baroclinic ocean flow model.

For a background magnetic field B0, we consider the internal part of the main magnetic field of the Earth,

B0(r,�) = −
jmain∑
j=1

j∑
m=− j

√
( j + 1)(2 j + 1)

(a

r

) j+2
G(i)

jm Y j+1
jm (�), (14)

where G(i)
jm are the internal Gauss coefficients truncated at degree jmain. To simplify the notation, we introduce

B j+1
0, jm(r ) = B j+1

0, jm(a)
(a

r

) j+2
and B j+1

0, jm(a) = −
√

( j + 1)(2 j + 1) G(i)
jm . (15)
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2.2 The representation of the source term F

Having represented ocean velocity u and the main magnetic field B0 in terms of vector spherical harmonics, we aim now to express the source
term F in the form of the ansatz (6). We will do this for the case when the background magnetic field B0 is characterized by one individual
coefficient B j2+1

0, j2m2
(r ). Hence, we assume for the moment that

B0(r, �) = B j2+1
0, j2m2

(r )Y j2+1
j2m2

(�), (16)

where the indexes j2 and m2 are fixed through the following derivation. Since the source term is linear with respect to the background magnetic
field B0, the complete representation of F will be given by the sum of the representations of the individual contributions (16).

The cross-product of u and B0 reads as

u × B0 =
∑

j1m1�1

u�1
j1m1

(r )B j2+1
0, j2m2

(r )
[
Y �1

j1m1
(�) × Y j2+1

j2m2
(�)
]
, (17)

where the cross-product of two vector spherical harmonics can be expressed as a finite sum of vector spherical harmonics (Varshalovich et al.
1989)

Y �1
j1m1

(�) × Y j2+1
j2m2

(�) =
∑
jm�

V jm�

j1m1�1, j2m2
Y �

jm(�) (18)

with the expansion coefficients

V jm�

j1m1�1, j2m2
= i

√
3

2π
(2 j1 + 1)(2 j2 + 1)(2�1 + 1)(2 j2 + 3)

⎛
⎜⎜⎝

j1 �1 1

j2 j2 + 1 1

j � 1

⎞
⎟⎟⎠C�0

�10 j2+10 C jm
j1m1 j2m2

, (19)

where the curl brackets stand for Wigner’s 9 − j symbols and C jm
j1m1 j2m2

are the Clebsch–Gordan coefficients. Applying the differential operator
‘curl’ to eq. (17) and making use of the identity curl( f v) = f curlv + grad f × v, where f and v are scalar and vector differentiable functions,
respectively, we obtain

curl(u × B0) =
∑

j1m1�1

{
u�1

j1m1
(r )B j2+1

0, j2m2
(r ) curl

[
Y �1

j1m1
(�) × Y j2+1

j2m2
(�)
]

+ d

dr

[
u�1

j1m1
(r )B j2+1

0, j2m2
(r )
]

er ×
[
Y �1

j1m1
(�) × Y j2+1

j2m2
(�)
] }

. (20)

By eq. (18) and the relation for the ‘curl’ of Y �
jm(�) (Varshalovich et al. 1989),

curl Y �
jm(�) = 1

r

∑
�3

α
�3
� Y �3

jm(�), (21)

where the coefficients α
�3
� vanish unless

α
j
j−1 = −i

√
j + 1

2 j + 1
( j − 1) , α

j
j+1 = i

√
j

2 j + 1
( j + 2) ,

α
j−1
j = i

√
j + 1

2 j + 1
( j + 1) , α

j+1
j = −i

√
j

2 j + 1
( j), (22)

the first term in eq. (20) can be written as

curl
[
Y �1

j1m1
(�) × Y j2+1

j2m2
(�)
]

= 1

r

∑
jm�

∑
�3

V jm�3
j1m1�1, j2m2

α�
�3

Y �
jm(�). (23)

Likewise, by eq. (18) and the relation for the cross-product of er with Y �
jm(�) (Varshalovich et al. 1989),

er × Y �
jm(�) =

∑
�3

β
�3
� Y �3

jm(�), (24)

where the coefficients β
�3
� vanish unless

β
j
j−1 = β

j−1
j = i

√
j + 1

2 j + 1
,

β
j
j+1 = β

j+1
j = i

√
j

2 j + 1
, (25)

we find that the second term in eq. (20) is

er ×
[
Y �1

j1m1
(�) × Y j2+1

j2m2
(�)
]

=
∑
jm�

∑
�3

V jm�3
j1m1�1, j2m2

β�
�3

Y �
jm(�). (26)
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The source vector F = curl(u × B0) can now be represented as a series of vector spherical harmonics

F(r,�) =
∑
jm�

F�
jm(r )Y �

jm(�) (27)

with the expansion coefficients

F�
jm(r ) =

∑
j1m1�1

∑
�3

V jm�3
j1m1�1, j2m2

{
α�

�3

1

r
u�1

j1m1
(r ) B j2+1

0, j2m2
(r ) + β�

�3

d

dr

[
u�1

j1m1
(r ) B j2+1

0, j2m2
(r )
] }

. (28)

Substituting for the radial dependence of u�
jm(r ) and B j2+1

0, j2m2
(r ) from eqs (13) and (15), respectively, we find, after some algebraic manipulations,

that

F�
jm(r ) =

(
D jm�, j2m2 + 1

r
E jm�, j2m2

)(a

r

) j2+2
, (29)

where

D jm�, j2m2 = B j2+1
0, j2m2

(a)
∑

j1m1�1

∑
�3

V jm�3
j1m1�1, j2m2

[
α�

�3
− ( j2 + 1)β�

�3

]
h�1

j1m1
,

E jm�, j2m2 = B j2+1
0, j2m2

(a)
∑

j1m1�1

∑
�3

V jm�3
j1m1�1, j2m2

[
α�

�3
− ( j2 + 2)β�

�3

]
g�1

j1m1
. (30)

Finally, comparing the coefficients at Y �
jm(�) in the ansatz (6) with eq. (29), we obtain

(1) F�
jm

( r

a

)�

+ (2) F�
jm

(a

r

)�+1
=
(

D jm�, j2m2 + 1

r
E jm�, j2m2

)(a

r

) j2+2
(31)

for all eligible indexes j, m and �, but fixed indexes j2 and m2. The last condition should hold at any point of radius r inside the ocean layer,
that is for rbot ≤ r ≤ rtop. Considering the thickness of ocean layer being much smaller than the mean radius of the Earth, the powers (r/a)�

and (a/r)� +1, divided by power (a/r ) j2+2, can be approximated within the ocean layer by 1/r by applying the binomial theorem,(a

r

)k

=
(r + a − r

r

)k

=
(

1 + a − r

r

)k

= 1 + k
(a − r

r

)
+ O

(a − r

r

)2 .= 1 − k + k
(a

r

)
, (32)

where the higher-order expansion terms can be safely neglected. In particular, for k = −� − j2 − 2 and k = � − j2 − 1, it holds that( r

a

)�+ j2+2
= � + j2 + 3 − (� + j2 + 2)

(a

r

)
,

(a

r

)�− j2−1
= −� + j2 + 2 + (� − j2 − 1)

(a

r

)
. (33)

Substituting eq. (33) into eq. (31) and comparing the constant terms and the coefficients at 1/r, we find

(� + j2 + 3) (1) F�
jm − (� − j2 − 2) (2) F�

jm = D jm�, j2m2 ,

−(� + j2 + 2) (1) F�
jm + (� − j2 − 1) (2) F�

jm = 1

a
E jm�, j2m2 . (34)

The solution of eq. (34) is, therefore,

(1) F�
jm = 1

2� + 1

[
(� − j2 − 1) D jm�, j2m2 + (� − j2 − 2)

1

a
E jm�, j2m2

]
,

(2) F�
jm = 1

2� + 1

[
(� + j2 + 2) D jm�, j2m2 + (� + j2 + 3)

1

a
E jm�, j2m2

]
, (35)

by which the coefficients (α) F�
jm of the source term F are expressed in terms of the coefficients D jm�, j2m2 and E jm�, j2m2 of u and one

individual coefficient B j2+1
0, j2m2

(a) of the background magnetic field B0. The complete representation of F is given by the sum of the individual
contributions (35) for j2 = 1, . . . , jmain, and m2 = −j2, . . . , j2.

3 M AT R I X P RO PA G AT O R F O R T H E T O RO I DA L M A G N E T I C F I E L D

Since the aim of this paper is to compute the toroidal magnetic field induced by ocean tidal flow for a spherical approximation, and to estimate
its sensitivity to the underlying ocean flow velocities, we thus confine ourselves to a toroidal magnetic source term expressed by the toroidal
part of F in eq. (6),

FT(r,�) =
∑

jm

[
(1) F j

jm

( r

a

) j

+ (2) F j
jm

(a

r

) j+1]
Y j

jm(�), (36)

where the label T stands for ‘toroidal’. Since the assumed conductivity structure of the Earth is spherically symmetric and only a toroidal
magnetic source is applied, the induced magnetic field is toroidal and can be expressed by the toroidal part of eqs (4), (7) and (8),

BT(r,�) =
∑

jm

[
α

j
jmw j (z) − i

ω

(1) F j
jm

( r

a

) j

− i

ω

(2) F j
jm

(a

r

) j+1]
Y j

jm(�). (37)
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Here, the first, second and the third terms correspond to a homogeneous and two particular solutions of the Helmholtz eq. (3), respectively.
The associated electric intensity, expressed by Ampere’s current law (10), is a spheroidal vector field,

ES(r,�) = ik

μ0σ

∑
jm

α
j
jm

[√
j + 1

2 j + 1
w j−1(z)Y j−1

jm (�) −
√

j

2 j + 1
w j+1(z)Y j+1

jm (�)

]

+ 1

ωμ0σ a

∑
jm

[√
( j + 1)(2 j + 1) (1) F j

jm

( r

a

) j−1
Y j−1

jm (�) −
√

j(2 j + 1) (2) F j
jm

(a

r

) j+2
Y j+1

jm (�)

]
. (38)

Furthermore, the tangential components of magnetic induction and electric intensity, required for expressing boundary conditions (9), are

er × BT(r, �) =
∑

jm

[
α

j
jmw j (z) − i

ω

(1) F j
jm

( r

a

) j

− i

ω

(2) F j
jm

(a

r

) j+1](
er × Y j

jm(�)
)
, (39)

er × ES(r,�) = iωr
∑

jm

α
j
jm

1

z2

d

dz

[
zw j (z)

]
Y j

jm(�)

+ 1

k2a

∑
jm

[
( j + 1) (1) F j

jm

( r

a

) j−1
− j (2) F j

jm

(a

r

) j+2
]

Y j
jm(�). (40)

3.1 Matrix propagator for a source-free layer

We approximate the conducting Earth by a spherical conductor with a spherically symmetric electrical conductivity. We divide this spherical
conductor into n homogeneous layers bounded by spheres of radii r1 < r2 < . . . < rn = a, where r1 is the radius of the innermost sphere. Let
the first m layers (m < n) approximate the solid mantle without an electric or magnetic source, while the n − m upper layers approximate an
ocean layer with the source electric current j = σ (u × B0).

Eqs (39) and (40) in a source-free layer, where (α) F j
jm = 0, reduce to

er × BT(r, �) =
∑

jm

y1(z)
[
er × Y j

jm(�)
]
,

er × ES(r,�) = iωr
∑

jm

y2(z)Y j
jm(�), (41)

where y1(z) and y2(z) are components of the 2 × 1 column vector y(z), which is defined as

y(z) :=

⎧⎪⎨
⎪⎩

α
j
jmw j (z)

α
j
jm

1

z2

d

dz

[
zw j (z)

]
⎫⎪⎬
⎪⎭ . (42)

Note that the dependency of y(z) on indexes j and m is not explicitly denoted to abbreviate notations. The continuity conditions (9) then
require the continuity of y(z) at spherical interfaces between homogeneous, source-free layers,[

y(z)
]+
− = 0. (43)

Recalling that α
j
jmw j (z) stands for a linear combination of the spherical Bessel functions of the 1st and 2nd kind, jj(z) and nj(z), eq. (42) can

be written in matrix form as

y(z) = A(z) c, (44)

where c is a 2 × 1 column vector of arbitrary constants and A(z) is the 2 × 2 matrix whose columns are the two fundamental solutions of the
homogeneous Helmholtz equation,

A(z) :=

⎧⎪⎨
⎪⎩

j j (z) n j (z)

1
z2

[
z j j (z)

]′
1
z2

[
zn j (z)

]′
⎫⎪⎬
⎪⎭ . (45)

Here, the prime indicates differentiation with respect to the variable z. Furthermore, the inverse matrix to A(z), needed in the following step,
has the form

A−1(z) = z3

⎧⎪⎨
⎪⎩

1
z2

[
zn j (z)

]′
−n j (z)

− 1
z2

[
z j j (z)

]′
j j (z)

⎫⎪⎬
⎪⎭ . (46)

In the sth source-free layer (s = 2, . . .m) with an electrical conductivity σ s and wavenumber ks, and bounded by radii rs−1 and rs, the
constants c can be eliminated by the relationship between the magnetic induction and the electric intensity at the upper and lower boundaries
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of the layer:

y(z1) = B(z1, z2) y(z2), (47)

where z1 : ksrs, z2 : ksrs−1 and the layer propagator matrix B(z1, z2) can be expressed in terms of the matrix A and its inversion A−1 as

B(z1, z2) := A(z1)A−1(z2). (48)

Substituting for A and A−1 from eqs (45) and (46), we obtain

B(z1, z2) = z2

⎡
⎢⎣

p j + z2q j −z2
2 p j

1
z2

1

(p j + z1r j + z2q j + z1z2 s j )
z2

2

z2
1

(−p j − z1r j )

⎤
⎥⎦ , (49)

where pj, qj, rj and sj are the cross-products of the spherical Bessel functions and their derivatives,

p j (z1, z2) := j j (z1)n j (z2) − j j (z2)n j (z1),

q j (z1, z2) := j j (z1)n′
j (z2) − j ′

j (z2)n j (z1),

r j (z1, z2) := j ′
j (z1)n j (z2) − j j (z2)n′

j (z1),

s j (z1, z2) := j ′
j (z1)n′

j (z2) − j ′
j (z2)n′

j (z1). (50)

The recurrence relations for the cross-products are given in Pěč et al. (1985).
The solution (44) in the innermost sphere (s = 1) must be finite at the origin, which implies that the constant in the spherical Bessel

functions of the second kind must be identically equal to zero, that is, c = (c1, 0)T . The solution for 0 ≤ r ≤ r1 thus takes a particular form,
namely

y(k1r ) = c1a(k1r ), (51)

where a(k1r ) is the 2 × 1 column vector created from the first column of matrix A(z) and divided by jj(k1r1) for numerical convenience. The
solution in the sth spherical layer then follows from the upward continuation of the solution from the innermost sphere and the continuity
condition (43) of y(z) at the interfaces at r1. . .rm. This corresponds to the multiplication of the product of the layer propagator matrices with
the inner sphere solution taken at r = r1. In the sth layer, (rs−1 ≤ r ≤ rs, s = 2, . . . , m), we obtain

y(ksr ) = L(ksr, k1r1) y(k1r1), (52)

where

L(ksr, k1r1) = B(ksr, ksrs−1)B(ks−1rs−1, ks−1rs−2) . . . B(k2r2, k2r1). (53)

Substituting for y(k1r1) from eq. (51), we have

y(ksr ) = c1 L(ksr, k1r1)a(k1r1), (54)

where

a(k1r1) =

⎧⎪⎨
⎪⎩

1

1

k2
1r 2

1

[
j + 1 − χ j (k1r1)

]
⎫⎪⎬
⎪⎭ , (55)

and χ j(z) : zjj +1(z)/jj(z). The recurrence relation for function χ j(z) is given in Pěč et al. (1985).

3.2 Matrix propagator for the ocean layer

The uppermost layers, labelled by m + 1, m + 2, . . . , n, and bounded by spheres of radii rm +1, rm +2, . . . , rn, approximate an ocean layer
with electrical conductivities σ m +1, σ m +2, . . . , σ n, and with the source electric current j s = σs(u × B0), s = m + 1, m + 2, . . . , n. Note that
ocean velocity u and the main magnetic field B0 are not labelled by the layer index s since both are assumed to be continuous functions of a
position in the entire ocean layer (see Section 2.1).

The magnetic induction and the electric intensity within the sth ocean layer are given by eqs (39) and (40). To express them in a shorter
form, we introduce the 2 × 1 column source-term vector

ss(r ) := − i

ω

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1) F j
jm

( r

a

) j

+ (2) F j
jm

(a

r

) j+1

1

k2
s a2

[
( j + 1) (1) F j

jm

( r

a

) j−2
− j (2) F j

jm

(a

r

) j+3
]
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (56)

where rs−1 ≤ r ≤ rs, s = m + 1, m + 2, . . . , n and the dependency of ss(r ) on indexes j and m is not explicitly denoted. Then, eqs (39) and
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(40) in the sth source layer can be written in an analogous form as eq. (41) for a source-free layer,

er × BT(r, �) =
∑

jm

v1(r )
[
er × Y j

jm(�)
]
,

er × ES(r,�) = iωr
∑

jm

v2(r )Y j
jm(�),

(57)

where v1(r) and v2(r) are components of the 2 × 1 column vector v(r ) expressed as

v(r ) = A(ksr )cs + ss(r ). (58)

Here, the matrix A(z) is given by eq. (45), ks is the wavenumber for the sth ocean-layer parameters and cs is a 2 × 1 column vector with
arbitrary constants. The unknown constants cs in eq. (58) can be eliminated by the values of magnetic induction and the electric intensity
taken at the bottom (r = rs−1) of the sth layer:

v(rs−1) = A(ksrs−1)cs + ss(rs−1), (59)

which yields

cs = A−1(ksrs−1)[v(rs−1) − ss(rs−1)]. (60)

The solution in the sth ocean layer for rs−1 ≤ r ≤ rs is then

v(r ) = B(ksr, ksrs−1)[v(rs−1) − ss(rs−1)] + ss(r ), (61)

where the matrix B is provided by eq. (49).
The continuity conditions (9) require the continuity of v(r ) at spherical interfaces between homogeneous ocean source layers,[

v(r )
]+
− = 0. (62)

To make use of this condition, let us consider the solution in the two innermost ocean layers, labelled by indexes s = m + 1 and s = m + 2,
taken at radii rm +1 and rm +1 ≤ r ≤ rm +2, respectively,

v(rm+1) = B(km+1rm+1, km+1rm)[v(rm) − sm+1(rm)] + sm+1(rm+1),

v(r ) = B(km+2r, km+2rm+1)[v(rm+1) − sm+2(rm+1)] + sm+2(r ).
(63)

By the continuity condition (62) taken at the interface r = rm +1, the last two equations can be combined such that v(rm+1) is eliminated,

v(r ) = L(km+2r, km+1rm)[v(rm) − sm+1(rm)]

+L(km+2r, km+2rm+1)[sm+1(rm+1) − sm+2(rm+1)] + sm+2(r ), (64)

where matrix L(km+2r, km+1rm) is given by eq. (53) and L(km+2r, km+2rm+1) ≡ B(km+2r, km+2rm+1).
The procedure continues successively. The solution in the sth ocean layer, s = m + 3, . . . , n, then follows from the upward continuation

of the solution (64) in the (m + 2)th ocean layer and the continuity condition (62) at the interface r = rm +2, . . . , rn. In the sth layer, that is
for rs−1 ≤ r ≤ rs, we obtain

v(r ) = L(ksr, km+1rm)[v(rm) − sm+1(rm)]

+L(ksr, km+2rm+1)[sm+1(rm+1) − sm+2(rm+1)]

+ . . .

+L(ksr, ksrs−1)[ss−1(rs−1) − ss(rs−1)] + ss(r ). (65)

The continuity conditions (9) require the continuity of the tangential components of the magnetic induction and the electrical intensity at the
ocean-bottom–solid mantle interface,

y(kmrm) = v(rm). (66)

Substituting for y(kmrm) from eq. (54) and then entering this result into eq. (65), we obtain

v(r ) = L(ksr, km+1rm)[c1 L(kmrm, k1r1)a(k1r1) − sm+1(rm)]

+L(ksr, km+2rm+1)[sm+1(rm+1) − sm+2(rm+1)]

+ . . .

+L(ksr, ksrs−1)[ss−1(rs−1) − ss(rs−1)] + ss(r ). (67)
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Finally, the toroidal magnetic field at the Earth’s surface must vanish, that is v1(rn) = 0, which gives the equation for unknown constant c1,

c1 = 1{
L(knrn, k1r1)z(k1r1

]
1

{
L(knrn, km+1rm)sm+1(rm)

−L(knrn, km+2rm+1)[sm+1(rm+1) − sm+2(rm+1)]

− . . .

−L(knrn, knrn−1)[sn−1(rn−1) − sn(rn−1)] − sn(rn)
}

1
, (68)

where
(
a
)

1
denotes the first component of vector a.

In summary, the solution y(ksr ) in the sth source-free layer, rs−1 ≤ r ≤ rs, s = 2, . . . , m, is expressed by eq. (54) with the constant c1

given by eq. (68). The solution v(r ) in the sth ocean layer, rs−1 ≤ r ≤ rs, s = m + 1, . . . , n, is given by eq. (65) with v(rm) given by eq. (66).

4 I N P U T DATA

4.1 Ocean velocities

The input ocean velocities are generated by the ocean model for circulation and tides (OMCT; Thomas 2002; Dobslaw & Thomas 2007) over
a regular (ϑ , ϕ) grid with a size of 1.875◦ in latitude and longitude. In our calculations, we use the barotropic (vertically averaged velocities)
ocean circulation flow of the lunar semi-diurnal tide M2 with a period of 12 hr and 42 min. The strong M2 tidal wave induces large ocean
velocities in shallow-water coastal regions, which is particularly important for the induced toroidal magnetic field. To account for this effect,
we choose the thickness of the ocean layer to equal 1 km.

The least-squares method (presented in the Appendix) is then applied to the gridded ocean velocities (ui
ϑ , ui

ϕ) to compute the least-squares
estimate û�

jm of the spherical harmonic expansion coefficients u�
jm of horizontal ocean velocity u. For a grid-step size of 1.875◦, the angular

degree j = 95 is the highest degree for which the discrete velocity data can unambiguously be the represented by spherical harmonic series in
eq. (12). To achieve a reliable result, we represent the ocean velocity by the vector spherical harmonic series eq. (12) cut-off at degree jmax =
48. In addition, to mitigate the effect of the Gibbs phenomenon, the series in eq. (12) is weighted by the Lanczos ηj coefficients (Duchon
1979). In summary, the input horizontal ocean velocities are represented in the form

u(r, ϑ, ϕ) =
jmax∑
j=1

j∑
m=− j

j+1∑
�= j−1

η j û�
jm(r )Y �

jm(ϑ, ϕ). (69)

Fig. 1 shows the real and imaginary parts of the ϑ and ϕ components of the ocean velocities synthesized from the spherical harmonics
coefficients û�

jm , according to eq. (69). We can see large-scale spatial patterns in the ocean velocities over deep-water open oceans and rather
short-wavelength spatial patterns over shallow-water coastal regions. Due to the truncation of the spherical harmonic series in eq. (69), the
modelled ocean velocities slightly overlap continental coastal regions. This will not, however, affect our estimates of the size and scale of the
induced toroidal magnetic field, but it would be a limitation when the observed magnetic field is interpreted in terms of ocean velocities.

4.2 Electrical conductivity model

The spherically symmetric earth conductivity model consists of two parts, the ocean where the sea currents induce the secondary magnetic
field (in this paper, we only consider its toroidal component) and the source-free layers beneath the seafloor. We divide the ocean into six
spherical layers where electrical conductivity varies piecewise uniformly from 4.7 S m−1 at the sea surface to 3.2 S m−1 at the ocean bottom
due to varying water temperature. The conductivity of the underlying sediments, lithosphere and mantle is divided into 19 layers with
different thicknesses (see Fig. 2) and follows, up to a large extent, the model proposed by Lizarralde et al. (1995) and Baba et al. (2010)
for the Northeastern Pacific mantle conductivity profile. The conductivity of the top, 4-km thick sedimentary layer is set equal to 0.3 S m−1.
Underneath this layer, the conductivity gradually decreases to 0.001 S m−1 at a depth of 50 km. Then, the conductivity increases to 0.05 S m−1

until a depth of 250 km. Below this maximum, the conductivity slightly decreases to 0.03 S m−1 at 380 km. Finally, the conductivity at the top
of the lower mantle is equal 1 S m−1 and is fixed at this rate downwards, since its effect on the induced magnetic field is negligible (see the
next section).

5 N U M E R I C A L R E S U LT S

To estimate a possible range of magnitudes and spatial behaviour of the induced toroidal magnetic field, we consider two limiting cases for
the radial profile of horizontal ocean velocities. Most commonly, the tidally induced ocean circulation is approximated by a barotropic flow
where ocean velocities are considered constant throughout a sea water column. If a barotropic flow is circulating in a square box within the
(x, y) plane under a homogeneous background magnetic field with a non-zero vertical component, the toroidal magnetic field will not be
induced. However, due to the spherical geometry of the ocean layer, a barotropic ocean flow in a spherical layer induces a toroidal magnetic
field. Fig. 3 shows the ϑ and ϕ components of the toroidal magnetic field at the ocean bottom for a barotropic ocean flow. As expected from
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Figure 1. Real (left) and imaginary (right) parts of the ϑ (top) and ϕ (bottom) components of the barotropic ocean velocities for the M2 tide synthesized from
the spherical harmonics coefficients û�

jm .

Figure 2. Radial profile of electrical conductivity (in S m−1) beneath the ocean layer.

the square box analogue, the field is small in amplitude, reaching its maximum values at the ocean bottom of about ±0.003 nT in coastal
regions.

In the second case, we consider that the ocean flow is not exactly barotropic, but has a baroclinic component by assuming that the
magnitude (not the direction) of the ocean velocities vary with ocean depth. The model in eq. (13) of ocean velocities is intentionally designed
to enable a linear change of ocean velocity with depth. We will consider the maximum linear gradient of ocean flow such that the velocities are
set equal to the input OMCT ocean velocities at the top of ocean layer and vanish at the ocean bottom. Fig. 4 shows the ϑ and ϕ components
of the toroidal magnetic field at the ocean bottom generated by this baroclinic ocean flow. A comparison with Fig. 3 shows that the toroidal
magnetic field induced by the baroclinic flow is three orders of magnitude larger than the field generated by the barotropic flow. The induced
toroidal magnetic field has the largest amplitudes in coastal regions where the horizontal ocean velocities reach large values and have a
tendency to rotate, such as along the coastal regions of Argentina, Indonesia, Japan and the British Isles.

The decay of the toroidal magnetic field induced by barotropic tidal flow beneath the ocean layers for the 19-layer conductivity profile
is shown in Fig. 5, where the red and blue solid lines show the real and imaginary parts of the toroidal magnetic field, respectively. We can
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Figure 3. Real (left) and imaginary (right) parts of the ϑ (top) and ϕ (bottom) components of the toroidal magnetic field at the ocean bottom induced by the
barotropic ocean circulation shown in Fig. 1. The green cross marks the location where the radial profile of the toroidal magnetic field is plotted (see Figs 5
and 6).

see that beneath the ocean layers where the conductivity is gradually reducing, the toroidal magnetic field decreases in amplitude down to
the high resistive layer at a depth of 50 km (Fig. 2). In the underlying layer with the higher conductivity, the toroidal magnetic field decays
slower, but it practically vanishes at the uppermost part of the lower mantle.

To test the sensitivity of the induced magnetic field to the conductivity structure of the crust and mantle, the equivalent magnetic field is
computed for an earth model with a constant electrical conductivity of 0.1 S m−1 beneath the ocean layer (dashed lines in Fig. 5). Compared
to the previous case, the toroidal magnetic field decays more smoothly and effectively only reaches the shallower parts of the upper mantle.

Fig. 6 shows the radial profiles of the toroidal magnetic field induced by barotropic tidal flow inside the ocean layer (marked by dark
colours). The magnetic field vanishes at the sea surface, as required, and reaches its largest values at the bottom of the ocean layer for a
homogeneous mantle conductivity profile (dashed lines). For a more realistic mantle conductive profile (see Fig. 2), which is effectively more
resistive beneath the sedimentary layer, the toroidal magnetic field has the largest amplitudes above the ocean bottom (solid lines in Fig. 6).
A general tendency is that the more resistive the underlying mantle, the more the maximum of the toroidal magnetic field is shifted towards
the centre of the ocean. We can also see that the toroidal magnetic field in the ocean layer has smaller amplitudes for a realistic (i.e. more
resistive) profile. In addition, to study the sensitivity of the varying electrical conductivity of the sea water on the generated toroidal magnetic
field, we compare the above results (shown by the solid and dashed lines in Fig. 6) with those for a uniform sea water conductivity profile
equal to 3.5 S m−1 (dotted lines in Fig. 6). The results show that the conductivity variations of sediments and lithosphere have a larger impact
on the induced toroidal magnetic field than conductivity variations along the sea water column.

We also varied the cut-off degree jmain of the spherical harmonics series of the Earth main field (see eq. 14), and studied the spatial
bahaviour of the induced toroidal magnetic field. For the background Earth’s magnetic field B0, which is considered constant over time, we
used the POMME-6 model (Maus et al. 2010). The dominant effect on the magnitude and the spatial pattern of the induced toroidal magnetic
field has the magnetic field B0 represented by the dipole term. The shift of the magnetic poles caused by including non-dipole spherical
harmonic coefficients in B0 results in minor changes in the spatial signal magnitudes, in particular the field is weakened around New Zealand.
Including spherical harmonics coefficients higher than degree and order 6 has a very tiny influence on the induced magnetic field, hence the
magnetic field B0 is truncated at degree and order 8 in the numerical computations.

6 S E C O N DA RY P O L O I DA L M A G N E T I C F I E L D

The fact that only the poloidal component of the Earth’s magnetic field is observable on and outside the Earth’s surface has initiated a number
of theoretical studies (see Introduction Section) on the forward modelling of the ocean-induced poloidal magnetic field. Despite the toroidal
component of the ocean-induced magnetic field being not directly observable outside the oceans, it couples with the large conductivity
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Figure 4. The same as Fig. 3, but for the baroclinic ocean circulation.

contrast between the oceans and continents and generates a secondary poloidal magnetic field of a large magnitude distributed along oceanic
shorelines. Hence, in addition to the primary poloidal magnetic field, the secondary poloidal magnetic field also contributes to the geomagnetic
coastal effect.

As a matter of fact, the present method does not allow a full exploitation of the mode conversion due to the coupling of the primary
toroidal magnetic field with lateral heterogeneities in electrical conductivity. The following approach, thus, provides only a first estimate of
the magnitude and spatial pattern of the secondary poloidal magnetic field. To make this estimate, we consider a one-layer ocean model
and approximate the lateral distribution of electric conductivity in the uppermost (ocean-continent) layer by a conductivity contrast between
oceans (σ o = 3.5 S m−1) and continents (σ c = 10−3 S m−1). Splitting the resistivity 1/σ into radially and laterally varying parts, 1/σ 0 and
1/σ 1, respectively, gives

1

σ
= 1

σ0(r )
+ 1

σ1(�)
, (70)

while considering the spheroidal-toroidal decomposition of the magnetic induction, B = BS + BT, the magnetic diffusion equation (2) reads
as
1

μ0
curl
[ 1

σ0
curl(BS + BT)

]
+ curl

[ 1

σ1
(iS + iT)

]
+ ∂(BS + BT)

∂t
= curl(u × B0), (71)

where iS,T = curl BT,S/μ0 are the spheroidal and toroidal components of electrical current density, respectively. Decomposing the product of
electrical current density with the lateral conductivity variations as

1

σ1(�)
(iS + i T ) = jS + jT, (72)

allows the induction equation to be written for the spheroidal and toroidal parts separately,

1

μ0
curl
( 1

σ0
curlBS

)
+ ∂ BS

∂t
=
[
curl(u × B0)

]
T

− curl jT. (73)

1

μ0
curl
( 1

σ0
curlBT

)
+ ∂ BT

∂t
=
[
curl(u × B0)

]
S
− curl jS. (74)

However, both equations are mutually coupled via terms jS,T since each of them is generated by both the spheroidal and toroidal magnetic
field components. F. Vivier (personal communication, 2011) has attempted to solve the coupled system of equations by an iterative method,
but he encountered numerical instabilities in an iterative solution due to the coupling terms jS,T.
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Figure 5. Real (red) and imaginary (blue) parts of the ϑ (top) and ϕ (bottom) components of induced toroidal magnetic field by barotropic tidal flow beneath
the ocean layer for the realistic (solid lines) and uniform (σ = 0.1 S m−1, dashed lines) mantle conductivity profiles, respectively. The location of the radial
profile is shown by green cross in Fig. 3.

Here, we will not attempt to find a stable iterative solution of the coupled system of eqs (73) and (74), but will confine ourselves to
computing the first iteration of the magnetic diffusion eq. (73) for the secondary spheroidal magnetic field BS. After solving eq. (74) with
jS = 0 for the primary toroidal magnetic field BT by applying the matrix-propagator technique developed in Section 3, the term jT is
computed by the spherical harmonic analysis of the product of the electric current density i and the lateral conductivity variations σ 1(�), as
indicated by eq. (72), and substituted into magnetic diffusion eq. (73) for the secondary spheroidal magnetic field BS. This equation, solved
together with the free-divergence constraint on BS by the matrix-propagator technique designed by Pěč et al. (1985) yields the secondary
poloidal magnetic field.

Fig. 7 shows the secondary poloidal magnetic field computed from the primary toroidal magnetic field induced by the barotropic tidal
flow shown in Fig. 3. We can see that, as with the primary toroidal magnetic field, the secondary poloidal magnetic field is concentrated along
the oceanic shorelines, attaining amplitudes of a few nT, comparable with the magnitudes of the primary poloidal magnetic field (Tyler et al.
2003; Kuvshinov & Olsen 2005; Vivier et al. 2004). In contrast to the primary poloidal magnetic field, the secondary poloidal magnetic field
creates small-scale features concentrated in coastal regions. Note that the Gibbs phenomenon caused by the strong contrast in the conductivity
between the oceans and continents has been mitigate by the Lanczos coefficients, as described in Section 4.1.

7 C O N C LU S I O N S A N D F U T U R E W O R K

There is a common opinion in the geophysical community dealing with the CHAMP magnetic data that the toroidal component of the
magnetic field induced by ocean circulation is larger by an order of magnitude than the induced poloidal part. This idea originated from
Sanford (1971) who estimated that the toroidal magnetic field induced by ocean circulation may be as large as 100 nT. However, there are
neither recent estimates, nor is there a model of the toroidal magnetic field since it is not directly observable by coastal magnetic observatories
or satellite missions.
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Figure 6. The same as Fig. 5, but inside the ocean layer. The dotted lines represent the case for a realistic mantle and uniform ocean (σ = 3.5 S m−1)
conductivity.

Figure 7. Estimates of the real (left-hand) and imaginary (right-hand) parts of the r component of the secondary poloidal magnetic field (coastal-effect) at the
sea surface level using the toroidal magnetic field induced by barotropic flow in Fig. 3.

These two facts have motivated our study. We aimed to find a simple mathematical approach for computing a more precise estimate of
the toroidal magnetic field induced by ocean flow. For the sake of simplicity, we have confined ourselves to a spherically symmetric electrical
conductivity model which is exerted by a tidally induced ocean flow on the background of the main magnetic field of the Earth. Although the
applied matrix-propagator technique used to compute the induced toroidal magnetic field is a mathematically appropriate tool, its numerical
performance may suffer from numerical instabilities due to the necessity of computing the cross-products of the spherical Bessel functions.
This causes an numerical overflow for certain setups of the model, which limits the applicability of the matrix-propagator technique.

Our numerical simulations based on the OMCT tidal ocean velocities show that the induced toroidal magnetic field is extremely sensitive
to the vertical gradient of horizontal ocean flow. Depending on this gradient, the magnitudes of induced toroidal magnetic field vary from
10−3 nT for barotropic flow, up to several nT for baroclinic flow. Thus, the toroidal magnetic field induced by tidal ocean circulation is
comparable in amplitude to the induced poloidal part (Tyler et al. 2003). The induced toroidal and poloidal magnetic fields differ, however,
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in their spatial behaviour. Although most of the energy of the poloidal magnetic field is concentrated in large-scale spatial patterns over
deep-water open oceans (Tyler et al. 2003; Kuvshinov & Olsen 2005), the energy associated with the toroidal magnetic field is concentrated
in short-wavelength spatial patterns over shallow-water coastal regions. We should emphasize that the employed OMCT ocean velocities have
a limited spatial resolution which may cause a reduction of the amplitudes of the induced toroidal magnetic field. Moreover, our results on
the amplitudes of the toroidal magnetic field are valid for a tidally forced ocean circulation, whereas the estimate of 100 nT (Sanford 1971)
has been done for a magnetic field induced by a general ocean circulation model. This may differ in spatial pattern, amplitude and frequency
contents in comparison to tidal ocean circulation. Being explicit, we have not found a model setup for the M2 tidal ocean flow that induces
the toroidal magnetic field reaching amplitudes of 100 nT.

For laterally varying electrical conductivity, such as a continent–ocean conductivity contrast, a stable iterative method which makes use
of the matrix-propagator technique should be developed. For instance, a simple iterative technique used by Zhang and Christensen (1993) for
computing mantle flow due to lateral viscosity variations in the Earth’s mantle can be applied to solve eqs (73)–(74) iteratively. The poloidal
and toroidal components of magnetic field can still be treated separately assuming a suitable averaged radial conductivity profile σ 0(r). The
mode coupling is taken into account in an iterative way by adding jS,T on the right-hand side of eqs (73)–(74). These terms arise from the
deviations of the conductivity from its radial mean value and involve contributions from all other modes, which are derived from the solution
of the previous iteration step. Judging from the numerical experience by Klika & Čadek (1996), this simple iterative technique would converge
for a small lateral conductivity contrast not exceeding a factor of 5. However, in analogy to Klika & Čadek (1996), introducing a new variable
as the product of magnetic induction and electrical resistivity may stabilize the iteration for a large conductivity contrasts. An alternative
technique for solving eqs (73)–(74) could be based on an operator-splitting iterative technique. The iterations start with the matrix-propagator
derived magnetic induction, which is then updated by solving an approximate problem that has more convenient numerical properties than
the original setting. The convergence of the iterative algorithm which is controlled by two projection parameters, is ensured by choosing the
parameters sufficiently small. Souček & Martinec (2008) applied this iterative technique on modelling of glacier flow. These ideas warrant
further investigation, because a non-trivial contribution of the toroidal–poloidal mode coupled magnetic signals to the geomagnetic field at
ground-based magnetic observatories situated close to the shoreline necessitates accounting for it in geomagnetic coastal-effect modelling.

A C K N OW L E D G M E N T S

The authors thank Jan Hagedoorn for his scientific discussions about the problem, Kevin Fleming for his comments on the manuscript and
two anonymous reviewers for their comments on the manuscript. ZM acknowledges support from the Grant Agency of the Czech Republic
through Grant No. P210/10/2227.

R E F E R E N C E S

Abramowitz, M. & Stegun, I.A., 1970. Handbook of Mathematical Func-
tions, Dover, New York, NY.

Baba, K., Utada, H., Goto, T., Kasaya, T., Shimizu, H. & Tada, N., 2010.
Electrical conductivity imaging of the Philippine Sea upper mantle using
seafloor magnetotelluric data, Phys. Earth planet. Inter., 183, 44–62.

Chave, A.D., 1983. On the theory of electromagnetic induction in the earth
by ocean currents, J. geophys. Res., 88, 3531–3542.

Chave, A.D. & Luther, D.S., 1990. Low frequency, motionally induced
electromagnetic fields in the ocean, 1. Theory, J. geophys. Res., 95,
7185–7200.

Colombo, O.L., 1981. Numerical methods for harmonic analysis on the
sphere. Report No. 310, Department of Geodetic Science, The Ohio State
University, Columbus, OH, 131pp.

Dobslaw, H. & Thomas, M., 2007. Simulation and observation of
global ocean mass anomalies. J. geophys. Res., 112, C05040,
doi:10.1029/2006JC004035

Duchon, C.E., 1979. Lanczos filtering in one and two dimensions, J. appl.
Meteorol., 18, 1016–1022.
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P. & Wickert, J., Springer-Verlag, Berlin.

Larsen, J.C., 1992. Transport and heat flux of the Florida Current at 27◦N
derived from cross-stream voltages and profiling data: theory and obser-
vations, Phil. Trans. R. Soc. Lond., A., 338, 169–236.

Lilley, F., Hitchman, A., Milligan, P.R. & Pedersen, T., 2004. Sea-surface
observations of the magnetic signals of ocean swells, Geophys. J. Int.,
159, 565–572.

Lizarralde, D., Chave, A.D., Hirth, G. & Schultz, A., 1995. Northeast-
ern Pacific mantle conductivity profile from long-period magnetotelluric
sounding using Hawaii to California submarine cable data, J. geophys.
Res., 100, 17 837–17 854.

Manoj, C., Kuvshinov, A., Maus, S. & Lühr, H., 2006. Ocean circulation
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A P P E N D I X A : S P H E R I C A L H A R M O N I C A NA LY S I S O F H O R I Z O N TA L O C E A N
V E L O C I T I E S

Let a vector field u defined on the unit sphere (0, π ) × ( − π , π ) be represented as a series of vector spherical harmonics Y �
jm(ϑ, ϕ) in the

form of eq. (12). To perform the spherical harmonic analysis of its values prescribed on the unit sphere, it is convenient to represent u in terms
of the vector spherical harmonics Y (λ)

jm(ϑ, ϕ), λ = −1, 0, 1. The reason is that, in contrast to the vectors Y �
jm(ϑ, ϕ), the vectors Y (λ)

jm(ϑ, ϕ) are

separated in orientation with respect to the r and (ϑ , ϕ) directions. Specifically, the vector Y (−1)
jm (ϑ, ϕ) is normal to the sphere surface, whereas

the vectors Y (0)
jm(ϑ, ϕ) and Y (1)

jm(ϑ, ϕ) are tangential (Varshalovich et al. 1989),

Y (−1)
jm (ϑ, ϕ) = Y jm(ϑ, ϕ)er,

Y (1)
jm(ϑ, ϕ) = 1√

j( j + 1)

[
∂Y jm(ϑ, ϕ)

∂ϑ
eϑ + 1

sin ϑ

∂Y jm(ϑ, ϕ)

∂ϕ
eϕ

]
,

Y (0)
jm(ϑ, ϕ) = i√

j( j + 1)

[
1

sin ϑ

∂Y jm(ϑ, ϕ)

∂ϕ
eϑ − ∂Y jm(ϑ, ϕ)

∂ϑ
eϕ

]
, (A1)

where Y jm(ϑ , ϕ) are scalar spherical harmonics and i is the imaginary unit.
In particular, a vector field u that has no radial component, such is the case for the horizontal ocean velocity field u introduced in

Section 2.1, where

u(ϑ, ϕ) = uϑ (ϑ, ϕ)eϑ + uϕ(ϑ, ϕ)eϕ, (A2)

and, in addition, assuming that u is a square integrable function on the unit sphere, then u can be represented in terms of Y (0)
jm(ϑ, ϕ) and

Y (1)
jm(ϑ, ϕ) as

u(ϑ, ϕ) =
∞∑
j=0

j∑
m=− j

∑
λ=0,1

u(λ)
jm Y (λ)

jm(ϑ, ϕ). (A3)

In addition, when u is a real-valued function on the unit sphere, its coefficients satisfy

u(λ)
j−m = (−1)m+λ+1

(
u(λ)

jm

)∗
, (A4)

where the asterisk stands for the complex conjugation.
The purpose of spherical harmonics analysis is to estimate two sets of coefficients u(λ)

jm , λ = 0, 1, from the measurements of the horizontal
components uϑ (ϑ , ϕ) and uϕ(ϑ , ϕ) of u on the unit sphere. The individual samples will be called uk� = uϑ (ϑ k , ϕ�) and vk� = uϕ(ϑ k , ϕ�).
Throughout this paper, we assume that these measurements are performed over an equal angular grid where the separation between parallels,
�ϑ = π /N , where N is an integer, is constant and is equal to the separation between meridians, �ϕ = �ϑ = �. For such a regular grid, data
consist of values determined at the intersections of the grid and indexes k and � take the values 0 ≤ k ≤ N − 1 and 0 ≤ � ≤ 2N − 1. Thus,
there are 2N2 points in the equal angular grid for each component uϑ and uϕ , which implies that the number of fully recoverable coefficients
u(0)

jm and u(1)
jm is finite. In analogy with 2-D Fourier series, Colombo (1981) has shown that the Nyquist frequency in the case of spherical

harmonics is π /�. This implies that the maximum angular degree jmax up to which the coefficients u(λ)
jm are fully recoverable and are free of

the alias effect, is given by the inequality jmax < π /�, or jmax < N . As a consequence, the expansion (A3) must be replaced by a truncated
spherical harmonic series,

u(ϑ, ϕ) =
jmax∑
j=1

j∑
m=− j

∑
λ=0,1

u(λ)
jm Y (λ)

jm(ϑ, ϕ). (A5)

Note that the summation over j starts from j = 1, since Y (0)
00 (ϑ, ϕ) = Y (1)

00 (ϑ, ϕ) = 0 for any (ϑ , ϕ). In other words, 4N2 data are disposable for
determining jmax(jmax + 3) complex harmonic coefficients u(0)

jm and u(1)
jm because of the validity of eq. (A4) for the negative-order coefficients.

Estimates above the Nyquist frequency are usually regarded as meaningless. In the terminology of inverse problems, the determination of
u(0)

jm and u(1)
jm is an overdetermined problem with no exact solution. In the following, the coefficients u(0)

jm and u(1)
jm will be estimated by the

least-squares method.
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We suppose that the data samples uk� and vk�, measured over the equal angular grid,

ϑk = �/2 + k�, k = 0, 1, . . . , N − 1,

ϕ� = ��, � = 0, 1, . . . , 2N − 1, (A6)

with � = π /N , satisfy the observation equation of the form

y = Xβ + e, (A7)

where y is the column vector of 4N2 data samples,

y = [(uk�, vk�), k = 0, 1, . . . , N − 1, � = 0, 1, . . . , 2N − 1], (A8)

β is the column vector of jmax(jmax + 3) coefficients u(1)
jm and u(0)

jm ,

β = [(u(1)
jm, u(0)

jm), j = 1, . . . , jmax, m = 0, 1, . . . , j], (A9)

and X is the design matrix with the elements

Xk�, jm = 1√
j( j + 1)

⎡
⎢⎢⎣

∂Y jm(ϑ, ϕ)
∂ϑ

i

sin ϑ

∂Y jm(ϑ, ϕ)

∂ϕ

1

sin ϑ

∂Y jm(ϑ, ϕ)

∂ϕ
−i

∂Y jm(ϑ, ϕ)

∂ϑ

⎤
⎥⎥⎦

(ϑk ,ϕ�)

. (A10)

Because of data errors e, eq. (A7) is mathematically inconsistent and an exact solution to this system does not exist. By assuming that errors
e have zero means and are uncorrelated, the least-squares estimate β̂ of parameters β is given by the normal equations (e.g. Koch 1999)

X†X β̂ = X† y, (A11)

where the dagger stands for the conjugate transpose.
The elements of the normal matrix X†X are

(X†X) j1m1, j2m2 =
(

B11
j1m1, j2m2

B12
j1m1, j2m2

B21
j1m1, j2m2

B22
j1m1, j2m2

)
1√

j1( j1 + 1) j2( j2 + 1)
(A12)

with the elements

B11
j1m1, j2m2

=
∑

k�

[
∂ Y ∗

j1m1
(ϑ, ϕ)

∂ϑ

∂ Y j2m2 (ϑ, ϕ)

∂ϑ
+ 1

sin2 ϑ

∂ Y ∗
j1m1

(ϑ, ϕ)

∂ϕ

∂ Y j2m2 (ϑ, ϕ)

∂ϕ

]
(ϑk ,ϕ�)

,

B12
j1m1, j2m2

=
∑

k�

i

sin ϑ

[
∂ Y ∗

j1m1
(ϑ, ϕ)

∂ϑ

∂ Y j2m2 (ϑ, ϕ)

∂ϕ
− ∂ Y ∗

j1m1
(ϑ, ϕ)

∂ϕ

∂ Y j2m2 (ϑ, ϕ)

∂ϑ

]
(ϑk ,ϕ�)

,

B21
j1m1, j2m2

= B12
j1m1, j2m2

,

B22
j1m1, j2m2

= B11
j1m1, j2m2

. (A13)

For the equal angular grid, ϕ� = 2π�/2N , it holds that

∑2N−1
�=0 eimϕ� =

{
2N , m = 0,

0, otherwise.
(A14)

This condition, applied to the elements of the normal matrix, eliminates the summation over longitudinal index � and requires that m1 = m2,

B11
j1m1, j2m2

= 2N
N−1∑
k=0

[
∂ Pj1m1 (ϑ)

∂ϑ

∂ Pj2m2 (ϑ)

∂ϑ
+ m2

1

sin2 ϑ
Pj1m1 (ϑ) Pj2m2 (ϑ)

]
ϑ=ϑk

δm1m2 ,

B12
j1m1, j2m2

= −2Nm1

N−1∑
k=0

1

sin ϑ

[
∂ Pj1m1 (ϑ)

∂ϑ
Pj2m1 (ϑ) + ∂ Pj2m1 (ϑ)

∂ϑ
Pj1m1 (ϑ)

]
ϑ=ϑk

δm1m2 , (A15)

where δm1m2 is the Kronecker delta symbol. The last equation shows that the matrix of normal equations for the equal angular grid is sparse.
To make use of it for fast numerical solutions of the normal equations, the spherical harmonic coefficients u(1)

jm and u(0)
jm are arranged in such

a way that all those of the same order m are grouped together. Then, the normal matrix has a block diagonal form. For each order m1 > 0, the
block is of dimension 2(jmax − m1 + 1). The largest block is for the order m1 = 0 and is of the dimension 2jmax. The smallest block is for
m1 = jmax and is of dimension 2 × 2.
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