
 

 

 

 

   Originally published as: 

 

 

 

 

 

Unger, A., Schulte, S., Klemann, V., Dransch, D. (2012): A Visual Analytics Concept for the Validation 

of Geoscientific Simulation Models. ‐ IEEE Transactions on Visualization and Computer Graphics, 18, 

12, 2216‐2225  

DOI: 10.1109/TVCG.2012.190 



A Visual Analysis Concept for the
Validation of Geoscientific Simulation Models

Andrea Unger1, Sven Schulte2, Volker Klemann1,3, and Doris Dransch1

1GFZ German Research Centre for Geosciences, Potsdam, Germany,
{unger,volkerk,dransch}@gfz-potsdam.de

2Magdeburg-Stendal University of Applied Sciences, Germany,
sven.schulte@hs-magdeburg.de

3National Oceanography Centre, Liverpool, UK, volman@noc.ac.uk

Geoscientific modeling and simulation helps to improve our understanding of the complex
Earth system. During the modeling process, validation of the geoscientific model is an essential
step. In validation, it is determined whether the model output shows sufficient agreement with
observation data. Measures for this agreement are called goodness of fit. In the geosciences,
analyzing the goodness of fit is challenging due to its manifold dependencies: 1) The good-
ness of fit depends on the model parameterization, whose precise values are not known. 2) The
goodness of fit varies in space and time due to the spatio-temporal dimension of geoscientific
models. 3) The significance of the goodness of fit is affected by resolution and preciseness of
available observational data. 4) The correlation between goodness of fit and underlying mod-
eled and observed values is ambiguous. In this paper, we introduce a visual analysis concept
that targets these challenges in the validation of geoscientific models – specifically focusing
on applications where observation data is sparse, unevenly distributed in space and time, and
imprecise, which hinders a rigorous analytical approach. Our concept, developed in close coop-
eration with Earth system modelers, addresses the four challenges by four tailored visualization
components. The tight linking of these components supports a twofold interactive drill-down
in model parameter space and in the set of data samples, which facilitates the exploration of the
numerous dependencies of the goodness of fit. We exemplify our visualization concept for geo-
scientific modeling of glacial isostatic adjustments in the last 100,000 years, validated against
sea levels indicators – a prominent example for sparse and imprecise observation data. An ini-
tial use case and feedback from Earth system modelers indicate that our visualization concept
is a valuable complement to the range of validation methods.

1 Introduction

The Earth is a complex system, which can be described by the interplay of multiple simul-
taneous processes. A deeper understanding of this complexity is promoted by modeling and
simulation. Towards the long-term objective to build a comprehensive computational model of
the Earth system, geoscientists today make efforts to model the individual geoprocesses that
contribute to it.
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Building models of such real-world processes is a complex task that comprises various steps.
Validation is an essential building block to ensure that the model correctly reproduces the real
world process under study. To this end, automatically derived goodness of fit measures are
commonly employed that determine the agreement between modeled data and observations of
the process under study. In this regard, a number of challenges occur that are characteristic
for the Earth sciences. These challenges include: the dependency of the goodness of fit on
the model’s parameterization, spatio-temporal variations of the goodness of fit, often limited
resolution and precision of observation data, and an ambiguous relation between goodness of
fit and underlying modeled and observed data. Especially limited resolution and precision of
observation data hinder a rigorous analytical validation, which accounts for all these challenges,
in numerous geoscientific applications. The limited observability of many processes on Earth
often requires to rely on observation data that is sparse, unevenly sampled in space and time, or
imprecise, e.g., when data is derived from interpretation rather than measurement.

To support a validation of geoscientific models in applications where a rigorous analyti-
cal approach is not feasible, we introduce a tailored visual analysis concept in this paper that
makes the analytically derived goodness of fit assessable within an interactive visual interface.
Our concept addresses the validation challenges by specific visualization components. A syn-

thesized view on the individual aspects is accomplished by a twofold selection concept that
supports a simultaneous exploration within model parameter space and within underlying data
samples. Our solution has been derived in close cooperation with researchers from Earth system
modeling. It extends previous work [11], in which we introduced the idea to support validation
in geoscientific modeling and simulation with interactive visual analysis. The initial design
study lead to a compact spatio-temporal visualization to assess the goodness of fit. Here, we
specify and significantly extend this visualization strategy by a combination of interactively
linked views, interactive aggregation, and parameter exploration of model ensembles. Conse-
quently, the prior visualization now serves as one component within a larger visual analysis
concept and has been adapted to refined analysis requirements.

The concrete implementation of our general concept depends on the application at hand.
Data considered in the validation of geoscientific models – involving model parameterizations,
model outputs, observation data, and automatically derived goodness of fit values – can con-
siderably differentiate in dimensionality and scale among different modeling applications. We
exemplify our concept for the application of modeling glacial isostatic adjustments. A use
case and feedback from geoscientists indicate the potential of our visual analysis concept to
substantially support validation in Earth system modeling.

2 Exemplary application: Modeling glacial isostatic adjustments

Glacial isostatic adjustment (GIA) terms the response of the solid earth to glacial loading pro-
cesses. Most striking is the present uplift of northern Sweden by about 1 cm/yr after the melting
of the Fennoscandian ice sheet 20,000 yr before present (e.g., [30]). The still ongoing process
is governed by the response of the elastic lithosphere and the back-flow of displaced viscous
mantle material, which hinders an instantaneous response to the unloading [40]. The deforma-
tion process contributes a linear signal to a large number of geodetic observations. A prominent
example for this is the interpretation of gravity data from the GRACE satellite mission, which
was designed for the research of climate processes [31]. It determines mass redistributions at
the Earth’s surface by its gravitational signature. Effects due to other processes – like GIA –
have to be corrected for.

The only observable that covers the whole time length of the GIA process are sea level indica-
tors. They record sea level variations over thousands of years, allowing for a better understand-
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ing and quantification of this process. Sea level indicators are fossil samples, archaeological
constructions or other features, which allow, often only imprecisely, to reconstruct the local sea
level at the time of formation or activity. This imprecision is due to dating or the character of
the sample. Also, sea level indications are relative, with respect to both varying sea level and
varying elevation of the land mass [16].

3 Challenges in the Validation of Geoscientic Models

Validation is an essential building block in model development [35]. It refers to “ building the
right model” [6], that is, to ensure that the model reproduces the real-world process under study
sufficiently with respect to the modeling objectives.

The goal of this section is to describe the validation approach that we refer to throughout this
paper. General challenges of this analysis process in the Earth sciences are exemplified with
respect to validating GIA modeling against sea level indicators.

3.1 Analytical Validation Approach

The validation approach followed in this paper belongs to the group of data validation methods
[6], which perform a comparison of model output with observation data. It involves a compu-
tationally derived measure for the agreement between modeled and observed values, denoted
as goodness of fit f [21]. Numerous methods exists to determine the goodness of fit [20]. Due
to limited availability and preciseness of observation data, we restrict our approach to a point
wise comparison of individual modeled and observed values (Fig. 1) This approach requires
that the model output follows the sampling of observation data. For each sample i, the local
goodness of fit fi is derived as the agreement between corresponding modeled and observed
value. Naturally, also the sampling of fi follows the observation data. An aggregation of fi is
performed to derive an average goodness of fit f of a model. In general, f is a value in the
range [0,1], with f = 1 indicating a full agreement of model output and observation data, and
f = 0 indicating no agreement.

Figure 1: Analytical approach to determine the model’s goodness of fit. Modeled and observed values (d
refers to relevant variable) are compared point by point, resulting in a set of sample fits fi. These
are aggregated in a single value f that characterizes the model’s goodness of fit.

3.2 Analysis Challenges

The goodness of fit of a geoscientific model depends on four different aspects, which we discuss
in the following. We illustrate these challenges by our exemplary application of validating
modeled glacial isostatic adjustments in the past against sea level indicators.
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3.2.1 Dependency of Goodness of Fit on Model Parameterization

A major interest in the described validation approach is to determine the model’s goodness of
fit for potential values of model parameters. Model parameters describe the factors that have a
major impact on the system behavior. A common approach to address the challenging task of
parameter quantification in Earth system modeling is to evaluate the goodness of fit for potential
parameter values.

Exemplified: Model parameters in GIA modeling In our GIA model, three input parame-
ters are evaluated, which describe how the Earth surface deforms due to ice masses. The pa-
rameters describe the thickness of the lithosphere L, and the viscosities of upper Earth mantle
UM and lower Earth mantle LM. Each parameter is given as a scalar value.

3.2.2 Variations of Goodness of Fit in Space and Time

Commonly, a process that contributes to the Earth system takes different effect on different
spatial locations on Earth and in different time spans. An important aspect of Earth system
modeling is to reproduce these spatio-temporal variations. But multiple model parameteriza-
tions match these variations with differing accuracy in space and time. This is reflected by
spatio-temporal variations of the goodness of fit.

Exemplified: Spatio-temporal variations of goodness of fit The GIA model estimates sea
level variations in the last 100,000 years due to glaciation and deglaciation. These processes,
caused by global climate changes cause over time, induce temporal changes in sea level heights.
GIA model output reproduces sea level height in different time spans and regions with diverging
accuracy. Also, the model does not regard all processes that contribute to variations in sea level
height. But all these processes are captured in the observation data.

3.2.3 Resolution and Preciseness of Observation Data

The availability of meaningful observational data is a restraining factor in data validation.
Spatio-temporal coverage and preciseness are determined by the applied observation method.
In the last years, technological advances have massively facilitated the observation of the Earth
system. Despite the availability of novel technologies such as satellite missions and sensor net-
works, which produce data with before unknown spatio-temporal resolution and precision, the
observability of many processes of the Earth system remains limited. Here, scientists have to
rely on sparse, unevenly distributed point sets with limited precision of values. This is espe-
cially true for geoprocesses in the past, as it is the case in the application at hand.

Exemplified: Observation data derived from sea level indicators To validate GIA mod-
eling, fossil samples that give indications about former sea level are the only available source
of real-world observations. These sea level indicators exemplify limitations in data distribution
and preciseness very well:

• The spatio-temporal distribution is sparse and uneven.
Sea level indicators are restraint to their find spot and their span of life. Geologists search
for sea level indicators near assumed past seashores. Hence, the available amount of sam-
ples in these geographical areas is higher than in other areas. Fig. 2 shows the distribution
in space and time for our exemplary data.
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Figure 2: Distribution of sea level indicators in space (red dots on map on the left) and in time (temporal
histogram on the right).

• Temporal locations and derived sea level heights are imprecise.
While the geolocation of a fossil sample is determined from its find spot with relative
precision, the life span is bounded by an aging method. Inevitable dating errors limit
the fossil’s age by a probability function. Further, as the denotation says, sea level indi-
cators provide indications of sea level height rather than measurements. Depending on
geological knowledge of the kind of fossil (sea shells, peat, corals), sea level height can
be bounded in one or two directions. In the result, their are three different kinds of indi-
cations of the sea level height: upper bounded ranges, lower bounded ranges, and double
bounded ranges (Fig. 3).

Figure 3: Impreciseness of observation data. Each observation data has an associated temporal range and
value range. Three types of value ranges occur: Lower bounded ranges, upper bounded ranges,
and double bounded ranges.

3.2.4 Dependency of Goodness of Fit on Underlying Values

The goodness of fit results from an analytical comparison of modeled and observed values, but
modeled and observed value cannot be recovered from the goodness of fit. For the analysis
though, the two-sided relation between goodness of fit and underlying values is an important
information in the assessment of the goodness of fit.

Exemplified: Goodness of fit for observed bounds and modeled values The dual im-
preciseness of the observation data (in age range and observed value range) demands a tailored
analytical method to determine the goodness of fit. The applied method is based on fuzzy logic
[16], which leads to fit values fi in the continuous range [0,1]. Fig. 4 illustrates the resulting
mapping of modeled and observed value to goodness of fit: If the modeled value falls into the
bounded range given by the sea level indicator, then fi = 1, otherwise the goodness of fit de-
pends on the distance to the bounded value range. fi is ambiguous in two ways: For fi = 1, the

5



analyst does not know the position of the modeled value within the value range, which can lead
to irrelevant goodness of fit values for half bounded ranges. For fi < 1, it is not known whether
the modeled value is an over- or underestimate of the observed sea level height.

Figure 4: Deriving the goodness of fit for different types of value ranges provided by observation data and
corresponding modeled values. Dots indicate potential modeled values, their color indicates the
resulting goodness of fit as labeled.

3.3 Visualization Requirements

In the following, we present the requirements for a visualization concept that supports the val-
idation of geoscientific models. The requirements were derived in an iterative process, com-
prising unstructured interviews with Earth system modelers and the evaluation of preliminary
prototopes, which triggered further discussions and a constant sharpening of the analysis de-
mands. The ongoing cooperation helped to substantially broaden our understanding of visual-
ization requirements compared to prior work [11]. Our previous findings are now subsumed in
visualization requirement VR 2.

VR1 Exploration of goodness of fit in model parameter space
A central requirement for successful validation is the assessment of variations of the good-
ness of fit that are due to varying model parameterizations. This includes the following
tasks:

• Explore distribution of goodness of fit in model parameter space
• Identify influence of individual parameters or combinations of parameters on good-

ness of fit

VR2 Exploration of spatio-temporal variations of goodness of fit
Spatio-temporal variations of the goodness of fit are induced by varying accuracy of mod-
eled values – or other geoprocesses reflected in observed values. These variations need
to be assessed on appropriate abstraction levels, as the scope of analysis can be global or
restraint to a local region, which involves to:

• Evaluate spatio-temporal variations of goodness of fit on appropriate abstraction lev-
els, according to the current analysis scope
• Evaluate the significance of goodness of fit in regions or time spans by implicit geo-

scientific knowledge about inferring geoprocesses

VR3 Exploration of observation data
Preciseness and resolution of observation data constrain the significance of the goodness
of fit, which needs to be assessed by exploring the observation data. The analysis involves
to:
• Explore spatio-temporal distribution of observation data
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• Explore preciseness of observation data
• Evaluate significance of observation samples by additional geological knowledge

VR4 Exploration of relation between goodness of fit and data values
The ambiguous relation between goodness of fit values and underlying modeled and ob-
served values needs to be clarified in validation. Hence, the following tasks need to be
supported:
• Identify modeled and observed values for the goodness of fit of a single sample or a

group of samples
• Compare modeled and observed values manually

VR5 Combined view on dependencies of goodness of fit
The manifold dependencies of the goodness of fit are closely related and cannot be isolated
from one another. A synthesized view is required to support the following objectives:
• Explore dependency of spatio-temporal variations on model parameterization
• Explore dependency of goodness of fit in model parameter space for a sample subset,

which groups samples, e.g., by spatial location, temporal range, or type of fossil
• Determine significance of goodness of fit in spatial-temporal regions based on cover-

age and preciseness of observation data

4 Related Work

The goal of our work is to provide a visual analysis concept that targets specific challenges in
the validation of geoscientific models. Thereby, we want to narrow the gap between state-of-
the-art methods of interactive visual analysis and their application in Earth system modeling.
This general gap still exists, as it was recently shown in a survey by Tominski et al. [33] among
76 scientists from the closely related field of climate research. Nevertheless, the last years have
shown increased efforts in bridging the gap by developing tailored visual analysis methods that
consider domain-specific challenges.

In Earth system modeling, Ahrens et al. [1] address the verification of simulation models
by comparing various modeling outputs. Here, the model output arises from different code
implementations of the same model, which agrees with the objective of verification to check
whether a conceptual model has been implemented correctly. In contrast, validation answers
the question whether the correct conceptual model has been built.

Validation in our sense considers a model ensemble that arises from unknown model param-
eterizations. Various visual analysis approaches target such model ensembles in Earth system
modeling or closely related fields. Applied to climate research, Potter et al. [27] and Kehrer et
al. [14, 18, 15] employ multiple linked views for the analysis of spatio-temporal ensemble data.
Model ensembles in weather forecasting are addressed by Sanyal et al. [28]. An alternative
approach to explore parameter spaces in Earth system modeling that employs self organizing
maps is provided by Boschetti et al. [8]. Addressing the objective of deriving fast response
strategies in flooding hazards, which also strongly relies on the dependency of model output
on model parameterization, Waser et al. [38, 39] focus on interactive steering of simulation.
These approaches link multiple model parameterizations and their spatio-temporal model out-
put. However, the goodness of fit derived from comparison with observation data – a major
requirement in our intended data validation – is not considered. A rare example for a com-
parative visualization of model output and observation data is presented by Nocke et al. [25].
Focusing solely on observation data, Yuan et al. [41] present visual analysis methods for gain-
ing insight in earthquake-related data from different sources, Köhler et al. [17] employ self
organizing maps to extract features from seismic data.
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The presented related work encouraged our research, as it presents powerful visual analysis
methods for Earth system modeling and closely related domains. Visual support in the model-
ing and simulation cycle in other domains has been presented by Matkovic et al. [24, 23] for
engineering applications and Unger and Schumann [36] and Schulz et al. [29] for cell biol-
ogy. While being valuable for the respective analysis objectives, the presented approaches do
not support data validation in Earth system modeling as intended by our application – which
requires a simultaneous consideration of various parameterizations and outputs of a model en-
semble, observation data, and computationally determined goodness of fit values. More closely
related to this challenge, Piringer et al. [26] target the validation of regression models, with an
application in car engine engineering, thus not explicitly considering spatio-temporal context.

Even though we are not aware of a visual analysis approach that supports a combined con-
sideration of all our visualization requirements, prior work targets individual visualization re-
quirements that we identified in Section 3.3. Regarding the exploration of parameter spaces,
Bruckner and Möller [9] turn towards visual effects design, Franken [13] towards exploration
of algorithm parameter spaces, and Berger et al. [7] allow the exploration of continuous pa-
rameter spaces. Torsney-Weir et al. [34] focus on the application of parameter finding in image
exploration. Their analysis involves the comparison of model output to ground-truth images,
thereby determining the goodness of a parameterization. Despite the fact that a different ap-
plication domain is targeted, evaluating the goodness of model outputs in parameter space is
closely related to the domain task targeted in our work.

Another relevant visualization requirement in our application is the exploration of spatio-
temporal context of data. Guidelines and numerous techniques for the visualization of geospa-
tial data [22, 12] and for temporal data [2] are provided in the literature. Still, the visualization
of geospatio-temporal data is a challenge that currently gains much attention [5, 4]. According
to Chung et al. [10], the spatio-temporal context in our application can be described as event
data. Visual analytics tools that employ multiple linked views for such event data in geospatial
and temporal context have recently been presented by Tomaszewski and MacEachren [32] with
respect to crisis management and Andrienko et al. [3] for movement data.

5 Visual Analysis concept

In this section, we introduce our visual analysis concept for the validation of geoscientific mod-
els. We argue that the complexity of the visualization requirements described in Section 3.3
can best be met by multiple visualization components that focus on specific requirements. The
components are integrated in one visual interface and interactively linked. A concise overview
of our visual analysis concept is given in Fig. 5. An exemplary realization in the applica-
tion context of modeling glacial isostatic adjustments is described in the following Section 6.
We separate concept and realization because the choice of appropriate visual representations
depends on the data characteristics in the individual application context. This includes, for
instance, dimensionality of the parameter space or spatio-temporal coverage, preciseness, and
volume of observation data.

5.1 Visualization components

To address visualization requirements VR 1 to VR 4 identified in Section 3.3, we define one
visualization component for each requirement. Each component provides suitable visual repre-
sentations that operate on the corresponding data portions.

VC1 Exploration of goodness of fit in model parameter space.
Following the analytical goal to understand the relation between goodness of fit and
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Figure 5: Visual analysis concept for validation of geoscientific simulation models. Four visualization com-
ponents VC1 to VC4 (blue), addressing the visualization requirements VR1 to VR4, are integrated
in one visual interface. The exploration of their combined effect, as demanded by VR5, is sup-
ported by a twofold interaction concept (in red) that supports selection in model parameter space
and within the set of data samples.

model parameterization, we define one component that communicates variations within
the model parameter space by high-level characterizations of the goodness of fit.

VC2 Exploration of spatio-temporal variations of goodness of fit.
The component supports the detailed assessment of variations of the goodness of fit in
space and time; the exploration is restraint to a single model parameterization. The visual
representation provides appropriate abstraction levels to explore variations in space and
time.

VC3 Exploration of observation data.
Resolution and preciseness of observation data are addressed by this visualization com-
ponent.

VC4 Exploration of relation between goodness of fit and data values.
The ambiguous relation of goodness of fit to underlying observed and modeled values is
revealed by a direct visualization of the values along with the corresponding goodness of
fit.

5.2 Interactive linking by twofold selection

To support the combined exploration of the manifold dependencies of the goodness of fit, as
required by VR 5, the components are interactively linked. This linking is based on a twofold
selection concept, which manages the flow of information among the components.

A One model parameterization is analyzed in detail.
Exploration of the goodness of fit in model parameter space in component VC1 relies on
high-level descriptions of the goodness of fit. A detailed exploration of the goodness of fit
for all model parameterizations simultaneously is not suitable, due to the complex infor-
mation that needs to be understood. For these detailed analyses, a consecutive exploration
of model parameterizations is more feasible. To this end, the selection of a single param-
eterization in visualization component VC1 is forwarded to components VC2 to explore
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spatio-temporal variations of the goodness of fit and VC4 to evaluate relation between
data values and goodness of fit values.

B A subset of samples is analyzed in model parameter space.
Depending on current analysis objectives, the dependency of the goodness of fit on the
model parameterization needs to be analyzed for a specific subset of samples. The subset
can be based on a spatial region or a certain time span. Also, other data characteristics
may be decisive, such as precision, value ranges or additional geological information
given for observation data. We provide a flexible selection mechanism that allows the
composition of the sample subset based on all these criteria. The sample subset is mutually
determined in components VC2, VC3, and VC4 and forwarded to VC1 to evaluate the
average goodness of fit for the selected sample subset in model parameter space.

The dual interactive drill-down within the model parameter space and within the set of data
samples provides a highly flexible exploration of the manifold dependencies of the goodness of
fit.

6 Views

In the following, we introduce a realization of our visualization concept for the application of
validating GIA models.

6.1 Visualization Components

6.1.1 Exploration of Goodness of Fit in Model Parameter Space

A suitable visualization of the goodness of fit in model parameter space mainly depends on
space dimensionality and the number of model parameterizations. Further, the sampling of the
parameter space (regular vs. random sampling) plays a role.

Exploring the parameter space is closely related to the problem of visualizing multivariate
data. A standard approach in this regard is a scatterplot matrix. In our application, the reg-
ular sampling of the parameter space leads to overplotting of model parameterizations in a
scatterplot matrix, which hinders a clear identification of individual model parameterizations.
HyperSlice [37] overcomes this limitation by visualizing orthogonal 2-D slices through the
n-dimensional parameter space. The 2-D slices are defined by an n-d focal point, which is in-
teractively adapted to navigate through parameter space. In recent related work [26, 7], this
idea was the basis for powerful visualization methods to explore model parameter spaces.

In our application, the low number of parameters (3) as well as the low number of values
of each parameter (≤ 5) allow us to provide complete representations of the parameter space,
as described in the following. A first overview on the model parameter space is given by a
scatterplot matrix. Using transparency, overlapping parameterizations become apparent (view
A in Fig. 6). The goodness of fit can be explored upon interactive selection of a scatterplot
from the matrix, which opens 2-D slices for each value of the remaining parameter. Color
in 2-D slices indicates the high-level abstraction of the goodness of fit related to each model
parameterization. As a suitable characterization of the goodness of fit in our application, we
employ the average goodness of fit of the current sample subset. 2-D slices are accompanied
by a direct visualization of the goodness of fit in 3-D parameter space, which is equipped with
interactively controlled view transformations (Fig. 6, view C). Graphical primitives in these
views are automatically sized according to the sampling density, thus being decreased if more
parameterizations need to be shown.

10



Figure 6: Exploration of goodness of fit in model parameter space. The goodness of fit is mapped to color
according to the color scale at the bottom. A - A scatterplot matrix provides an overview of
the model parameter space. B - 2-D slices through parameter space support the exploration of
dependencies on two parameters. C - The distribution of the goodness of fit is directly visualized
in the 3-D parameter space. D - 1-D plots for each parameter convey variances of the goodness of
fit across parameter values. E - A table provides a detailed representation of the model parameter
space together with the respective fits.

In addition, plots that communicate the dependency of the goodness of fit on single param-
eters have been considered useful by Earth system modelers. Similar to histograms, these 1-D
plots (Fig. 6, view D) map one model parameter on the x axis, and model parameterizations are
ordered by goodness of fit along the y axis, which nicely conveys how goodness of fit varies
within one parameter. The low number of parameters allows for one plot each. Finally, a ta-
ble provides a detailed view on all model parameterizations and the associated goodness of fit
(conveyed by color of the label column, see Fig. 6, view E), which is valuable for the analyst
as it provides detailed representation of the model parameter space together with the respective
fits. By combining these views, tailored views for various analysis goals are available.

To fulfill the component’s role in our twofold selection concept, brushing of individual model
parameterizations for detailed inspection in other visualization components is supported in 2-D
slices, 1-D plots, and detail table. The selected parameterization is visually highlighted across
all these views, which are further visually linked by a consistent color scale for the goodness of
fit.

2-D slices and 3-D view specifically account for the dimensionality of the parameter space
in the application example. Nevertheless, our visualization is adaptable to higher numbers of
parameters and a more densely sampled parameter space by including a HyperSlice visualiza-
tion (instead of a scatterplot matrix), which requires the definition of an n-dimensional focal
point and its interactive manipulation. Our remaining views, such as 1-D plots and detail table,
readily adapt to more parameters (if we speak of about a dozen parameters).
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6.1.2 Exploration of Spatio-Temporal Variations of Goodness of Fit

The component visualizes spatio-temporal variations of the goodness of fit for one model pa-
rameterization. In general, geospatial distributions can be shown as either globes or maps. We
include both alternatives, as they reveal their strengths for different objectives: Maps are suited
for an instantaneous global overview of the spatial distribution, while a globe avoids spatial dis-
tortions, which are inevitable in map projections. The samples’ spatial locations on the globe
(or map) are visualized as dots colored according to the sample’s goodness of fit, as shown in
Fig 7.

The visualization of individual samples is not sufficient, as these do neither convey trends nor
support the comparison of spatial regions or time spans. To convey variations of the goodness of
fit on appropriate spatio-temporal abstraction levels, we group samples into geologically mean-
ingful regions of different spatial extent. These abstraction levels are visualized by bounding
boxes on the Earth surface. For each spatial group, the goodness of fit is characterized by the
average of all sample fits that are currently included in the selection, visualized by the color of
the bounding box.

Accounting for variations in space and time, temporal variations within regions are commu-
nicated by additional symbols, which are associated with each region. The symbol employs the
visual metaphor of population pyramids: Time is shown vertically elapsing from top to bottom.
For each temporal interval, the number of samples is shown. The number of samples with fit
f = 1 is shown by bar length to the right, the number of samples with f < 1 by bar length to the
left. This supports a fast identification of the agreement between observed and modeled values.
Color is used to differentiate fits values. Like a rotated stacked histogram, the color distribution
within the left bar corresponds to the distribution of fuzzy fits.

Figure 7: Exploration of spatio-temporal variations of goodness of fit for one model parameterization. Left:
Individual samples are shown in the region of interest (here: Hudson Bay). The color corresponds
to the goodness of fit of each sample, the color of the bounding box to the average goodness of
fit of the region. Right: Average goodness of fit for geologically meaningful spatial regions are
shown. The symbol communicates temporal variations in goodness of fit within the region.

The visualization component extends our previous visualization of spatio-temporal variations
presented in [11] as follows: Dots (indicating spatial distribution) and symbols (indicating tem-
poral distributions) now communicate goodness of fit values rather than an observation-data
related attribute value. In conjunction with the likewise novel mapping of a region’s average
fit to the color of its bounding box, our visualization now provides additional detail about the
variations of the goodness of fit in space and time.
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The analyst can adapt the visual representation according to his current objectives. This in-
cludes zoom and rotation of the globe according to the spatial extent of interest, definition of the
temporal range and its subdivision, and the interactively controlled combination of simultane-
ously shown spatial and temporal abstraction levels. Further, the selected sample subset can be
adjusted by adding or removing individual samples as well as whole regions with a mouse click.
Additional information, such as labels and data values, are available as tooltips for samples and
regions.

6.1.3 Exploration of Observation Data

The component supports the assessment of spatio-temporal resolution and preciseness of ob-
servation data. Impreciseness is expressed by age range and sea level range, which can be
manually constrained further based on additional geological information, such as the type of
fossil. Such information is provided by additional attributes. Our example observation data
provides about 30 attributes for the samples.

A synoptic view on all these facets is gained by a combination of views that emphasize
different aspects of the data (see Fig. 8):

Figure 8: Multiple linked views concept to analyze unevenly distributed and imprecise observation data.
Each view offers a different perspective on the data. A - Data view: A time value plot shows ob-
served value ranges along with imprecise age ranges of samples. B - Temporal View: A temporal
histogram communicates temporal distribution of samples. C - Geospatial View: A map (or globe)
shows the uneven coverage of data samples in geospatial context. D - Attribute View: Additional
attributes provided in a table convey important geological information. E - Hierarchy View: An
explicit visualization of the spatial hierarchy supports fast overview and selection of observations.
Color used throughout views indicates the categorization of observation samples by their type of
value range.

A Data View: The impreciseness of observation samples in age and sea level range is shown
in a time value plot – a standard representation in the assessment of sea level indicators.
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Our visualization makes use of established graphical primitives to convey the dual im-
preciseness. Accounting for the relevance of the type of value range (upper bounded,
lower bounded or double bounded), they are discerned by color for instantaneous visual
categorization.

B Temporal View: The temporal distribution of samples is given in a histogram, which
groups them into time intervals. Categories of observation samples are conveyed by color.

C Geospatial View: The spatial distribution of samples is provided by colored dots in a
globe. Additionally, bounding boxes group the observation samples into geologically
meaningful regions.

D Attribute View: The imprecise sea level range of an observation sample can be constraint
based on additional attributes, comprising scalar values, categorical data or textual de-
scriptions. A table containing one row for each sample and one row for each attribute
provides these details. The categorization of samples is visually encoded in the color of
the label column.

E Hierarchy View: Observations are organized in a spatial hierarchy. Its explicit represen-
tation in a tree hierarchy provides a fast and compact overview over available data and
facilitates the selection of data of interest.

These views are enriched by interactive methods to retrieve details on demand, including
tooltips, zooming and panning. Views can also be filtered to show only selected data items.
Further, brushing mechanisms realize one side of our twofold interaction concept, the selection
of a relevant sample subset. Beyond individual samples, sets of samples can be brushed at once,
which are grouped by, i.e., temporal range and height range (brushing a rectangular region in
view A), by temporal range and sample type (brushing a bar in view B), by region (brushing a
bounding box in view C or selecting a region in view E), or by any other attribute (brushing an
interval of rows in view D upon interactively triggered sorting by any attribute of interest). The
current selection is shared among all views and highlighted by color (orange in Fig 8).

Giving access to the numerous facets of the observation data, these views provide the basis
for a free definition of relevant sample subsets.

6.1.4 Exploration of Relation between Goodness of Fit and Data Values

The component addresses observed and modeled values as well as related goodness of fit values
with respect to the current sample subset and the current model parameterization.

The visual comparison of modeled and observed values is based on the time value plot intro-
duced in Section 6.1.3, as it provides tailored graphical primitives to handle impreciseness in
observation data. The time value plot is accompanied with additional visual representations for
modeled values and goodness of fit (Fig. 9). Modeled values are communicated by graphical
primitives (small squares). The visual connection between modeled and observed value of a
sample is maintained by their mapping onto the same position on the time axis. Deviations in
sea level height between modeled and observed value are shown on the vertical axis. The close
relation between goodness of fit and modeled value is conveyed by the color of the graphical
primitive.

Interactive features like tooltips, highlighting of related observed and model values and
zooming in by an adaptation of the visible time range and height range are provided to dis-
cern samples that visually overlap due to similar ages. Nevertheless, direct visual comparison
is generally limited to a relatively small set of samples. For larger sample sets, the time value
plot view rather conveys value ranges than values of individual samples.
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Figure 9: Visual exploration of relation between goodness of fit and underlying values in a time value plot.
Observed value ranges are visually encoded by vertical lines. The horizontal line at the bounds of
the value range indicates the age range. Modeled values are depicted by small squares, colored
according to the goodness of fit that resulted from the analytical comparison of modeled and
observed value.

6.2 Linking and Interaction

The visualization components are arranged and linked within one visual interface. The pre-
vious discussion of visualization components proposed similar visual encodings for different
components: spatial-temporal representations are used for both the exploration of observation
data and of the goodness of fit, time value plots are applied to evaluate the preciseness of obser-
vation data and to explore relations between data values and goodness of fit. To keep the visual
interface as compact as possible, we include only one spatial visualization and one time value
plot, equipped with interactive facilities to adapt the visualized facets of the data. The resulting
combination of views is illustrated in Fig. 10. Views can be arranged flexibly on demand.

Our twofold interaction concept propagates selected data among the visualization compo-
nents as follows (see also Fig. 10). In model parameter space, the user brushes a model pa-
rameterization (VC1). Spatio-temporal view (VC2) and comparison view (VC4) are instantly
adapted to provide details about the goodness of fit of this model parameterization beyond the
average value. This is one side of our twofold interaction concept. The second part is the selec-
tion of a sample subset. In data space, the user brushes a sample subset in spatio-temporal view
(VC2), in views on observation data (VC3), and in comparison view (VC4). Each adaption of
the sample subset leads to a recalculation of average goodness of fit values in model parameter
space (VC1). Thus, the ability to iteratively adapt selected model parameterization and selected
sample subset forms a strong interaction mechanism to explore the manifold dependencies of
the goodness of fit.

Visual highlighting of selections across visualization components provides guidance on se-
lected data. The selected model parameterization is highlighted in model parameter space
(VC1). The selected sample subset is highlighted in spatio-temporal view (VC2), all views
on observation data (VC3) and comparison view (VC4). For further visual linking, similar vi-
sual representations of the same data are shared among all views: Goodness of fit values (of
individual samples and sample subsets) as well as main categories of observation data are dis-
cerned by color. This leads to two distinct global color schemes: a sequential color scale for
the goodness of fit (in range [0,1]) and a categorical color scale for the three main categories
of observation data. A consistent visual encoding throughout all views is also used for sizes
of subsets (as used in the histogram or by the symbols), which are generally encoded as bar
lengths.
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Figure 10: Visual interface that integrates all views and links them with our twofold interaction concept.
Views are visually linked by two global color maps: A categorical color scale for categorization
of observation data by type of value range (top middle) and a sequential color scale for goodness
of fit (top right).

7 Results

Our approach has been readily applied as a method of validation in modeling glacial isostatic
adjustments (GIA). In this section, we demonstrate its use and present feedback from our col-
laborating Earth system modelers.

7.1 Use case

The goal of the visual analysis conducted in this use case is to understand how the goodness
of fit of the GIA model depends on the Earth characteristics, which are described by the three
model parameters. The analysis serves two purposes: First, it is to determine if the model
parameters’ effect on the goodness of fit agrees with expected behavior. The second purpose
is to narrow the range of suitable model parameterizations by the identification of the best
goodness of fit.

Definition of spatial region of interest. Not all regions on Earth are suited for this analysis.
Often, variations in sea level height are induced by the interplay of numerous processes. To
validate the GIA model, the analysis focuses on a region where the process dominates variations
in sea level: Hudson Bay in North America. During the last glaciation phase, the area was
covered by ice masses with an assumed thickness of three to four kilometers. As a consequence,
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(a) Exploration of observation data in central area of a former ice shield. For initial sample set, a low variability in goodness of fit
in model parameter space is observed.

(b) The initial sample set is reduced to relevant samples. Goodness of fit now shows noticeable variations in model parameter space:
With increasing values for UM and LM, the goodness of fit decreases, due to an underestimation of sea level height. This can be
seen from the detailed inspection of the model parameterization with worst fit (views on the right). L (thickness of lithosphere) has
no visible impact on the goodness of fit.

(c) Exploration of goodness of fit in model parameter space in boundary region of former ice shield, for an interactively defined
relevant sample set. A strong dependency of goodness of fit on UM is apparent, while LM plays little role. Slight impact of L
(thickness of lithosphere) can be seen. The best fitting parameterization in this region showed worst fitting for previously regarded
region (compare to (b)).

Figure 11: Use case for validation of GIA modeling: Exploration of goodness of fit in model parameter
space for central and boundary regions of a former ice shield.
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the region was strongly deformed. The basin was lowered by approximately one kilometer.
When ice masses melted in the time span from of 20,000 to 8,000 years before present, a
general uplift of the region was caused that continues until present.

Initial inspection of observation data. The analysis starts with an evaluation of the obser-
vation data in Hudson Bay (Fig. 11a, left side). From the globe, an uneven distribution of the
data along the east coast of Hudson Bay can be seen. In addition, the temporal histogram (bot-
tom left) reveals great differences in the presence of samples over time. Most samples are given
for the time span 1,000 years to present. However, only more imprecise half-bounded values
are available in this time span. “Valuable” samples with double bounded ranges (in purple) are
present in significant number in the time range 10,000 to 6,000 years before present.

Initial inspection of model ensemble. After the initial inspection of observation data, the
model ensemble is regarded that is validated against observation data. Our visualization shows
the distribution of model parameterizations in parameter space (Fig. 11a, right side). The two
parameters that characterize the upper and lower mantle viscosities of the Earth (UM and LM)
are sampled by four values each, the value for the lithosphere thickness L by two values. This
gives 4*4*2 = 32 model parameterizations plus one additional parameterization that represents
a standard model. The goodness of fit in model parameter space is expected to noticeably vary
for UM and LM, while L should show little influence. To check whether the model agrees
with the expectations, the average goodness of fit of each model parameterization is initially
derived from all samples along Hudson Bay. Almost all model parameterizations have a similar
goodness of fit, with values between 0.6 and 0.8.

Refinement of sample subset. Inspecting the goodness of fit in parameter space for indi-
vidual categories of observation data reveals that trends in parameter space are apparent for
double bounded and lower bounded ranges, but not for upper bounded samples – these sam-
ples thus generally agree with all considered model parameterizations. A detailed inspections
of individual parameterizations, selected across parameter space, confirms the assumption that
many upper limited ranges are too imprecise. They cannot be used to differentiate the good-
ness of fit in model parameter space. In the following, such irrelevant samples are discarded
by a combination of automatic identification of samples with high goodness of fit for all model
parameterizations and their manual filtering based on geological knowledge. For the most part,
the resulting sample set comprises lower bounded and double bounded values (Fig. 11b, left
side). Also, only few relevant samples in the range from 6,500 years to present remain.

Assessment of the goodness of fit in model parameter space and identification of best
goodness of fit. For the resulting sample subset, it is apparent that the goodness of fit de-
pends on ML and MU , but not on L (Fig. 11b, right side). This agrees with the above stated
expectations. Further, the goodness of fit generally increases for lower values of both MU

and ML. An inspection of individual model parameterizations shows why: A comparison of
modeled and observed values for the best fitting parameterization and for the worst fitting pa-
rameterization shows that the latter generally underestimates sea level heights. Consequently,
model parameterizations that best agree with observed sea level ranges in this region have low
values for ML and MU .

Exploration of spatio-temporal variations in goodness of fit. These findings are com-
pared to other regions, which are differently exposed to the studied geoprocess. As an example,
we look at a boundary region of the ice shield that covered Hudson Bay (Fig. 11c). Here, the
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influence of L should be more apparent, while MU should have less impact. After interactively
deriving a relevant sample subset in the region, the goodness of fit shows indeed a noticeable
influence of the lithosphere thickness L (Fig. 11c, right side). Also, as expected, ML influences
the goodness of fit, while the effect of MU is negligible. Regarding suitable values for model
parameters, a different parameterization is preferable in this region compared to the previously
inspected Hudson Bay. This indicates that constant global parameter values for the Earth char-
acterization do not sufficiently reproduce the impact of glacial isostatic adjustments.

7.2 Discussion and Feedback

Before our visual analysis concept was available for model validation, the variability of the
sample quality, especially due to their indicative meaning or type, hindered a rigorous evalu-
ation by an aggregated fit. As an alternative, a bottom-up strategy often used in validation of
GIA modeling is based on the analysis of modeled values for locations represented by sea-level
curves [19]. These are small sets of samples, which commonly comprise a few dozen sam-
ples grouped by their similar spatial location and comparable exposure to sea level variations.
Curve by curve, observation data is evaluated and presented in separated static plots for space
and time. The goodness of fit in parameter space is derived for individual curves to assess how
they respond. This tedious analysis is performed for only a few pre-selected curves, thereby
discarding many relevant samples.

The close linkage between observation data, model data, and goodness of fit as provided by
our visual analysis concept allows a better understanding and improvement of the evaluation
strategy. As one result, the construction of relevant sample sets is largely simplified by our
concept. With our synthesized view on the numerous aspects in the data, all potentially relevant
samples in an area of interest – which are not anymore constraint to individual sea-level curves
– can be interactively inspected and filtered based on the analyst’s assessment. From these
sample sets, the determination of meaningful goodness of fit values becomes possible.

Meaningful goodness of fit values are the basis to target various analysis objectives, which
could not be addressed adequately before. This includes the evaluation of the dependency
on model parameters, whose exact value is unknown. In this regard, our tool provides the
ability to narrow the range of suitable model parameters based on the best goodness of fit.
Suitable parameters can further be identified with respect to different geospatial regions that
show deviating response to glacial isostatic adjustments. In a broader sense, examining the
variabilities in parameter space, in geographical space, and in time helps to answer the question
if the model assumptions are sufficient to reproduce the studied process, or if a revision or
improvement of the modeling is necessary.

In addition to these validation related objectives, the visual data representation allows a better
communication of model results and sea level indicator data between research groups.

8 Conclusion

Our main contribution is a specific visual analysis concept for validation tasks in Earth system
modeling, where a combination of challenges hinders a rigorous analytical approach. These
challenges include unknown model parameter values, spatio-temporal variations, sparse and
imprecise observation data with uneven spatio-temporal distribution, and ambiguous relations
between computationally derived comparison results to underlying modeled and observed val-
ues. In close cooperation with Earth system modelers, we identified visualization requirements
to target these challenges. The requirements are fulfilled by tailored visualization components
that are linked by a twofold selection.
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The realization of the visual analysis concept for the application of modeling glacial isostatic
adjustments has already become a valuable member of the analysts’ toolbox. For this exemplary
application, our solution substantially broadens the analysis capabilities in model validation.
Before, validation was only performed for small, predefined sample sets, whose characteristics
were known. Now, for the first time, a comprehensive validation of the model is supported, as
all dependencies of the automatically derived goodness of fit can be interactively explored and
related to each other.

Our visualization is adoptable to other modeling applications where identical challenges oc-
cur and limited availability of observation data makes purely analytical approaches not feasible.
Other examples of sparsely sampled observation data are geophysical point measurements – like
tide gauges, geothermal heat flow measurements, or seismological measurements – , biological
markers, or agricultural data. Such terrestrial observations remain the dominant data source for
investigation of processes and validation of simulation models in numerous applications in dis-
ciplines such as geoscience, climatology, and regional policy. Beyond, we will investigate how
our visualization concepts can be adopted to models and observation data with other dimen-
sionality and scale. Regarding model parameterizations, higher-dimensional parameter spaces,
larger model ensembles, and stochastically sampled parameter space will be considered.

Feedback has shown that the tool is well suited to provide insight into the relation between
observed and modeled data values on the one hand and resulting goodness of fit values on the
other hand. With respect to this capability, we will further investigate how our visual anal-
ysis concept can be employed for the development and evaluation of suitable goodness of fit
measures.
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[17] A. Köhler, M. Ohrnberger, and F. Scherbaum. Unsupervised feature selection and gen-
eral pattern discovery using Self-Organizing Maps for gaining insights into the nature of
seismic wavefields. Computers and Geosciences, 35(9):1757–1767, 2009.

[18] F. Ladstädter, A. K. Steiner, B. C. Lackner, B. Pirscher, G. Kirchengast, J. Kehrer,
H. Hauser, P. Muigg, and H. Doleisch. Exploration of Climate Data Using Interactive
Visualization. Journal of Atmospheric and Oceanic Technology, 27(4):667–679, 2010.

[19] K. Lambeck, C. Smither, and P. Johnston. Sea-level change, glacial rebound and mantle
viscosity for northern Europe. Geophysical Journal International, 134:102–144, 1998.

[20] D. R. Legates and G. J. McCabe Jr. Evaluating the use of “goodness-of-fit” Measures in
hydrologic and hydroclimatic model validation. Water Resources Research, 35:233–241,
1999.

[21] D. R. Lehmann. Validity and Goodness of Fit in Data Analysis. Advances in Consumer
Research, 2:741–750, 1975.

[22] A. M. MacEachren. How Maps Work: Representation, Visualization, and Design. The
Guilford Press, 1995.

[23] K. Matkovic, D. Gracanin, M. Jelovic, A. Ammer, A. Lez, and H. Hauser. Interactive
Visual Analysis of Multiple Simulation Runs Using the Simulation Model View: Under-
standing and Tuning of an Electronic Unit Injector. IEEE Transactions on Visualization
and Computer Graphics, 16:1449–1457, 2010.

21



[24] K. Matkovic, D. Gracanin, M. Jelovic, and H. Hauser. Interactive Visual Steering - Rapid
Visual Prototyping of a Common Rail Injection System. IEEE Transactions on Visualiza-
tion and Computer Graphics, 14(6):1699 –1706, 2008.

[25] T. Nocke, M. Flechsig, and U. Bohm. Visual exploration and evaluation of climate-related
simulation data. In Proc. of the 2007 Winter Simulation Conference, pages 703–711, 2007.

[26] H. Piringer, W. Berger, and J. Krasser. HyperMoVal: Interactive Visual Validation of
Regression Models for Real-Time Simulation. Computer Graphics Forum, 29(3):pp. 983–
992, 2010.

[27] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux, V. Pascucci, and C. R.
Johhson. Ensemble-vis: A framework for the statistical visualization of ensemble data.
In IEEE Workshop on Knowledge Discovery from Climate Data: Prediction, Extremes.,
pages 233–240, 2009.

[28] J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. Moorhead. Noodles: A Tool
for Visualization of Numerical Weather Model Ensemble Uncertainty. IEEE Transactions
on Visualization and Computer Graphics, 16:1421–1430, 2010.

[29] H.-J. Schulz, A. M. Uhrmacher, and H. Schumann. Visual analytics for stochastic simu-
lation in cell biology. In Proceedings of the 11th International Conference on Knowledge
Management and Knowledge Technologies, i-KNOW ’11, pages 48:1–48:8, New York,
NY, USA, 2011. ACM.

[30] H. Steffen and P. Wu. Glacial isostatic adjustment in Fennoscandia – A review of data and
modeling. Journal of Geodynamics, 52:169–204, 2011.

[31] B. D. Tapley, S. Bettadpur, M. Watkins, and C. Reigber. The Gravity Recovery and Cli-
mate Experiment: Mission Overview and Eearly Results. Geophysical Research Letters,
31:L09607, 2004.

[32] B. Tomaszewski and A. MacEachren. Geo-historical context support for information for-
aging and sensemaking: Conceptual model, implementation, and assessment. In Visual
Analytics Science and Technology (VAST), 2010 IEEE Symposium on, pages 139 –146,
2010.

[33] C. Tominski, J. F. Donges, and T. Nocke. Information Visualization in Climate Research.
In Proceedings of the International Conference Information Visualisation (IV), pages 298–
305. IEEE Computer Society, 2011.
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on Ropes: A Comprehensive Data and Control Flow for Steering Ensemble Simulations.
IEEE Transactions on Visualization and Computer Graphics, 17(12):1872–1881, 2011.

[40] A. B. Watts. Isostasy and Flexure of the Lithosphere. Cambridge University Press, Cam-
bridge, 2001. V.

[41] X. Yuan, H. Xiao, H. Guo, P. Guo, W. Kendall, J. Huang, and Y. Zhang. Scalable Multi-
variate Analytics of Seismic and Satellite-based Observational Data. IEEE Transactions
on Visualization and Computer Graphics, 16:1413–1420, 2010.

23


