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Abstract: In this study we tested the feasibility of the thermal infrared (TIR) wavelength
region (within the atmospheric window between 8 and 11.5 µm) together with the traditional
solar reflective wavelengths for quantifying soil properties for coarse-textured soils from
the Australian wheat belt region. These soils have very narrow ranges of texture and
organic carbon contents. Soil surface spectral signatures were acquired in the laboratory,
using a directional emissivity spectrometer (µFTIR) in the TIR, as well as a bidirectional
reflectance spectrometer (ASD FieldSpec) for the solar reflective wavelengths (0.4–2.5 µm).
Soil properties were predicted using multivariate analysis techniques (partial least square
regression). The spectra were resampled to operational imaging spectroscopy sensor
characteristics (HyMAP and TASI-600). To assess the relevance of specific wavelength
regions in the prediction, the drivers of the PLS models were interpreted with respect to
the spectral characteristics of the soils’ chemical and physical composition. The study
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revealed the potential of the TIR (for clay: R2 = 0.93, RMSEP = 0.66% and for sand:
R2 = 0.93, RMSEP = 0.82%) and its combination with the solar reflective region (for
organic carbon: R2 = 0.95, RMSEP = 0.04%) for retrieving soil properties in typical soils
of semi-arid regions. The models’ drivers confirmed the opto-physical base of most of the
soils’ constituents (clay minerals, silicates, iron oxides), and emphasizes the TIR’s advantage
for soils with compositions dominated by quartz and kaolinite.
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1. Introduction

Large scale monitoring of soil properties is widely demanded due to a range of global issues such
as food production, climate change, and environmental degradation (http://www.globalsoilmap.net/).
Remote sensing in the solar reflective spectral range (visible, VIS: 0.4–0.7 µm; near infrared, NIR:
0.7–1.1 µm; shortwave infrared, SWIR: 1.1–2.5 µm) has already been demonstrated to be beneficial
for digital mapping of essential pedogenic surface properties. The use of hyperspectral techniques has
also demonstrated the quantification, which is attractive for soil scientists due to the reduction in the
need for time- and cost-intensive soil laboratory analyses and field campaigns [1]. Several studies have
demonstrated that such soil characteristics can be quantified and predicted statistically via their spectral
signatures in the commonly used/accessible VNIR-SWIR wavelength region [2–5].

Although the VNIR-SWIR region has provided suitable results [6], the thermal infrared (TIR)
wavelength within the atmospheric window between 8 and 14 µm has the potential to provide extended
capabilities to soil scientists: In particular, mapping texture from sandy soils with very low clay contents
is reaching the limits of the capabilities of the VNIR-SWIR regions. The grain size distribution of these
soils is crucially driven by its major constituent mineral, quartz, but the VNIR-SWIR region is missing
any distinctive Si−O related spectral features [7]. These coarse textured soils should benefit from the
use of the TIR wavelength region, as it can detect the strong fundamental molecular vibrations of the
Si−O-stretching, which is characterised by intense spectral contrast in the Reststrahlen bands between 8
and 12 µm [8]. Furthermore, to support this aim, very sensitive spectral features are traced within these
Reststrahlen bands, in the presence of clay minerals (i.e., kaolinite).

Organic carbon content is typically low in semi-arid soils, whereas these soils are often dominated
optically by iron bearing oxides, which are known for obscuring the spectral information used to
determine the organic carbon content, as they occur in the same region of the VIS [6]. Although most
of the distinct spectral features of organics occur in the midwave infrared (MWIR, 3–5 µm) [9], the TIR
region can provide indirect information through intercorrelations with other soil parameters, which have
features in this region. Such correlations are often spread throughout the continuous bands of the spectra
and are difficult to specify, but can be profitable input for prediction models.

Moreover, the prediction of clay content in the VNIR-SWIR region mainly depends on its common
spectral features in the SWIR (e.g., kaolinite, illite, or smectite all possess absorption features near
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2.20 µm), which can be influenced by the proximity of the cellulose feature at 2.08 µm [10]. For
agricultural applications, operating on conservation tillage systems such as no-till farming (often
employed on semi-arid paddocks to protect the soil surface from wind erosion processes during the
summer fallow-stubble retention) the cellulose influence from the vegetation residues can be significant.
The use of the TIR promises more flexibility in this regard, even if it also contains a distinct cellulose
spectral feature at 11.1 µm, but that is more separated from most of the clay features of interest.

Thermal infrared hyperspectral remote sensing is gaining more attention, as can be seen from
increasing availability of TIR airborne imagery systems: Spatially Enhanced Broadband Array
Spectrograph System (SEBASS), Hypercam (Telops), AisaOWL (Speciem), and TASI-600 (Itres).
These TIR imaging sensors detect energy emitted by the target area itself. Laboratory studies aiming
to gain spectral signatures, which are quantitatively comparable with remote sensing TIR imagery data,
are limited to either emission FTIR spectroscopy (passive sensory mode) or using an active system with
an integrating sphere for obtaining directional-hemispherical reflectance measurements (DHR) [11,12].
The direct measurement of the samples emitted energy simulates the remote sensing data more closely,
which can be of importance when thin coatings, such as desert varnishes, are present [11].

High-dimensional datasets, typically acquired in all disciplines of spectroscopy, require adequate
statistical analyses techniques, which are able to deal with many highly collinear spectral bands
(predictor variables) from relatively few observations. Therefore, ordinary multiple regression is no
longer practical, due to such multicolinearities. Multivariate analysis techniques, such as Partial Least
Squares Regression (PLSR) analysis, are capable of managing such associated overlapping features.
PLSR is an adequate technique to handle the difficulties inherited from interpret overtones by extracting
response variable relevant information from the spectra, while ignoring redundant information [13,14].

The aim of this study is to assess the potential of the TIR for modelling soil surface properties from
airborne/satellite platforms. In this context we investigated the possibilities of this wavelength region
to quantitatively derive soil’s clay-, sand-, and organic carbon content. Based on resampled HyMap
and TASI-600 spectral bands, we compared the efficacy of the TIR and VNIR-SWIR methods. For the
local farmers of Mullewa and the Department of Agriculture and Food of Western Australia (DAFWA),
who are dealing with the issue of soils prone to wind erosion, the outcomes of this study represent
an important step towards a monitoring system of such soil properties, crucially influencing the soils’
surface stability [15]. To the knowledge of the authors, this is the first time emission FTIR spectroscopy
has been applied for investigating the quantification of soil properties of semi-arid areas in Western
Australia vulnerable to wind erosion. The few previous studies, in which such soil properties have been
predicted with PLSR from the TIR are all based on standard DRIFT optic measurements [16–18], which
do not comply with the requirements necessary for a quantitative comparison of TIR remote sensing
imagery data.
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2. Methods

2.1. Soil Sampling and Sample Analyses

Subsurface (upper ∼2 cm) soil samples (n = 55) were collected during a field campaign in February
2010 from paddocks within the investigation area to the west of the township of Mullewa (28◦32′15′′S,
115◦30′25′′E), which is located in the semi-arid wheat belt region of Western Australia. The area is
dominated by an undulating sand plain system, which includes yellow and red sands and an alluvial
valley system with relict red loams over a red-brown hardpan, which are classified as Tenosols and
Kandosols, respectively, in the Australian Soil Classification [19]. A few additional samples were
collected further south of the area, where grey sands (Tenosols) and alkaline clays (Vertisols) were
sampled to cover a wider range of soil characteristics.

Two datasets were selected from the soil samples collected at Mullewa. An extended dataset, which
includes the extreme clay rich samples (n = 55) and the original dataset (n = 45), which includes only
samples that are representative for the mineralogy of the Mullewa paddocks. The original dataset was
divided into a training or calibration dataset (n = 30) and an external validation dataset (n = 15) for the
multivariate statistical analysis.

The soil samples were air dried and passed through a 1 mm sieve. The grain size distribution was
determined by using the standard pipette method following Stokes law [20], to determine the fractions:
clay (<2 µm), silt (2–20 µm), and subsumed sand (20–1,000 µm). Soil organic carbon content (%) was
measured using the Walkley Black method [21]. The inherent mineralogy and chemistry of the soils were
determined from XRD analyses. Note that an assumption in this study was that the clay mineral content,
which is the spectral driver in the PLSR models, and the clay texture, derived by Stokes Method, are
essentially the same and that non-clay minerals such as very fine quartz, iron oxide particles, or organic
material less than 2 µm are insignificant. In this study area the XRD results produced only traces of iron
oxide and the lab analysis for organic carbon gave only 0.09% to 1.11%, which makes the assumption
fair in this situation. For other areas with increased iron oxide and organic carbon a pretreatment to
Stokes Method is recommended to improve PLSR relationships.

2.2. Soil Spectral Measurements

2.2.1. TIR-Emission FTIR Spectroscopy

Soil radiance spectra (passive mode emission measurements) in the TIR were recorded at
Commonwealth Scientific and Industrial Research Organisation (CSIRO) laboratories (Perth, Western
Australia) using a micro Fourier Transform Interferometer (µFTIR) (model 102, Design&Prototypes
instruments, http://www.dpinstruments.com) with a spectral resolution of 6 cm−1 via a fore optic with
a 4.5◦ field of view from ∼250 mm height, resulting in an GFOV of ∼20 mm. The instrument was
equipped with a liquid-nitrogen-cooled two element detector (dual InSb/MCT) and measured radiance
within the spectral range from 2 to 16 µm. However the range used in this study was limited to the
wavelength within the atmospheric window from 7 to 14 µm, restricted by the range of the MCT detector.
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Each soil sample measurement was composed of four individual spectral radiance readings: (1) warm
blackbody; (2) cold blackbody; (3) downwelling radiance; and (4) soil surface radiance. Calibration and
emissivity calculation followed the methods of [22–24].

(1) and (2):
The µFTIR was radiometrically calibrated using a blackbody (model 41P, D&P instruments) attached

to the fore optics, adjusted for two different temperatures. For the first reading it was set just above
the sample temperature (Twarm: 65 ◦C) and for the second one just below the ambient temperature
(Tcold: 25 ◦C). The temperature settings were held within this region to minimize potential nonlinearities
from the instrument [25].

A linear relationship between the instrument’s DN values and the observed at sensor radiance was
assumed (L(λ) = α(λ) × DN(λ) + β(λ)), so that both wavelength dependent instrumental factors,
gains (α(λ)) and offsets (β(λ)), could be calculated from the two blackbody measurements. Gains,
which represent the instrument’s spectral response, were calculated from Equation (1):

α(λ) =
DNwarm(λ)−DNcold(λ)

B(Twarm, λ)−B(Tcold, λ)
(1)

where B(T, λ) is the spectral radiance, for each of the calibration blackbodies, retrieved from Planck’s
blackbody function.

Offsets, incorporating electrical factors and the instrument’s self-emission, could be retrieved from
either blackbody by Equation (2):

β(λ) = DN(λ)− L(λ)×B(T, λ) (2)

(3) and (4):
During the measurement with the µFTIR the background downwelling radiance, which is emitted

from the ceiling, the walls and the atmosphere (in particular above the sample) in the laboratory, is
reflected from the surface of the sample and recorded by the instrument on top of the sample radiance
measurement. Downwelling radiance was measured via a diffuse reflective brass plate just before the
soil sample reading.

The brass plate is spectrally flat and has a emissivity of ε∼0.25. Following Kirchhoff’s law (ε = 1 – R)
[26], the complementary reflectance is R∼0.75, and accordingly can be assumed that the at sensor
radiance recorded by the instrument, when the brass plate is measured, is a good estimate for the
downwelling radiance (LDW (λ)), which was calculated from Equation (3):

LDW (λ) =
LBP (λ)− εBP (λ)B(TBP , λ)

1− εBP (λ)
(3)

where LBP (λ) is the spectral radiance, and εBP (λ) the emissivity of the brass plate. B(TBP , λ) is
the Planck blackbody spectral radiance of the brass plate at its temperature TBP . Note, that for these
measurements, highly defuse gold plates (ε∼0.03–0.06) are also common. LDW (λ) measured off the
brass plate will be more accurately calibrated to radiance units than off a gold plate when outdoor
measurements are done under extreme cold background temperature conditions [27]. For laboratory
measurements, however, where the plate’s temperature is close to the ambient temperature, the absolute
emissivity/reflectance of the plate is not an issue anymore, as long as the background temperature is
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estimated well enough. The background temperature was measured by a thermocouple thermometer
physically attached to the back of the brass plate and provided ±0.1 ◦C accuracy.

Finally, the sample surface was measured, which was preheated (60 ◦C) before in an oven. The
measurement of relatively hot samples above the background room temperature ensured an improved
signal to noise ratio (SNR). The instruments integration time (16 scan cycles) was adjusted to keep its
temperature decrease to a minimum during recording time. Having calculated the soil surface radiance
(LS(λ)), its emissivity (εS(λ)), corrected for downwelling radiance, could be derived by Equation (4).

εS(λ) =
LS(λ)− LDW (λ)

B(TS, λ)− LDW (λ)
(4)

However, solving Equation (4) requires the soil surface temperature to be known (which is especially
difficult for remote sensing data). For that purpose an inverse Planck curve fitting algorithm was applied
to estimate the temperature. Assuming that for a specific wavelength range the emissivity is constant
and known, identical temperatures for these wavelengths could be derived by using the inverse Planck
function as a function of radiance. For the soils in the Mullewa region, which are dominated by
silicate minerals, this assumption is true, where typically the silicate Christiansen frequency features
occur. In this region the emissivity values are at their highest (close to ε = 1, see Figure 1), and
thus the highest apparent radiant temperatures of the sample. Considering increasing instrument
noise at shorter wavelength the range between 7.7 and 7.8 µm was selected for the temperature
emissivity separation algorithm. Within this range the algorithm identified the maximum emissivity,
approaching 1.0. Software developed by Andy Green (pers. comm.) of CSIRO was used to apply the
above processing steps.

Figure 1. Spectral Response Functions (SRF) used to simulate the TASI-600 and HyMAP
sensors’ spectral characteristics.
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Note that the path atmospheric spectra transmissivity between the target and the instrument has not
been considered in the above equations, as it becomes negligible for short distances, as has been used in
our setup [23]. Bands between 7 and 7.63 µm were excluded from the spectral range in further analyses
due to extreme noise levels, resulting in 208 spectral bands.

2.2.2. VNIR-SWIR-Bidirectional Measurements

Soil surface bidirectional reflectance in the VNIR-SWIR spectral region was measured in
the laboratory on the samples using an Analytical Spectral Devices (ASD) Inc FieldSpec-Pro
(http://www.asdi.com) spectrometer with a contact probe (GFOV∼10 mm). The Spectral resolution
is 3–4 nm in the 0.35- to 1.0-µm region (spectral sampling 1.4 nm), and 10–12 nm in the 1.0- to 2.5-µm
region (spectral sampling 2 nm). The entire spectrum is resampled at 1 nm for display purposes, which
resulted in 2,151 spectral bands. The measurements were performed straight after the TIR measurements,
without any interference to ensure that the soil surfaces were similar as possible for both TIR and
VNIR-SWIR measurements. The ASD spectra were subsequently corrected to absolute reflectance using
the white reference measurement of a spectralon panel (http://www.labsphere.com/) taken before soil
radiance measurements.

2.2.3. Spectral Resampling to Operational Hyperspectral Remote Sensors

The spectra were resampled to operational imagery sensor spectral specifications for both wavelength
regions, the VNIR-SWIR and the thermal infrared range. ASD spectra were resampled to HyMap
spectral characteristics (2010 HyVISTA Co., http://www.hyvista.com), with 125 bands and a full width
half maximum (FWHM) between 15–20 nm, covering the spectral range from 450- to 2,480-nm. The
TIR spectra were resampled to TASI-600 specifications (2009 ITRES Research Limited), which possess
32 bands with a FWHM of 125 nm and a spectral range from 8 to 11.4 µm. Figure 1 shows the defined
sensors’ spectral response functions (SRF), which follows their defined spectral characteristics.

HyMAP and TASI-600 were chosen as representative hyperspectral sensors that possessed
specifications most suited to the aim of this study. Data from the HyMAP instrument has been used
extensively in the past 10–15 years in all areas of the world and is nowadays one of the most used and
known airborne hyperspectral imager for the VNIR-SWIR region. The TASI-600 is one of the very few
airborne TIR sensors currently available. The spatially enhanced broadband array spectrograph system
(SEBASS) covers a broader spectral range from 7.5 to 13.5 µm (128 contiguous spectral bands). We have
decided to test the TIR potential by resampling to the TASI-600 sensor characteristics for two reasons.
The TASI-600 is more accessible than the SEBASS sensor. We also wanted to see whether the slightly
reduced spectral coverage and resolution of TASI-600 is sufficient for the aim of this study.

The TIR spectra were converted to reflectance using Kirchhoff’s law. The resampled TIR and the
VNIR-SWIR laboratory soil spectra were transformed from reflectance (R) to absorbance (log10(1/R)),
as input to the statistical analyses, to be consistent with the Beer–Lambert law [28].
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2.3. Multivariate Regression Modelling

Prediction models were established, using PLSR analysis based on the NIPALS algorithm [13]. The
dataset for a PLSR basically consists of two matrices, X and Y , where X represents the measured soil
spectra (independent or predictor variables) and Y the known quantities of the soil properties (dependent
or response variables). The PLSR comprises two independent calculation stages, the calibration and the
validation (internal or external).

PLSR models were built for the soil properties clay (%), sand (%), and organic carbon (%) for three
spectral ranges: the TIR, the VNIR-SWIR, and their combination (VNIR-SWIR-TIR).

2.3.1. PLSR-Calibration and Validation

The 45 samples from the original dataset were divided into a training or calibration dataset of 30
samples, and 15 samples were used as a test dataset for an independent external validation. The extended
dataset contains all of the 55 samples, including the extreme clay rich samples, thus did not allow a
representative individual test dataset for an independent external validation. For this case, an internal
validation method (full cross-validation) was used to assess the prediction accuracy of the PLSR models.

In the calibration, PLSR establishes a multivariate regression model, based on the training or
calibration dataset. This involved the reducing of the high dimensional X data to a few factors (latent
variables), which concentrate the spectral information that is relevant to predict Y . This essential
information is stored within the first factors, while higher factors contain decreasing Y -relevance and
increasing noise data.

To assess the models performance with respect to its dimensionality, a full cross validation
(leave-one-out validation) was employed. The models were evaluated based on the following properties:
lowest number of factors as a measure of model robustness, the lowest root mean square error of
prediction (RMSEP) as a measure of expected error in future predictions, and the coefficient of
determination (R2).

Predicted versus observed plots are used to display the Y -values, which are predicted from the
regression models. The closer the trend line of the calibration stage follows the trend line of the validation
stage, the more robust the model can be rated in terms of the samples used for the validation.

2.3.2. Spectral Interpretation of the PLSR Models

The influence of each of the spectral bands in terms of their informative contribution for predicting
the soil parameter of interest was assessed by interpreting the pattern of the model’s loading weights and
its regression coefficients.

Loading weights (w) describe the relationships between the X- and the Y -variables. High loading
weights (in the positive and in the negative dimension) indicate spectral bands being important in this
relationship, and hence have a positive or negative link with the predicted soil parameter in that specific
factor. Loading weights from different factors can be judged by their proportion of the total explained
variance [14]. If the loading weights as a function of wavelength reveal spectral characteristics related
to known physical and chemical sample constituents, they can be defined as the spectral driver for the
model within that factor.
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For the final PLSR model, the regression coefficients are generated, which can be interpreted
spectrally in the same way as the loading weights. However, they combine the loading weights
information from each of the selected factors. Thus, the regression coefficients reveal the most influential
spectral bands of the selected PLSR model for the soil parameter of interest.

3. Results

3.1. Soil Analyses

Analysis of the 45 samples within the original dataset shows that the clay content ranges were between
3.8% and 14.8%, and sand content between 77.3% and 95.3%. Organic carbon content ranges were
between 0.09% and 1.11%. The extended dataset (n = 55), including the extreme clay rich samples,
has a much broader textural range. Figure 2 displays the descriptive statistics of the determined soil
properties. The asymmetric distribution towards coarse textured soil samples is apparent. Figure 2(c,d)
shows that the textural properties are highly correlated and are both independent of the organic carbon
content, which appears from their cross correlation.

Figure 2. Descriptive statistics for the original (a) and the extended dataset (b): Min, Max,
Mean, Median, and Std Deviation of the used soil properties % organic carbon (Corg),
% clay, and % sand, and the cross correlations for the the original (c) and the extended
dataset (d).

Extended data set (n=55)

Original data set (n=45)

b d

a c

Based on the XRD and grain size analyses, the majority of the samples are coarse in texture,
dominated by quartz, with minor amounts of clay-sized minerals of kaolinite, illite, feldspar and
smectite. Some traces of iron oxides and calcite were also detected. Altogether the soil sample set
represents a typical distribution of the Western Australian wheat belt region, with sandy soils as the
dominant composition.
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3.2. Soil Spectral Characteristics

The measured spectra show absorption features typical for the ancient, deeply weathered soils from
the semi-arid regions in Australia. Figure 3 displays their spectral variations for a selection of the soil
samples in the VNIR-SWIR (as reflectance) and the TIR (as emissivity) regions.

Figure 3. Spectral variations for a selection of the Mullewa soil samples and their
corresponding parameters (% clay, % sand, and % Corg), in the (a): VNIR-SWIR
(reflectance) and (b): the TIR (emissivity) region. The arrow indicates the position of the
Christiansen Frequency Feature (CFF).
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The soil spectra show iron-oxide (hematite) and -hydroxide (goethite) features in the VNIR
wavelength region (between 0.5 and 1.0 µm), as well as clay features in the SWIR. The doublet feature
close to 2.2 microns is distinctive for kaolinite [1], which is just as abundant as iron oxides in most
Australian soils. They are among the few remaining minerals from predominant highly weathered and
leached Australian mantle [29]. Another residual mineral in this context is quartz, particularly for the
sandy soils of Western Australia. But quartz does not provide any usable feature in the VNIR-SWIR
wavelength region, as can be seen from the dashed spectrum (99.9% SiO2 content) from Figure 3(a).

However, quartz displays a broad emissivity doublet in the TIR between 8 and 10 µm (Figure 3(b)).
This doublet is the assertive feature within the Reststrahlen bands (>7.5 and <12.3 µm), which are
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associated with the strong fundamental molecular vibrations of the Si−O stretching and exhibit strong
spectral contrast [8]. Furthermore, located just before the start of the Reststrahlen bands, there appears
another very distinct spectral feature, typical for quartz, the Christiansen Frequency Feature (CFF). The
first CCF shows up at around 7.5 µm (a second, smaller one, appears at around 12.3 µm), where the
refractive index of quartz approaches that of the surrounding medium. For these CCF wavelengths
scattering is minimum, penetration into the material and thus emissivity in contrast is maximum [30].
The majority of the TIR spectra from the Mullewa soils display the features prominently.

The quartz doublet, can appear to display an additional lobe at 9 µm (e.g., a triplet) with the
presence of clay minerals, such as kaolinite, montmorillonite, or illite, in the soils. Kaolinite has the
strongest effect in reducing the quartz Reststrahlen signature at that specific wavelength (Figure 4), as
its absorption contrast is most pronounced. An additional clay mineral feature is found at 8.3 µm (with
a small spectral shift among the three of them). Several additional kaolinite features can be identified,
which helps to discriminate it from other clay minerals at 9.8 µm, at 10.2 µm and a broader one from
10.6–10.8 µm. The kaolinite dominance in the Mullewa soils’ clay minerals is spectrally distinctive,
as all of its features are represented in most of the Mullewa soil spectra, and verified throughout the
XRD analyses.

Figure 4. MWIR and TIR spectral reflectance signatures (DHR-measurements) of typical
arid and semi-arid soil minerals, from the ASTER spectral library [31]. Grey and grey-pink
bars indicate the spectral characteristics of the TIR bands from the satellites ASTER and
HyspIRI (TIR module on a planned NASA mission).
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Iron-bearing oxides also have diagnostic features within the TIR as shown in Figure 4. Hematite and
goethite, which are both present among most of the Mullewa soils, do show their abundance in the quartz
Reststrahlen bands. The iron influence appears to reduce the reflectance of the first lobe of the quartz,
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with increasing effect towards the longer wavelength side. This can result in a peak shift from the short
wavelength side (pure quartz) to the long wavelength side (iron influence) within the first lobe, as can
be seen for the Mullewa soil spectra in Figure 3(b). (Note that the figure shows emissivity values, so
the peaks are displayed as trough in this context.) The effect of this result can be associated with desert
varnish coating on the quartz sand grains, as described by Lyon [32], Rivard et al. [33].

However, this feature does not assist in distinguishing between these two iron minerals. Goethite
has two diagnostic reflectance peaks at 11 and 12.3 µm, which are absent for the hematite. Whereas
the feature at 11 µm comes clearly through in many of the soil spectra, the 12.3 µm feature probably
gets masked by the more dominant second CFF, which appears at the very same spot (note that the
TASI-resampled spectra will not cover the wavelength of this feature anymore).

Although the spectra were resampled to imaging sensor spectral characteristics and some of the
spectral information was lost, the relevant spectral information of the described features remained in the
spectra. Figure 5 shows the spectral resampled (HyMap and TASI-600, respectively) and transformed
(to log10(1/R)) soil absorption spectra for the VNIR-SWIR and the TIR as they were entered into the
prediction modelling.

Figure 5. Soil absorption (transformed to log10(1/R)) spectra for the VNIR-SWIR and the
TIR, resampled to HyMap and TASI-600 spectral characteristics, as they are entered into the
prediction modelling. Locations of the spectral soil features (RB: Reststrahlen bands).
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3.3. Prediction of Soil Properties

Calibration and validation were performed for the selected soil properties (% clay (<2 µm), % sand
(20–2,000 µm), and % organic carbon) as the response variables using the resampled and transformed
absorption spectra of the VNIR-SWIR, the TIR, and their combination (VNIR-SWIR-TIR) as predictors
for the modelling. The PLSR results are summarised in Table 1 and discussed in the next sections.
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Table 1. Summary of PLSR modelling validation results (internal cross-validation and
external validation using a test dataset) for each of the soil properties in the specific spectral
region for the original and the extended dataset: number of samples (n), number of used
model factors (f ), coefficient of determination (R2), root mean square error of prediction
(RMSEP ), not possible due to unstable model (n.p.).

Y 
Spectral 

range
(bands)

Original Data Set

f

Cross-
VALIDATION

VALIDATION
 (test data set)

n R2 RMSEP n R2 RMSEP 

% clay 

VNIR-SWIR 
(125) 5 29 0.9 0.94 % 14 0.89 0.81 %

TIR 
(32) 3 30 0.85 1.09 % 15 0.93 0.66 %

VNIR-SWIR-
TIR 

(157)
5 28 0.93 0.85 % 15 0.84 0.98 %

% sand

VNIR-SWIR
(125) 6 29 0.45 2.56 % n.p. n.p. n.p.

TIR
(32) 3 29 0.92 1.08 % 13 0.93 0.82 %

VNIR-SWIR-
TIR 

(157)
5 30 0.88 1.31 % 13 0.9 0.97 %

% Corg 

VNIR-SWIR 
(125) 7 30 0.86 0.08 % 15 0.81 0.06 %

TIR
(32) 5 30 0.91 0.08 % 15 0.62 0.12 %

VNIR-SWIR-
TIR 

(157)
5 30 0.96 0.06 % 15 0.95 0.04 %

Extended Data Set

f 

Cross-
VALIDATION

n R2 RMSEP 

5 54 0.92 2.93 %

3 55 0.95 2.55 %

5 55 0.97 2.26 %

5 55 0.9 5.56 %

3 55 0.97 2.73 %

5 55 0.97 2.84 %

6 54 0.73 0.14 %

6 52 0.67 0.15 %

6 52 0.8 0.11 %

3.3.1. Clay Content

All of the three spectral ranges (VNIR-SWIR, TIR, and VNIR-SWIR-TIR) were able to predict the
soil’s very small range of clay content (<15%) from the original dataset. The TIR performed best
amongst them, as it was able to predict the clay content with a 3 factor model (Figure 6). Applying
this model to the test dataset, the clay content could be predicted with a R2 of 0.93 and a RMSEP

of 0.66%. The combination of the TIR with the VNIR-SWIR spectral range did not improve the TIR
performance, since the VNIR-SWIR-TIR model needed 5 factors to predict the clay content with a R2

of 0.84 and a RMSEP of 0.98%. Using only the VNIR-SWIR spectral range did result in a slightly
better performance than its combination with the TIR (5 factor model with a R2 of 0.89 and a RMSEP

of 0.81%).
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Figure 6. Observed (reference) clay content versus clay content predicted from the PLSR
models for the TIR and the VNIR-SWIR-TIR spectral regions. (a) calibration (red) and
internal cross-validation (blue); (b) external validation using a test dataset (blue) for the
original dataset; (c) the results for the external dataset, calibration (red) and internal
cross-validation (blue), where the dashed bordered area displays the data range from the
original dataset.
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3.3.2. Sand Content

The models for predicting the sand content of the soils in the original dataset revealed good results
for the TIR and the VNIR-SWIR-TIR combination (Figure 7). The PLSR analysis was not able to create
an adequate model from the VNIR-SWIR wavelength alone. Similar to the clay content, the TIR model
on its own performed best, as 3 factors were sufficient to built a stable model, which predicted the sand
content with a R2 of 0.93 and a RMSEP of 0.82%. The VNIR-SWIR-TIR produced the best results
with 5 factor model (R2 = 0.9 and RMSEP = 0.97%).

3.3.3. Organic Carbon Content

The soil’s content of organic carbon could be predicted from all of the three spectral ranges, despite
of the very low content of <1.5%. The TIR, which does not contain diagnostic organic spectral features,
produced good results in the cross-validation stage (5 factors, R2 of 0.91 and a RMSEP of 0.08%).
However, the model resulted in moderate prediction abilities for the test dataset (R2 of 0.62 and a
RMSEP of 0.12%). The best result was achieved with the combination of the VNIR-SWIR-TIR
spectral range (Figure 8). A PLSR model with 5 factors was able to predict the organic carbon content
with a R2 of 0.95 and a RMSEP of 0.04%.
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Figure 7. Observed (reference) sand content versus sand content predicted from the
PLSR models for the TIR and the VNIR-SWIR-TIR spectral regions. (a) calibration (red)
and internal cross-validation (blue); (b) external validation using a test dataset (blue) for
the original dataset; (c) the results for the external dataset, calibration (red) and internal
cross-validation (blue), where the dashed bordered area displays the data range from the
original dataset.
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Figure 8. Observed (reference) organic carbon content versus organic carbon content
predicted from the PLSR models for the TIR and the VNIR-SWIR-TIR spectral regions.
(a) calibration (red) and internal cross-validation (blue); (b) external validation using a test
dataset (blue) for the original dataset.
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3.3.4. Spectral Interpretation of the PLSR Models Drivers

Figure 9 provides an insight to the drivers (also referred to as “inner relations”) for the
VNIR-SWIR-TIR models. The regression coefficients for the combined VNIR-SWIR-TIR models
identify the significance of a spectral region for the prediction of the soil parameter of interest. Similar
to the interpretation of the loading weights within a specific factor, the correlation coefficients relate to
the spectral bands of importance for the final all factor combined PLSR model.

Figure 9. PLSR regression coefficients for the combined VNIR-SWIR-TIR models for the
prediction of clay, sand and organic carbon. The arrows indicate the corresponding spectral
features (red: kaolinite; blue: quartz; green: organic matter).
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As expected, the variables clay and sand reveal their inverse relationship in their regression coefficient
patterns, at least within the most important regions of the TIR and the SWIR. Figure 9 shows that the
SWIR and the TIR are the most important spectral regions for the prediction of clay and sand content,
which fit with the occurrence of the most distinctive textural spectral features (clay minerals, such as
kaolinite and silicates, and quartz) for these wavelengths. In spite of the regression coefficients being
composed of the combined information from all of the used loading weights, they still are consistent
with the diagnostic spectral features. For example, the kaolinite features at 2.2 µm, at 9.0 µm, at 9.8 µm,
and between 10.6–10.8 µm (red arrows). There is a subtle suggestion of the 2.2 µm kaolinite doublet
feature too.

Furthermore the first lobe of the quartz Reststrahlen bands starting at 8 µm displays a steep stair-like
descent towards longer wavelength (blue arrows), indicating its prominent role as the driver for grain size
variations. This effect is likely to be associated with the reduction in spectral contrast of the Reststrahlen
bands with decreasing grain size [30,34]. However, it should be noted that more complicated interactions
of radiation with mixtures of fine quartz and/or clay particles coating quartz sand grains can also reduce
the Reststrahlen spectral contrast [35].

The organic carbon content PLSR model indicates that the TIR wavelengths are valuable input for
its prediction. However, the most important spectral bands are found in the VNIR region, which is
consistent with the literature, where spectral features in the VIS region are identified as being related
to the presence of organic compounds (green arrow). The change in slope in the VIS is a function of
the soil organic matter content [6,36], which is represented as increasing regression coefficient values
from 588 nm to 710 nm (Figure 9). Subsequently they decrease towards a trough with a minimum at
900 nm, which is associated with features of iron bearing minerals such as haematite (880 nm) and
goethite (920 nm). The feature located at around 500 nm is also due to the iron oxide charge transfer
feature in the ultraviolet/visible wavelength region [37]. Note, since the soils’ iron oxide content has not
been measured to this point of the research, we cannot ascertain if the relationship between soil organic
carbon and the reflectance spectra is due to an association with this or any other unmeasured parameter.

The interpretation of the PLSR models’ loading weights for a particular factor reveals a more detailed
view of the models drivers relative to the shape of the soils’ spectral features. With the focus on the TIR
spectral region, the texture’s inverse relationship of the two response variables sand and clay is clearly
evident again. Figure 10 shows the loading weights for the 3 factors (f1, f2, and f3), involved with both
models. The loading weights for sand (start at negative values) and clay (start at positive values) are
following very similar patterns in each of the model’s factors, however the same spectral information is
used inversely in the prediction. Factor 1 (dotted lines) represent the overall trend of the spectral contrast,
mainly driven by the quartz Reststrahlen bands, since there are no other spectral features evident in the
loading weights pattern (note that the distinct 8.65 µm feature of quartz is not considered in f1, f2, and
f3). Factor 2 is already dominated by the spectral features of kaolinite (9, 9.8, 10.2, and 10.8 µm). Most
of these kaolinite feature are being confirmed in factor 3, which also contains the clay feature at 8.3 µm.
This also reveals the influence of the goethite feature just before 11 µm, which might be interfering with
the clay minerals information in that region.
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Figure 10. PLSR loading weights (factors 1–3) for the prediction of clay and sand in the TIR
spectral region, and spectra of the relevant minerals from the ASTER spectral library [31],
resampled to TASI-600 spectral characteristics.
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4. Discussion

4.1. Extended Data Set

The extended dataset included an additional few clay rich soil samples, which were more common
south of the investigation area (clay content 60%–70%) and a few rarely found among the investigated
paddocks (clay content 30%–40%). As they are also underrepresented among the collected soil samples,
they have been analysed separately within the extended dataset. The PLSR results show that for both,
the sand and clay content, stable prediction models could be established with a similar number of model
factors as in the original dataset. However, due to the unbalanced distribution, theRMSEP is higher (in
the TIR: RMSEP of 2.55% for clay- and RMSEP of 2.73% for sand content). Still the TIR models (3
factors) are able to predict with a smaller number of model factors than the combined VNIR-SWIR-TIR
models (5 factors).
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4.2. Silt Fraction

Since the silt fraction (2–20 µm) represents the complementary part to the sum of the clay and the
sand content, we decided to focus this paper on clay and sand prediction. As can be seen from the
modelling results of the two other texture properties, their prediction performance always depends on
both the mineralogical and the grain size information. The silt however does not contain such distinct
mineralogical characteristics (such as clay minerals, or quartz) but is rather a mixture of them. For the
Mullewa soils, it was shown that the silt fraction is actually more likely to be related to the mineralogy
of the sand fraction [29]. Thus, we would suggest that the indirect prediction of % silt, via the sand
and clay content, would be a feasible method, as their spectral drivers are more distinct and thus more
powerful for the modelling of a soil’s texture characteristics.

5. Conclusions

The study reveals that the prediction of all three soil properties (% Corg, % clay, and % sand) is
promising for the TIR based on resampled TASI-600 spectral bands, in spite of the small textural range
for the sand-dominated Mullewa soils. Good results were achieved for the properties of clay and the
sand content based on the TIR spectral signatures with a R2 = 0.93 for % clay (RMSEP = 0.66%), and
0.93 for % sand (RMSEP = 0.82%). The high spectral contrast of the TIR spectral region, as well as
the distinct spectral features for both, clay minerals and quartz, were responsible for good quantification
performances using the PLSR analyses.

This paper shows that predicting clay and sand content can be achieved more accurately and reliably
using the TIR alone than in combination with the VNIR-SWIR region, as the 3 factor TIR models were
more robust than the 5 factor VNIR-SWIR-TIR models. Modelling with the TIR could be realised with
a reduced number of model factors, although the TIR provides much less numbers of spectral bands (1/3
of the VNIR-SWIR).

The PLSR analyses were not able to create an adequate model from the VNIR-SWIR wavelength
alone to predict the sand content, which as we interpret is related to the very sandy character of the soil
samples (>75% sand). In this case, the quartz dominance does not allow enough spectral features within
the VNIR-SWIR wavelengths.

Even if the TIR model for the organic carbon content showed promising results in the internal
cross-validation (R2 = 0.91 and RMSEP = 0.08%), the external validation based on the test dataset did
not give adequate results (R2 = 0.62 and RMSEP = 0.12%). However, the VNIR-SWIR spectral range
was able to predict it with a R2 of 0.81 and RMSEP of 0.06%). The VNIR-SWIR-TIR combination
revealed the best prediction result for organic carbon content, as the PLSR model (5 factors) performed
with a R2 of 0.95 and a RMSEP of 0.04%.

Overall this paper shows that the TIR region, using 32 spectral bands, has a high potential for the
prediction of the clay- and sand- content across semi-arid sandy agricultural landscapes, which possess
an extremely narrow textural range. Based on emission IR spectroscopy measurements, the results meet
the requirements for a quantitative comparison with TIR remote sensing imagery data. In combination
with the VNIR-SWIR wavelength, the VNIR-SWIR-TIR models also displayed great propose in the
prediction of the low ranges in organic carbon content, typical for such semi-arid soils. Prediction from
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remote sensing data has many more limitations and has numerous perturbing effects (e.g., atmospheric
influences, lower signal to noise ratio, coarser spatial resolutions, spectral intermixtures within pixels,
and the influence of other soil variables such as soil roughness and moisture). Here we prospect that
the additional use of TIR sensing will lead to a more flexible approach for quantifying soil properties.
For predicting texture characteristics from very sandy soils, the TIR bands hold the promise of greater
prediction accuracy through higher spectral contrast. Regarding this, the availability of airborne and
future satellite TIR systems with an increased spectral range/resolution, such as SEBASS, or NASA’s
planned Hyperspectral Infrared Imager (HyspIRI) satellite system, will be a big asset for global digital
soil mapping.
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