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Abstract

Methane oxidizing bacteria (MOB) that possess the soluble form of methane monooxygenase
(sMMO) are present in various environments, but unlike the prevalent particulate methane
monooxygenase (pMMO) the in situ activity of sMMO has not been documented. Here we
report on the environmental transcription of a gene (mmoX) for this enzyme which was
attributed mainly to MOB lacking a pMMO. Our study indicates that the sMMO is an active
enzyme in acidic peat ecosystems but its importance for the mitigation of methane releases
remains unknown.

Methane oxidizing (methanotrophic) prokaryotes hold an important function in
ecosystems around the globe because they mitigate the release of the greenhouse gas methane
(CH4). Most methanotrophs belong to the Proteobacteria and Verrucomicrobia (28).
Additionally, candidatus Methylomirabilis oxyfera (14) and some methanogenic archaea (3)
can oxidize CHj4 in the absence of oxygen using nitrate and sulfate as electron acceptors,
respectively. The key enzyme, methane monooxygenase (MMO), which oxidizes methane to
methanol at the expense of NAD(P)H, exists in two forms. A particulate, membrane bound
enzyme (pMMO) occurs in nearly all methane oxidizing bacteria (MOB) with the exception
of Methyloferula and Methylocella. These latter two genera feature only a soluble,
cytoplasmic enzyme (sMMO). While the pMMO has a narrow substrate range, oxidizing only
C1-C4 alkanes and alkenes, the sMMO can also utilize C5-C9 alkanes, alkenes, alicyclic and



35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

aromatic compounds, and the chlorinated compounds trichloroethylene (TCE) and chloroform
(6, 17, 33) exposing it to interest for bioremediation and biotechnology applications. The well
conserved genes pmoA and mmoX encode subunits of the pMMO and sMMO, respectively,
and are used as functional marker genes for both enzymes (27). To date, environmental
transcripts of mmoX have failed to be detected, even in acidic peatlands (5, 20) where pMMO
lacking methanotrophs thrive (8, 12, 13). This has led to the suggestion that the pMMO may
be involved in methane oxidation here (21), leaving the ecological relevance of the sMMO
unclear.

Various MOB also possess genes encoding a nitrogenase and can carry out N,-fixation
(1). The nifH gene is highly conserved, widely used as a functional marker gene for N,-
fixation, and suitable for phylogenetic analysis. Among the four phylogenetic clusters of nifH
sequences, MOB related nifH sequences fall into the ‘conventional’ Mo-containing nifH
cluster I (4). Despite the widespread ability among MOB species to fix nitrogen, little
attention has been devoted to N,-fixation by MOB in nitrogen-limited, remote ecosystems.

In this study we investigated the presence of functional transcripts for the genes pmoA,
mmoX, and nifH among MOB along the succession of permafrost in a palsa peatland. Palsa
peatlands occur at the marginal zone of permafrost distribution and have been widespread
throughout Scandinavia until a very few decades ago (31). These usually pristine ecosystems
offer heterogeneous substrate conditions for microbial activity and display frozen peat
mounds (palsas), thermokarst ponds, hollows and hummock like structures in close proximity.
At present, palsa formation and collapse are no longer in their natural balance since the
permafrost is thawing faster than new palsas can build up. In some areas of northern
Scandinavia, climate changes had already 10 years ago caused a decrease in the palsa area by
two thirds (26) and palsa regression still continues to be significant.

Our study site was located in northern Norway (UMT: 69.694 N; 29.383 E) at the
transition from the Arctic to the Sub-Arctic using the 10 degrees July isotherm as the boarder.
Annual average temperatures and precipitation from 1965 t02011 were -0.6 °C and 435 mm,
respectively (Norwegian Meteorological Institute, Stations Veines/Neiden and Kirkenes
Airport). In this period, a positive trend of both annual mean temperature and precipitation
was observed (Fig S1). Three different successional palsa stages were selected as sites for
sampling and analysis. They covered a currently degrading palsa (DP), a thermokarst pond
(TP) adjacent to a DP and a hollow, which represents an old successional stage of a
previously collapsed palsa (CP). At the palsas (elevated sites), the vegetation was dominated

by Ledum palustre, Empetrum sp., Pleurozium sp. and Rubus chamaemorus while the mire
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sites were dominated by Eriophorum vaginatum, Andromeda polifolia, Carex rotundata,
Carex cannescens, Carex lapponica, Sphagnum riparium (TP) and Sphagnum lindbergii
(CP). We sampled duplicates of pore water for the analysis of vertical concentration profiles
of methane, ammonium, and nitrate and triplicates of soil cores/blocks per site for the
determination of carbon and nitrogen content and for molecular analysis. In addition, plot
scale methane emissions were conducted in triplicates per site. The procedures for sampling
and analyzing pore water and for methane emission measurements are described in detail
elsewhere (24). Ammonium concentrations were determined by an analytical laboratory
(TosLab, Tromsg, Norway). For molecular analysis, the top layer of fresh plant material was
removed and the blocks were sectioned into an upper 10 cm layer and a lower ~15-25 cm
layer. Subsamples of those sections were pooled, distributed to sterile 50 ml tubes and stored
in a liquid nitrogen saturated dry shipper on site. The environmental data of the sampling sites
are presented in Table 1. Briefly, the pH varied between 4.2 and 4.6 and methane emissions
and soil methane concentrations were significant in the thermokarst pond, lower in the
collapsed palsa site and negligible from the palsa itself. Nitrogen was grossly limited in
particular in the top 10 cm layer of the wet sites dominated by Sphagnum. Here, the C/N
ratios varied between 65 and 97 (compared to 42 in the palsa), and pore water ammonium and
nitrate concentrations were below the detection limit of 0.56 uM and 2.4 uM, respectively.
Below a depth of 10 cm, the C/N ratios varied between 30 and 62. Unlike nitrate, ammonium
could be detected here but did not exceed 2.6 uM.

The samples preserved for RNA analysis were ground in liquid N to a fine powder.
Subsequent extraction of total nucleic acids was carried out in duplicates. Approximately 0.3
g of sample were mixed with 0.5 ml of extraction buffer (5% CTAB/120 mM K;PO,, pHS)
and subjected to bead beating for 45 s. After phenol-chloroform extraction, nucleic acids were
precipitated by incubation with linear acrylamide and 2 volumes of 30% PEG-8000 for 120
min at room temperature, collected subsequently by centrifugation for 60 min at 4 °C and
resuspended in DEPC treated water. To retrieve only the RNA for downstream cDNA
generation and analysis, the solutions were treated with RNase inhibitor while the DNA was
digested with the TURBO DNA-free kit (Ambion). Synthesis of cDNA was carried out using
100-500ng RNA as template, random hexamers (Invitrogen) at a final concentration of 500
nM, and SuperScript'™ III Reverse Transcriptase (Invitrogen). The obtained cDNA was first
used as template for universal bacterial 16S rRNA gene amplification using RNA as NTC to
check for successful cDNA synthesis and complete DNA digestion. Then, the different
functional genes were targeted. Amplification of pmoA, mmoX, nifH, pxmA and 16S rRNA
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gene fragments, cloning, sequencing and bioinformatics was performed as described in the
supplementary material.

We were able to show that pmoA gene products are present in all sites, while
environmental transcripts of mmoX and nifH were found only in the two wet sites (TP and
CP). This is, to our knowledge, the first study that reports the detection of environmental
transcripts of mmoX. Considering the presence of transcripts as an indication for activity, this
strongly points at an environmental relevance of the soluble methane monooxygenase in
acidic peat ecosystems. The majority of mmoX transcripts were assigned to the group of
Beijerinckiaceae, presumably to relatives of Methylocella (Fig. 2B) and thus to species that
lack a pMMO. Methylocystis was the dominant group based on total number of both pmoA
and mmoX sequences retrieved from DNA, but did not transcribe mmoX. In contrast, the
identification of Methylocystis related pmoA transcripts that belong to a cluster of pmoA
sequences originating solely from peat ecosystems (2) (Fig. 1B) indicates that Methylocystis
utilize the pMMO rather than the sSMMO. This was expected for MOB hosting both forms of
MMOs. In addition to mmoX transcripts from the Beijerinckiaceae, transcripts of this gene
detected in the collapsed palsa were assigned to an OTU distantly related to Methylomonas
and thus belong to the group of type I MOB. There are two possible scenarios that could
explain this exciting finding. The first is that in contrast to current beliefs, type I MOB that
lacks a pMMO does exist. The alternative explanation would be that methanotrophs
preferentially transcribe mmoX under certain conditions, although they host both the soluble
and the particulate enzyme. Thus, our findings pose interesting questions regarding the
competition between ‘sMMO dependent’ methanotrophs and MOB possessing a pMMO with
regard to enzyme kinetics, in-situ substrate preferences and the general importance of species
lacking a pMMO for mitigating methane emissions. Recalling its broad substrate range and
the diverse pool of potential compounds in northern peatlands (39), pMMO lacking MOB
could even utilize alternative substrates rather than methane. Similarly to Methylocystis,
Methylobacter and Methylobacter related sequences (type Ia) were detected in all sites and
one OTU was represented also by pmoA transcripts. Furthermore, active species were
identified among Methylomonas and Methylocapsa in the thermokarst pond and in the
collapsed palsa, respectively. In the palsa site (DP), cDNA synthesis and detection of mmoX
was not successful. Also, the amplification of pmoA and 16S rRNA was problematic with
only a nested approach yielding pmoA products. This is indicative for a low abundance of
MOB in the palsa site where methane concentrations and emissions were negligible and it is

consistent with qPCR data (unpublished data).
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Targeting PmoA, altogether 12 OTUs were assigned, with the highest species richness
in the latest successional stage of palsa degradation (CP) and the lowest in the palsa itself (Fig
1A). The largest number of OTUs based on MmoX was also detected in the late successional
stage of CP (Fig. 2A). A summary on the number of DNA and cDNA sequences of each site
used for phylogenetic and diversity analysis and the respective amount of OTUs is given in
Table S2. Targeting the 16S rRNA gene using MOB specific primers, only 8 OTUs were
revealed, indicating primer based failure of detecting some MOB. Nevertheless, all dominant
groups that were identified based on functional genes were also found by targeting the 16S
rRNA gene (Figs. S2 and S3) and rarefaction analysis in general revealed a good coverage of
species richness (Fig. 3). 6 OTUs were assigned based on the MmoX of which at least 3 most
likely lacks a pMMO (pmoA gene), increasing the total number of detected MOB to 15. In
order to define the MmoX OTU cutoff on the species level, we used a distance of 4% which
was based on the correlation between MmoX and 16S rRNA gene sequence distances of
selected species (Fig. 3B). Plotting of pairwise distances also proved that mmoX is an
appropriate phylogenetic marker within MOB. In comparison with mmoX homologues (Fig.
3C), mmoX seems to have evolved within MOB species and is presumably an essential
enzyme. Overall, the diversity of palsa MOB is moderate and ranges between MOB species
numbers of rice paddies (25) and Arctic soils (16, 23, 38). However, only a very few species
were observed to be active which most likely is a result of the low pH (15, 22, 30).

In general, the composition of the MOB community of this palsa peatland and the
dominance of Methylocystis related sequences is representative for what has been reported for
acidic Sphagnum dominated peat (5, 7-10, 12, 13, 19, 20, 32). Most cultivars from acidic
Sphagnum peat are known to be capable of N,-fixation which was reported for Methylocapsa
acidiphila (12), Methylocella tundrae (8) and Methylocella palustris (13). Also species of the
genotypes Methylomonas, Methylocystis (1) and Methylobacter (e.g.(37)) are known to carry
out N»-fixation. This set of MOB reflects the palsa community. Thus it supports the
assumption that nitrogen availability influences soil bacterial communities (29), in particular
since in our study MOB related nifH sequences made up > 10% of all sequences both on the
DNA and on the cDNA level (Fig. 4). The presence of MOB related nifH transcripts suggests
a direct compensation for nitrogen deficiency through N»-fixating MOB. So far,
environmental transcripts of nifH related to MOB were neither reported in Sphagnum peat nor
in any other pristine and oligotrophic habitat. Our findings point at an important ecosystem
function carried out by MOB both in the carbon and the nitrogen cycle of acidic peatlands.

The contribution of MOB to N,-fixation in acidic peatlands could be substantial considering
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the pronounced number of MOB related nifH transcripts detected and should attract more

attention.
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297  to cDNA. B) Neighbor joining tree of partial pmoA sequences based on deduced amino acid

298  residues retrieved from the three sampling sites, degrading palsa, thermokarst pond, and

299  collapsed palsa (in bold), compared with public database sequences. Numbers in brackets next to

300 the OTU assignment refer to the number of DNA and cDNA sequences retrieved, respectively.

301  Closed circles mark nodes that were verified by a maximum likelihood tree.
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306  Figure 2: A) Venn diagram comparing OTUs at the MmoX level. Numbers in brackets refer
307 to cDNA. B) Neighbor joining tree of partial mmoX sequences based on deduced amino acid

308 residues retrieved from the three sampling sites, degrading palsa, thermokarst pond, and

309 collapsed palsa (in bold), compared with public database sequences. Numbers in brackets next to
310 the OTU assignment refer to the number of DNA and cDNA sequences retrieved, respectively.
311  Closed circles mark nodes that were verified by a maximum likelihood tree.
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Figure 3: A) Rarefaction analysis of deduced PmoA, MmoX, and 16S rRNA gene sequences.
B) Correlation of MmoX versus 16S rRNA gene sequence distances of 32 methanotrophic species

and C) of 43 species including MmoX homologues.
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Figure 4: Neighbor joining tree of partial nifH sequences based on deduced amino acid residues retrieved from the studied palsa peatland

(in bold) compared with public database sequences. Numbers in brackets next to the cluster labeling refer to the numbers of DNA and cDNA
sequences retrieved, respectively, and indicate affiliation with existing and new clusters. The detailed view shows clusters 1.11 and 1.7 which

primarily consists of methanotroph retrieved nifH sequences. Closed circles mark nodes that were verified by a maximum likelihood tree.



Table 1: Environmental data of the three sampling sites, degrading palsa (DP),
thermokarst pond (TP), and collapsed palsa (CP), obtained in July 2010.

CH, emission (mg m2d™)

DP 4.2 (£0.11,n=5)"  0.06 (£0.08, n=5) (0-10cm)’ b.d.
b.d. (20-25cm)>
TP 4.2 (+0.3, n=4) 9.15 (+7.76, n=4) (0-10cm)’ 623 (+419, n=3)

403.51 (+£58.01, n=4) (20-35cm)’
CP 4.6 (0.6, n=4) 0.04 (£0.04, n=4) (0-10cm)’ 31 (+2, n=3)
96.15 (£106.83, n=4) (20-35cm)’

D measured in July 2011

? values refer to pore gas concentrations
3 values refer to pore water concentrations
b.d.=below detection



Supplementary material

Table S1: Targeted genes, primer details and PCR conditions of this study

Primer Primer sequence (5’-37) Annealing Reference

combination Temp

0

pMoA A189f GGNGACTGGGACTTCTGG 62-52 (4)
AB82 GAASGCNGAGAAGAASGC (TD)
“Mb661r  CCGGMGCAACGTCYTTACC 2
pXmA pxmA230f  GGCARTGGTGGCCNTTGGT 59 (10)

pxmA 732r-1 TGGCGAACCATTTACCGATGTAC
pxmA 732r-2 TSGCAAACCACTTGCCGATRTRC

mmoX mmoX-206f ATCGCBAARGAATAYGCSCG 60 (5)
mmoX-886r ACCCANGGCTCGACYTTGAA

nifH Pol-f TGCGAYCCSAARGCBGAC TC 57 (8)
Pol-r ATSGCCATCATYTCRCCGGA

16S rRNA MethT1dF CCTTCGGGMGCYGACGAGT 56.5 (11)

gene, type | MethT1bR GATTCYMTGSATGTCAAGG

MOB specific

16S rRNA typell-f GGGAMGATAATGACGGTACCWG 60 1)

gene, type Il typell-r GATCAARAGCTGGTAAGGTTC

MOB specific




5
6
7

10
11

12

Table S2:

Total and site specific numbers of DNA and cDNA sequences used for

phylogenetic tree construction and diversity analysis and number of assigned OTUs of the

different genes targeted.

Gene #sequences DNA #sequences cDNA #0OTUs DNA #OTUs cDNA
DP TP CP total| DP TP CP total DP TP CP total DP TP CP total
pmMoA 27 139 179 345 | nd. 19 26 45 4 7 9 12 - 2 4 5
(PmoA)
mmoX nd. 83 50 133 [ nd. 19 70 89 - 2 5 6 - 2 2 4
(MmoX)
nifH - 34 33 67 | nd. 29 34 63 - - - - - - - -
(NifH)
16S rRNA - 47 27 74 - - - - - 6 4 8 - - - -
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Figure S1: Climate data of Kirkenes in the period 1965-2011.
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Methylobacter psychrophilus (AF152597)
Methylobacter sp. (GQ390217), meromictic crater lake
Methylobacter tundripaludum (AJ414655) OTU1 (3)
thermokarst pond (0-10), collapsed palsa (15-25), DNA
Methylobacter sp. T20 (GQ390217), meromictic crater lake
uncultured bacterium (DQ066945), Lake Washington
Methylobacter marinus (AF304197)
Methylobacter sp. BB5.1 (AF016981), estuarine methanotroph
Methylobacter sp. 5FB (AJ868427), soil
Methylobacter luteus (M95657)
Clonothrix fusca (DQ984190)
collapsed palsa (15-25), DNA oruz (13)
thermokarst pond (0-10), DNA OTU3 (4) Methylococcaceae
uncultured bacterium (DQ066943), Lake Washington
uncultured bacterium (AB504955), iron rich snow
Crenothrix polyspora (DQ295895)
fi difficile (DQ119050)
Methylomonas sp. (DL126928)
uncultured bacterium (GQ340208), freshwater
uncultured bacterium (EU542455), sediment
uncultured Methyle les bacterium (FJ484519), sinkhole
thermokarst pond (0-10), DNA | OTU4 (32) Methylomonas
Methylomonas sp. M5 (HM564016), Sphagnum peat moss
Methylomonas sp. LC 1 (DQ119049), Lake Constance
Methylomonas sp. LW13 (AF150792), Lake Washington
I iyak (AB501287)
thy bacterium M200 (HM564015), Sphagnum peat moss
uncultured bacterium (DQ066944), Lake Washington
uncultured gamma proteobacterium (DQ367735)

Methylobacter

— ny

Methy

Methylomicrobium alcaliphilum (EF495157)
Methylomicrobium japanense (D89279)
Methylomicrobium buryatense (AF307138)

Methylosarcina lacus (AY007296)
Methylosp ii (U67929)
Nitrosomonadales

0.03

Figure S2:  Neighbor joining tree of type | MOB specific 16S rRNA gene sequences

retrieved from the three sampling sites degrading palsa, thermokarst pond, and collapsed palsa

(in bold) compared with public database sequences.

Methylosinus acidophilus (DQ076754)
Methylosinus sporium strain M242 (JN036515)
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Methylosinus trichosporium (Y18947)
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Methylocapsa sp. KYG (FN433469) Methylocapsa
Methylocella palustris (A)563927) | oTU4 (4)
collapsed palsa (15-25), DNA Methylocella

Figure S3:  Neighbor joining tree of type Il MOB specific 16S rRNA gene sequences

retrieved from the three sampling sites degrading palsa, thermokarst pond, and collapsed palsa

(in bold) compared with public database sequences.
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PCR on pmoA, mmoX, nifH, pxmA and 16S, cloning, and sequencing

PCR reactions (50 pl) contained 25 ml PremixF (Epicentre Biotechnologies), gene specific
primers (Sigma-Aldrich) at a final concentration of 500 nM, 2.5 U Taqg polymerase
(Invitrogen), and 5-50 ng of template. The final elongation step was extended to 30 min if
subsequent cloning was intended. Primer details, targeted genes and PCR programs are
summarized in Table S1. The PCR products were excised, purified (QIAquick gel extraction
kit, QIAGEN), poly-A ligated into a pPCR®4-TOPO® vector (Invitrogen) and transformed via
heat-shock into chemically competent TOP10 as described by the manufacturer. Overnight at
37 °C grown colonies were screened for correct inserts using the gene specific primers and

vector primers, respectively. Sanger sequencing was performed by MACROGEN.

Bioinformatics

The sequences were processed with the Sequencing Analysis 5.2 software package applying a
quality and trimming filter. The post-processed sequences were compared with the GenBank
database using the blastn, blastx, and vecscreen algorithms. Using the CLC Sequence Viewer
6.5.1 package, PmoA, MmoX, and NifH sequences were deduced and imported into databases
maintained with the phylogenetic software package ARB (6). Thereby, the nifH database was
obtained from the Zehr lab (http://www.es.ucsc.edu/~wwwzehr/research/database/).
Phylogenetic trees of the functional genes were constructed selecting the neighbor joining
method implemented in the ARB software using a cutoff and a 30% maximum frequency
filter for the amino acid sequences (PmoA: 140 aa, MmoX: 360 aa, NifH: 107 aa).
Phylogenetic trees of the 16S rRNA were constructed selecting the maximum likelihood
method also implemented in the ARB software using a preset termini and a bacterial
positional variability filter. The 16S rRNA gene sequences were prior to that aligned with the
SINA alignment service (http://www.arb-silva.de/aligner/). Rarefaction analysis and
assignment of operational taxonomic units (OTUs) was performed with DOTUR-1.53 fed
with distance matrices calculated with ARB using the above mentioned cutoff filters without
correction. OTUs were defined using a 7% cutoff for PmoA (3, 7), a 4% cutoff for MmoX
(this study, refer to Fig. 4) and a 3% cutoff for the 16S rRNA gene (9). Sequences of pmoA,

pxmA, 16S rRNA, nifH, and mE‘) have been submitted in the GenBank database under

accession numbers XXXX-XXXX.
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