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Abstract. The usual approach for flood damage assessment
consists of stage-damage functions which relate the relative
or absolute damage for a certain class of objects to the in-
undation depth. Other characteristics of the flooding situa-
tion and of the flooded object are rarely taken into account,
although flood damage is influenced by a variety of fac-
tors. We apply a group of data-mining techniques, known as
tree-structured models, to flood damage assessment. A very
comprehensive data set of more than 1000 records of direct
building damage of private households in Germany is used.
Each record contains details about a large variety of poten-
tial damage-influencing characteristics, such as hydrological
and hydraulic aspects of the flooding situation, early warning
and emergency measures undertaken, state of precaution of
the household, building characteristics and socio-economic
status of the household. Regression trees and bagging de-
cision trees are used to select the more important damage-
influencing variables and to derive multi-variate flood dam-
age models. It is shown that these models outperform exist-
ing models, and that tree-structured models are a promising
alternative to traditional damage models.

1 Introduction

Flood risk management has to be built upon a sound assess-
ment of flood hazard and flood vulnerability which includes
the estimation of damage and effectiveness of different mit-
igation measures. Compared to the wealth of methods and
available information on flood hazard, reliable flood damage
data are scarce (Handmer et al., 2005; Gall et al., 2009), un-
derstanding of the damaging processes is weak (Bubeck and

Kreibich, 2011) and damage estimation methods are crude
(Merz et al., 2010).

In this paper, we analyze direct damage to residential
buildings. Direct flood damage depends on many factors, in
particular water depth, but also early warning, flood expe-
rience and precautionary measures. These factors may not
be independent from each other. For example, the damage-
reducing effect of early warning depends on the prepared-
ness of the affected people which in turn may depend on
their flood experience. Further, flood experience is expected
to influence also the state of precautionary measures of the
flooded household. Other factors are, for instance, flow ve-
locity, duration of inundation, contamination of flood water,
and the quality of external response in a flood situation. The
single and joint effects of these parameters on the damage
are largely unknown and widely neglected in damage assess-
ment. Exceptions are, for instance, Wind et al. (1999) who in-
vestigate the influence of flood warning time and flood expe-
rience on damage at the municipality level. Penning-Rowsell
and Green (2000) present an equation to estimate flood dam-
age avoided because of warning with the following param-
eters: “proportion of the population at risk which is warned
with sufficient lead time to take action”, “proportion of resi-
dents available to respond to a warning”, “proportion of resi-
dents able to respond to a warning” and “proportion of house-
holds who respond effectively”; Parker et al. (2007) use this
approach and evaluate with a broader perspective the factors
influencing the benefits of flood warning including intangible
benefits to public health, safety and security.

Traditional flood damage models are stage-damage func-
tions that are solely based on the type or use of an element at
risk and the water depth (Merz et al., 2010). Recently some
multi-parameter models have been developed: a conceptual
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54 B. Merz et al.: Multi-variate flood damage assessment

model only suggesting which parameters should be consid-
ered in flood damage estimation without quantifying their ef-
fect on the damage has been developed in the UK (Nicholas
et al., 2001). Zhai et al. (2005) developed a multi-variate
regression model with inundation depth, house ownership,
house structure, length of residence and household income to
estimate losses in private households in Japan. To our knowl-
edge, this model has not been validated or compared with
other models, so its uncertainty is unknown.

After recent floods in Germany, we have made signifi-
cant efforts to investigate the damaging processes, to iden-
tify the important damage-determining parameters, and to
develop damage models. An extensive set of detailed, object-
specific flood damage data was collected by computer-aided
telephone interviews with 2158 households and 642 compa-
nies after the 2002 and 2005/2006 floods in the Elbe and
Danube catchments (Thieken et al., 2007; Kreibich et al.,
2007, 2011). Thieken et al. (2005) investigated single and
joint effects of impact factors (i.e. flood characteristics like
inundation depth) and resistance factors (i.e. characteristics
of exposed elements to resist a flood, like type or structure of
a building) on flood damage to private households. The in-
vestigation revealed that flood impact variables, particularly
water depth, flood duration and contamination are the most
influential factors for building and for content damage, fol-
lowed by items quantifying the size and the value of the af-
fected building/flat. Kreibich et al. (2005, 2007) quantified
the positive damage-reducing effects of different precaution-
ary measures for residential buildings and companies. The
general consideration of flow velocity in flood damage mod-
eling, particularly for estimating monetary loss, was not sup-
ported (Kreibich et al., 2009). Based on these results, multi-
parameter flood loss estimation models for private house-
holds and companies (FLEMOps, FLEMOcs) have been de-
veloped, applied and validated at the micro- and meso-scale
(Büchele et al., 2006; Thieken et al., 2008; Kreibich and
Thieken, 2008; Kreibich et al., 2010; Elmer et al., 2010). For
instance, FLEMOps calculates the damage ratio for private
households using five different classes of inundation depth,
three individual building types, two classes of building qual-
ity, there classes of contamination and three classes of pri-
vate precaution (Thieken et al., 2008). Elmer et al. (2010)
identified the return period of the inundation at the affected
residential building as an important damage determinant and
included the return period (divided into three classes) as ad-
ditional parameter (FLEMOps+r).

These analyses suggest that multi-variate models that take
several damage-influencing parameters into account can im-
prove flood damage modeling. There is a need for multi-
variate statistical analyses of comprehensive flood damage
data to quantify the interaction and influence of various fac-
tors and to further develop reliable damage models. Against
this background, we test in this paper, if and to which ex-
tent tree-based methods can contribute to a better understand-
ing of damage processes and better flood damage estima-

tion. Well-known variants of tree-based models are classifi-
cation and regression trees (CART) for categorical predictor
variables (classification tree) or predicting continuous depen-
dent variables (regression tree), respectively (Breiman et al.,
1984).

A traditional approach is likely to consider a generalized
linear modeling framework in which interactions across vari-
ables are considered at best through product terms. However,
such interactions may only be important if certain thresholds
(typically unknown a priori) are crossed. The regression tree
models applied in this paper attempt to identify statistically
meaningful thresholds, and their ordering that best explains
the variance in flood damage. Such an approach can lead to
a proliferation of parameters and choice across competing
model structures. The selection of a single “best” model in
this context is difficult to justify. Consequently, “bagging”
approaches (bootstrap aggregation, see Breiman, 1996) have
been developed to consider an ensemble of such models, and
their pooling to reduce uncertainty in prediction. Both ideas
are explored here.

Data mining or machine learning aims at discovering pat-
terns, classifying data or understanding relationships in usu-
ally large data sets. We apply decision-tree learning whereas
tree-based structures are derived from the data. The central
idea of tree-based models is to recursively split the data space
into sub-spaces according to the behavior of a response vari-
able. The succession of binary splits leads to a set of tree
branches subdividing the data space into disjoint partitions
of the response variable (leaves). The splits are made in such
a way that the homogeneity or purity of the response variable
in the leaves is maximized.

An advantage for many problems is the non-parametric
and non-linear nature of tree-based models. There are no
assumptions concerning the relationship between predictors
and response variable, and non-linear and non-monotonic de-
pendencies can be represented by a tree. A further advantage
is their ability to assess the local behavior of the response
variable. Parametric regression needs to identify relation-
ships which hold globally, across the complete data space.
When the data consist of many features which interact in
complex ways, a single global model may not be found or
it may be very complex. Tree-based models take an alterna-
tive route, by dividing the data space successively in subdivi-
sions until these subdivisions are so tame that a simple model
can be fit to them. Tree-based methods are particularly well
suited when there is little knowledge about how the predic-
tor variables and the response variable relate to each other.
However, they need large data sets in order to detect com-
plex patterns and relationships.

Tree-based data analysis and modeling is finding in-
creased attention in hydrology and water resources research.
It has been used in rainfall–runoff analysis, namely to detect
thresholds in hydro-meteorological variables corresponding
to switching conditions between catchment response types
(Ali et al., 2010), and to identify topographic controls on
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overland flow generation (Loos and Elsenbeer, 2011). In
these cases, tree-based models have been applied to multi-
variate data sets where interactions between parameters and
threshold processes played a role. Similarly, Carlisle et
al. (2010) applied tree-based models to predict the value
for 13 metrics of the magnitude, frequency, duration, timing
and rate of change of streamflow given watershed charac-
teristics, and Mototch et al. (2005) investigated the relation-
ship between the spatial distribution of snow water equiva-
lent and landscape properties in an alpine catchment. Grun-
wald et al. (2009) modeled successfully the relationship be-
tween phosphor load and environmental predictor variables
for ten farms. Solomatine and Dulal (2003) and Iorgulescu
and Beven (2004) used tree-based models to simulate the
rainfall–runoff behavior. Pappenberger et al. (2006) incor-
porated multiple regression trees in a method for sensitiv-
ity analysis. Recently, tree-based models have been used
for forecasting seasonal streamflow and for evaluating large-
scale climate indices for their potential as streamflow predic-
tor (Wei et al., 2011).

We hypothesize that tree-based models are an effective
alternative to traditional flood damage analysis and model-
ing approaches where nonlinearity and parameter interac-
tions play a role. Hence, the purpose of the paper is twofold:
(1) deriving important damage-influencing variables and re-
lationships between parameters by applying tree-based data
mining methods to a comprehensive flood damage data set,
and (2) establishing tree-based damage prediction models
and comparing their performance to established models. The
analysis is limited to direct building damage of private house-
holds.

2 Data

We use the flood damage data set that has been compiled after
the flood of 2002 and the floods of 2005 and 2006 in the Elbe
and Danube catchments in Germany (Thieken et al., 2007;
Kreibich et al., 2011). This data set is based on telephone in-
terviews with flood affected private households. Lists were
compiled of all streets affected with the help of informa-
tion from local authorities, flood reports or press releases
as well as with the help of flood masks derived from radar
satellite data (DLR, Centre for Satellite Based Crisis infor-
mation,www.zki.dlr.de). This provided the basis for gener-
ating random samples of households. The SOKO institute for
social research and communication (www.soko-institut.de)
conducted the telephone interviews in April and May 2003.
The Explorare Market Research Institute (www.explorare.
de) conducted the interviews in November and December
2006. The person in the household with the best knowledge
of the flood damage was interviewed. The survey after the
2002 flood resulted in 1697 completed interviews, the survey
in 2006 resulted in 461 interviews. The questionnaires ad-
dressed the following topics: hydrological and hydraulic as-

pects of the flooding situation, early warning and emergency
measures undertaken, state of precaution of the household,
building characteristics, socio-economic status of the house-
hold and flood damage to buildings and contents. The ques-
tionnaire contained detailed questions addressing not only to-
tal damage but also the area affected per story, the damage ra-
tio, the type and amount of the most expensive item damaged,
and the type and costs of all building repairs and all expensive
domestic appliances affected. This generated the most accu-
rate information possible about the extent of damage, avoid-
ing a strategic response bias. Cross checks of answers also
during the interview were undertaken to improve data qual-
ity, since it allowed clarification of contradictory answers.
Since many people claimed their damages either from gov-
ernment funds or from their insurers, the damage estimates
are relatively reliable. This was also confirmed by a compar-
ison of the damage data collected after the 2002 flood with
official damage data from the Saxon Bank of Reconstruction
which was responsible for administering governmental dis-
aster assistance after the 2002 flood in the federal state of
Saxony (Thieken et al., 2005).

Data from 2158 interviews with flood-affected private
households are available for this analysis. The raw data were
supplemented by estimates of building values, loss ratioLR,
i.e. the relation between the building damage and its value,
and indicators for flow velocity, contamination, flood warn-
ing, emergency measures, precautionary measures, flood ex-
perience and socio-economic variables. For instance, the in-
terviewees were asked if they had undertaken different pre-
cautionary measures, i.e. two informational measures like
gathering information about precautionary measures and
joining neighborhood flood networks, flood insurance and six
different building precautionary measures, e.g. flood adapted
building use, sealing of the building, purchase of water bar-
riers (open answers and multiple answers were possible). On
basis of this information, the precautionary measures indica-
tor was developed, taking into account the type of precau-
tion and how many precautionary measures have been ap-
plied (for more details see Thieken et al. (2005)). The loss
ratio could be provided for 1103 cases. Since the loss ratio
is the variable of interest, the data analysis is limited to these
1103 households.

As input for the data mining analysis, 28 candidate pre-
dictors (Table 1) for the predictand “loss ratio of residential
building (continuous between 0= no damage and 1= total
damage)” were used. The predictors were selected accord-
ing to previous analyses: four predictors related to the hy-
drological and hydraulic aspects of the flooding situation at
the affected building (Table 4 in Thieken et al., 2005), one
predictor is the return period at the affected building (Elmer
et al., 2010), ten predictors related to damage reduction par-
ticularly to early warning and emergency measures under-
taken as well as to state of precaution of the household (Ta-
ble 5 in Thieken et al., 2005) and 13 predictors related to the
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Fig. 1. Pearson correlation of the 29 variables (28 candidate predictors, see Table 1, and loss ratio). Significant correlation (1 % significance
level) is marked by a dot.

residential building characteristics and socio-economic sta-
tus of the household (Table 6 in Thieken et al., 2005).

Figure 1 shows the Pearson correlation coefficient of the
28 candidate predictors and the predictand loss ratioLR.
The upper row contains the correlation between the candi-
date predictors and loss ratio. Although there are many vari-
ables that are significantly correlated to loss ratio, correlation
coefficients are usually low. Water depth has the highest ab-
solute correlation (0.50) to loss ratio, followed by contam-
ination (0.37), duration (0.26), warning quality (0.24), pre-
cautionary measures indicator (−0.23), warning time (0.23),
and flow velocity (0.21). In addition, the Spearman rank cor-
relation coefficient has been calculated (not shown). In many
cases both correlation coefficients are very similar, indicat-
ing that monotonic non-linearity is weak. There are a num-
ber of cases where both correlation coefficients differ clearly.
Hence, there is evidence for either strong non-linearity or for
serious outliers in the data. Figure 2 shows the scatter plot
between water depth and loss ratio. It is obvious that water
depth explains only a small part of the total variability.

3 Methods

We apply two variants of tree-based models: regression trees
and bagging decision trees. They are used to determine
the important damage-influencing parameters from a large
database, to understand interactions between predictor vari-
ables, and to estimate the direct building damage. We screen
the list of 28 candidate predictors and determine their rele-
vance for the predictandLR (relative loss). To test the ability
of these tree-based models for predicting damage, we com-
pare their prediction power with established damage mod-
els. Hence, we establish a model which predicts the rela-
tive loss as function of the relevant damage-influencing vari-
ablesLR=fT (x1, x2, ..., xk) with the relevant predictors
x1, x2, ...,xk, and the tree-based structurefT(...). The tree-
based analyses are performed with the Matlab Statistics Tool-
box whose algorithms are based on Breiman et al. (1984).

3.1 Regression trees (RT)

Regression trees are tree-building algorithms for predicting
continuous dependent variables. They recursively sub-divide
the predictor data space into smaller regions in order to ap-
proximate a nonlinear regression structure. At each split the
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Table 1.Description of the 28 candidate predictors (C: continuous,O: ordinal,N : nominal).

# Predictors Type and range Amount of
data∗

hydrologic, hydraulic aspects

1 wst Water depth C: 248 cm below ground to 670 cm above ground 2108
2 d Inundation duration C: 1 to 1440 h 2094
3 v Flow velocity indicator O: 0 = still to 3 = high velocity 2120
4 con Contamination indicator O: 0 = no contamination to 6= heavy contamination 2122
5 rp Return period C: 1 to 848 yr 2158

6 wt Early warning lead time C: 0 to 336 h 1364
7 wq Quality of warning O: 1= receiver of warning knew exactly what to do to 6= receiver 955

of warning had no idea what to do
early warning and 8 ws Indicator of flood warning source O: 0= no warning to 4= official warning through authorities 1675
emergency measures 9 wi Indicator of flood warning information O: 0= no helpful information to 11= many helpful information 1631

10 wte Lead time period elapsed without using it C: 0 to 335 h 842
for emergency measures

11 em Emergency measures indicator O: 1= no measures undertaken to 17= many measures undertaken 2158

precaution, experience

12 pre Precautionary measures indicator O: 0= no measures undertaken to 38= many, efficient measures undertaken 2158
13 epre Perception of efficiency of private precaution O: 1= very efficient to 6= not efficient at all 2043
14 fe Flood experience indicator O: 0= no experience to 9= recent flood experience 619
15 kh Knowledge of flood hazard N (yes/no) 1472

building characteristics

16 bt Building type N (1= multifamily house, 2= semi-detached house, 3= one-family house) 1816
17 nfb Number of flats in building C: 1 to 45 flats 1726
18 fsb Floor space of building C: 45 to 18 000 m2 1496
19 bq Building quality O: 1= very good to 6= very bad 1758
20 bv Building value C: 92 244 to 3 718 677C 1419

socio-economic status

21 age Age of the interviewed person C: 16 to 95 yr 2097
22 hs Household size, i.e. number of persons C: 1 to 20 people 2125
23 chi Number of children (< 14 yr) in household C: 0 to 6 1877
24 eld Number of elderly persons (> 65 yr) C: 0 to 4 1983

in household
25 own Ownership structure N (1= tenant; 2= owner of flat; 3= owner of building) 2158
26 inc Monthly net income in classes O: 11= below 500C to 16= 3000C and more 1666
27 socp Socioeconomic status according to Plapp (2003)O: 3= very low socioeconomic status to 13= very high socioeconomic status 1469
28 socs Socioeconomic status according to O: 9= very low socioeconomic status to 60= very high socioeconomic status 1308

Schnell et al. (1999)

∗Since not all people were willing to answer all questions, not all information is available for each interview.

Fig. 2.Scatter plot showing the relation between loss ratio and water
depth. Negative water depths indicate basement flooding.

data set is partitioned into two sub-spaces in such a way that
the improvement in predictive accuracy is maximized. The
algorithm searches over all possible split values of all pre-
dictor variables to identify the split which minimizes an error
criterion. The variance of the response variableLR (relative

loss) is used as the criterion, however, other splitting crite-
ria are possible (Breiman et al., 1984; Torgo, 1999). The re-
peated binary partitioning leads to a tree structure, from the
root node to the terminal nodes (or leaves). Each terminal
node of the tree represents a cell of the partition. The interior
nodes (or splits) are labeled with questions, and the binary
branches are labeled with the answers (Fig. 3). To obtain a
prediction using the regression tree, a sequence of questions
is asked which starts at the root node and ends at a terminal
node. The prediction for an inputx1, x2, ...,xk is the average
of the response variable of all the samples of the training data
set that belong to this terminal node. More complicated tree-
based models can be developed, e.g. fitting a local regression
model to the data of each terminal node.

One of the issues that need careful attention is overfitting.
The recursive splitting of the data into subsets leads eventu-
ally to large trees with many leaves whereas the sample size
of the leaves is small. Usually, such trees agree well with the
training data, however, their prediction ability for indepen-
dent data is poor. On the one hand, trees should be complex
enough to exploit information that increases predictive power
and to account for important relations between predictors and
response variable. On the other hand, they should be as sim-
ple as possible and should ignore random noise that does not
increase predictive power. One method to avoid overfitting
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is tree pruning: a large tree is cut back to obtain a simpler
tree. A regression tree is pruned by firstly pruning branches
which give less improvement in error cost. Pruning generates
a sequence of sub-trees of different size. The optimal tree is
selected from this sequence by assessing the predictive er-
ror of each tree, for instance, by selecting the simplest tree
with a predictive error comparable to the most accurate one.
This process is conceptually similar to the process followed
in stepwise regression where forward and backward variable
selection or deletion may be pursued. The predictive error of
a tree (or cost of a tree) is defined as the sum over all leaves of
the estimated probability of a leaf times its average squared
error over the observations in that leaf:

CT =

n∑
j=1

[
pj

1

n

nk∑
k

(
ROBS

L, k − RSIM
L, k

)2
]

(1)

with: n = number of leaves,pj = probability of leaf j ,
nk = number of observations of leafj , ROBS

L, k = observed loss

ratio of observationk, RSIM
L, k simulated loss ratio of observa-

tion k.
The predictive error as a function of the tree size is esti-

mated by 10-fold cross-validation. The data set is randomly
split into ten sub-samples. A tree is computed ten times, each
time leaving out one of the sub-samples, and using that sub-
sample as a test sample for cross-validation. For each tree
size the cost is calculated by averaging the results from the
ten sub-samples. The cost function shows the predictive error
of a tree as function of its number of terminal nodes.

3.2 Bagging decision trees (BT)

Bagging decision trees are an ensemble of many regression
trees. As indicated earlier, they attempt to reduce the un-
certainty associated with the selection of a single model, by
pooling an ensemble of plausible or candidate models. They
are derived by generating many bootstrap replicas of the data
set and by growing a regression tree on each replica. The
response of a bagging decision tree is the average over the
responses of all individual regression trees in the ensemble.
Bootstrapping makes it robust against changes in data and
avoids overfitting.

A bootstrap replica is generated by randomly drawing with
replacement n observations, wheren is the data set size. On
average, 37 % of observations are not considered for building
an individual tree. These observations are called out-of-bag
observations. The average out-of-bag error is a quality mea-
sure of a BT and is defined as the average over predictions
from all trees in the ensemble for which this observation is
out of bag. Bagging decision trees provide a metric (called
feature importance) for determining the relevance of each
potential predictor by randomly permuting out-of-bag data
across one variable at a time and estimating the increase in
the out-of-bag error: the higher the increase, the more impor-
tant the feature.

3.3 Comparing tree-based models with established
damage models

Once a regression or bagging decision tree is grown, it can be
used to estimate the loss ratio. We compare the performance
of the tree-based models with two established flood damage
models. To have a fair comparison, all models are derived
from the same data set. We restrict the comparison of model
performance to those cases where the necessary parameters
for all established models are given.

Firstly, the traditional approach, i.e. stage-damage func-
tion, is compared. We fit a root function (LR = a1 + a2

√
wst;

coefficientsa1, a2; water depth “wst”) to the damage data by
the method of least squares. We differentiate between cases
where only the basement is flooded, and those where floors
above the basement are affected. Each record in the data set
is assigned to one of these two cases, and a root function is
fit to these two sub-samples, i.e. for basement cases and for
higher floor cases, respectively. This approach – the stage-
damage functions – considers only water depth as predictor;
other variables are not considered when estimating the flood
loss ratio.

Further, the performance of the tree-based models is com-
pared to FLEMOps+r (Elmer et al., 2010). This model has
been developed using the same data set and it has been shown
to provide superior results compared to other approaches cur-
rently used in Germany. FLEMOps+r calculates the building
loss ratio for private households using five classes of wa-
ter depth, three intervals of return period, three individual
building types, two classes of building quality, three classes
of contamination and three classes of private precaution. In
essence, the data set is stratified into 27 sub-samples and the
average loss ratio is used as damage estimator (Elmer et al.,
2010). FLEMOps+r is similar to regression tree models in
two respects: the complete data space is partitioned in sub-
spaces, and the average value of each subspace is used as pre-
diction. However, there are essential differences in the parti-
tioning process. The subdivision of FLEMOps+r has been
developed based on expert knowledge and a number of dif-
ferent analyses of the data set (Thieken et al., 2005; Elmer et
al., 2010). The partition is regular, e.g. each water depth class
is combined with each building type class, and so forth. Re-
gression tree algorithms partition according to an optimiza-
tion criteria which results in irregular partitions.

The comparison of the performance of the different dam-
age models is based on the following resampling procedure.
100 households are randomly drawn from the data set, and
each model is applied to this random sample. The agree-
ment between the predictions and the true values is quanti-
fied by three error measures: root mean square error (RMSE),
mean bias, and correlation coefficient. This step is repeated
100 times, yielding 100 estimates for the prediction errors.
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Fig. 3. Regression tree RT1 with 25 leaves for estimating building loss ratio (wst: water depth [cm]; fsb: floor space of building [m2];
rp: return period [yr]; bv: building value [C]; con: contamination indicator [−]; pre: precautionary measures indicator [−]; inc: monthly net
income [−]; epre: perception of efficiency of private precaution [−]; socp: socio-economic status [−]; bt: building type [−]). Terminal node
values give the average loss ratio of all data values of the terminal node.

4 Results

4.1 Important damage-influencing parameters and
their interactions

4.1.1 Regression trees

A first regression tree is grown with the stopping criteria that
the minimum number of cases in terminal nodes is 30. This
results in a tree with 25 terminal nodes (Fig. 3). The inter-
pretation of a regression tree is straightforward. By looking
at the tree, the important variables are disclosed. Out of the
28 candidate predictors given in Table 1, the regression tree
considers twelve variables. Table 2 shows the twelve predic-
tors and their relation to the predictand building loss ratio. In
addition, Table 2 shows how many times a variable occurs
as decision node. The number of occurrence and the position
of a given decision node in the tree give an indication of the
importance of the respective predictor. The more often a vari-
able occurs, and the closer a decision node is to the root node,
the more important is the variable and the node, respectively.

The root node and four other nodes of RT1 are water depth
nodes; hence, not surprisingly, water depth is the most im-
portant predictor. This result is in accordance with previous
flood damage analyses and most flood damage estimation
models, i.e. stage-damage functions are based on this finding
(Penning-Rowsell and Green, 2000; Merz et al., 2010). Other
important variables (three decision nodes) are floor space of

building, duration of inundation and precaution. In 18 out
of 24 nodes, the relation between the predictor and relative
damage is as expected (see Table 2: type of correlation). Ta-
ble 2 shows that water depth is positively correlated with rel-
ative loss, i.e. branches of the regression tree with larger wa-
ter depth have larger loss ratio. As expected, inundation dura-
tion, return period, contamination indicator and flow velocity
indicator are also positively correlated with loss ratio, and to
an extent with each other. Contamination and flow velocity
indicator nodes are only present in the left part of the tree
after the root node split, indicating that their influence on the
loss ratio is particularly important in areas with smaller water
depth (wst< 97.5 cm). This is confirming a previous study
which showed that a significant influence of flow velocity
on the structural damage of residential buildings is suspected
above a critical impact level of 2 m of energy head or water
depth (Kreibich et al., 2009). The precautionary measures in-
dicator is negatively correlated with the loss ratio, i.e. the bet-
ter the private precaution, the lower the loss ratio. This is con-
firming results of quantitative damage reduction of individual
measures by Kreibich et al. (2005). They showed for instance
that flood adapted use and interior fitting reduced the damage
ratio for buildings by 46 % and 53 %, respectively. Since pre-
caution nodes are only present in the left part of the tree after
the root node split, precaution is important (three splits) but
only for smaller water depths (wst< 97.5 cm). This is inter-
preted as hint that private precaution is most effective in areas
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Fig. 4.Cost function of regression tree RT1.

with low flood water levels, which confirms expert judgment
presented in ICPR (2002). As expected, perception of effi-
ciency of private precaution is positively correlated with the
loss ratio, i.e. households who perceived private precaution
as efficient had lower loss ratios.

Thieken et al. (2005) showed that multi-family houses re-
ceived a very high absolute building damage, but their loss
ratio is smaller in comparison to single-family houses. This is
confirmed here, since the branch containing multi-family and
semi-detached houses has lower building loss ratios in com-
parison with the branch containing one-family houses. For
four predictors (six decision nodes for floor space of build-
ing, building value, monthly net income, socio-economic sta-
tus) their relation to loss ratio is not that obvious. All these
cases show an inverse relation, i.e. higher values of the pre-
dictor correspond with lower loss ratios. Floor space of build-
ing and building value is strongly correlated (Fig. 1). The fact
that the larger the building (and the higher its value) the lower
its loss ratio is in accordance with the finding that single-
family houses have a higher loss ratio in comparison with
multi-family houses. It is also in accordance with findings of
Thieken et al. (2005) who showed that the building loss ra-
tio decreases if the total floor space of the building exceeds
120 m2. The first split based on building floor space in RT1
is at 139 m2, which is close to the number given by Thieken
et al. (2005). Since floor space nodes are only present in the
right part of the tree after the root node split, floor space is
only important for larger water depths (wst> 97.5 cm), i.e.
in cases where not only the cellar is affected.

Figure 4 shows the cost function of regression tree RT1.
The cost is approximately constant for the sequence of sub-
trees from eight to 25 terminal nodes. The lowest cost is cal-
culated for the tree RT2 which has been obtained by pruning
RT1. RT2 consists of eight leaves and is much simpler than

Fig. 5.Regression tree RT2 with eight leaves for estimating building
loss ratio (wst: water depth [cm]; fsb: floor space of building [m2];
rp: return period [yr]; inc: monthly net income [−]). Terminal node
values give the average loss ratio of all data values of the terminal
node.

the full-size tree RT1. Figure 5 shows the simplified tree RT2.
It considers four variables: water depth (wst), floor space of
building (fsb), return period (rp) and monthly net income of
the household (inc). These variables correlate to building loss
ratio as in RT1.

4.1.2 Bagging decision trees

Similarly to regression trees, a first bagging decision tree is
grown with the stopping criteria that the minimum number
of cases in terminal nodes is 30. The number of trees in the
ensemble is set such that the model error becomes stable.
Figure 6 shows the out-of-bag feature importance. The rank-
ing of the candidate predictors is water depth (wst), floor
space of building (fsb), return period (rp), building value
(bv), contamination (con), inundation duration (d), precau-
tionary measures indicator (pre), and flow velocity (v). Other
variables show very small feature importance. This list of
more important variables for predicting the loss ratio is sim-
ilar to the importance that has been obtained by growing re-
gression trees, in particular if it is compared to RT1. All of
the variables listed above also appear in RT1 with at least two
splits. There is one exception, namely, flow velocity (v) ap-
pears only once in RT1. In a few cases there are (very small)
negative values of feature importance. This means that per-
muting this variable has led to a slightly better prediction.
This is a random effect and is not significant.

In a further step, a bagging decision tree BT2 is grown
by limiting the candidate predictors to the more important
variables, i.e. the eight variables listed above.

4.2 Performance of flood damage models

Figure 7 compares the performance of the four tree-
based models with existing flood damage models, namely
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Table 2.Damage-influencing variables of regression tree RT1 with 25 leaves.

Predictors No. of decision nodes Type of correlation∗

wst Water depth 5 +

fsb Floor space of building 3 –
d Inundation duration 3 +

pre Precautionary measures indicator 3 –
rp Return period 2 +

con Contamination indicator 2 +

bv Building value 1 –
inc Monthly net income in classes 1 –
v Flow velocity indicator 1 +

epre Perception of efficiency of private precaution 1 +

bt Building type 1 n.a.
socp Socio-economic status (Plapp, 2003) 1 –

∗All predictors show the same correlation at all their nodes.

Fig. 6.Out-of-bag feature importance for bagging decision tree BT1.

stage-damage function approach and FLEMOps+r. 100 sets
of 100 affected residential buildings are randomly drawn
from the data set, each model is applied to each building
record and the three error measures (root mean square error
RMSE, mean bias MBE, correlation coefficient) are calcu-
lated and shown in boxplots.

There is clear improvement of the tree-based models
compared to the established approaches. The model with
the worst performance (exception: mean bias) is the stage-
damage model; this is explained by the fact that it is a
1-dimensional model, considering only water depth as pre-
dictor.

The multi-variate model FLEMOps+r outperforms the
stage-damage approach, however, it compares unfavorably
with the tree-based models. It is interesting to compare the
performance of the regression trees and FLEMOps+r. Both
approaches are multi-variate and estimate flood damage by
dividing the data set into sub-samples, and by using the av-
erage loss ratio of these sub-samples as estimator. RT1 and
FLEMOps+r are of similar complexity; they use a similar
number of sub-samples (FLEMOps+r: 27; RT1: 25), but a
different number of predictors (FLEMOps+r: 6; RT1: 12).

The prediction error of RT1 is significantly smaller. It is inter-
esting to note that even the much simpler regression tree RT2
with only eight leaves and only 4 predictors shows clearly
better results than FLEMOps+r. Thus, further development
of flood damage models should take advantage of tree-based
approaches, since a better representation of the damaging
processes in comparison with stage-damage functions is pos-
sible due to the consideration of more predictors.

The performance of the four tree-based models is com-
parable. There is small improvement of BTs over RTs, and
more elaborate trees (RT1, BT1) perform slightly better than
the reduced trees (RT2, BT2). The main metric that improves
in the BT over RT is the correlation coefficient. This makes
sense since it reflects the potentially reduced variance across
the bagging ensembles. Bagging averages across multiple
candidate models that are not completely independent, since
they are drawn from the same original data set under resam-
pling. If they were independent, the variance of the average
of m estimates would be 1 m−1 of the variance of any one of
the estimates. In bagging, a reduction in the variance of the
estimate will still occur during the averaging process. The
RMSE and Bias are unchanged. The differences across all

www.nat-hazards-earth-syst-sci.net/13/53/2013/ Nat. Hazards Earth Syst. Sci., 13, 53–64, 2013



62 B. Merz et al.: Multi-variate flood damage assessment

Fig. 7. Comparison of flood damage estimation models (sd-f: stage-damage function; FLEMOps+r; RT1, RT2: regression trees with 25 and
8 leaves, respectively; BT1, BT2: bagging decision trees with 28 and 8 predictors, respectively).

models in terms of the spread of the criteria is however not
statistically significant at the 90 or 95 % level.

5 Conclusions

This paper reports about the use of tree-based approaches
for the analysis of flood damage data and for the estimation
of flood damage. Tree-based approaches are used to iden-
tify important damage-influencing variables and their rela-
tion to direct building damage. Summing up the results of
the regression trees and bagging decision trees, the following
damage-influencing variables have been identified as impor-
tant: water depth, floor space of building (and the strongly
correlated building value), return period, contamination, in-
undation duration and precautionary measures indicator. The
high importance of water depth is in accordance with many
previous studies and the traditional approach of using stage-
damage functions for flood damage estimation. The impor-
tance of return period, contamination and precaution con-
firms previous findings (Thieken et al., 2005; Kreibich et al.,
2005; Elmer et al., 2010) and these variables are used in the
flood damage model FLEMOps+r (Elmer et al., 2010). The
revealed importance of the floor space of building and the
building value, two variables which are highly correlated, as
well as of inundation duration, is interesting. There have been
clues that they might be important (Thieken et al., 2005), but
to our best knowledge, they have so far not been used for
building damage modelling. In FLEMOps+r two variables
describing the building are used, namely building type and
building quality (Elmer et al., 2010) of which building type
is highly correlated with the floor space and the building
value (Fig. 1). Inundation duration is an important variable
for estimating flood damage to agricultural crops (Förster
et al., 2008; Tapia-Silva et al., 2011), but its importance for

building damage may have been underestimated so far. Com-
pared to former studies using this data set, such as Thieken
et al. (2005), this study shows that tree-based models are
very effective in identifying the important damage influenc-
ing variables and their interactions.

Tree-based models are a simple means to multi-variate
damage modelling. Although damage processes are in-
herently multi-dimensional, damage models are often uni-
variate, limited to water depth as predictor. It is shown
that tree-based models perform better than existing models
like stage-damage functions and the multi-variate FLEMOps
model. Tree-based damage models are easy to understand
and use. They permit to include both continuous, e.g. wa-
ter depth, and categorical predictors, e.g. building type. Re-
gression approaches have difficulties in handling categorical
variables; tree-based models may be advantageous since they
effectively decide whether or not to put these categories into
fewer classes. Tree-based models allow for nonlinearities and
predictor interactions and they do not use implicit assump-
tions about relationships between predictand and predictors
(such as linear relations or normal distributions). An impor-
tant advantage is their ability to exploit the local relevance of
predictors. They avoid the need to find a parametric function
which holds globally across all the data. For example, pre-
caution appears only in the part of the regression tree RT1
with smaller water depths. This result confirms the hypothe-
sis that private precaution is particularly effective when flood
water levels are small; in areas with high flooding private pre-
caution loses its ability to reduce damage.

A disadvantage is that tree-based approaches only reflect
the nature of the relationships that are contained within the
available data and that large data sets are needed in or-
der to identify complex relationships, especially in high-
dimensional data spaces. This might hamper the application
of this approach for flood damage analyses and modelling
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in other regions where comprehensive, multi-dimensional
databases do not exist. Although tree-based models allow
multi-variate modelling, it has to be tested under which con-
ditions such models are justified. Traditional flood damage
models using only water depth as predictor have very limited
data demand, and important damage-influencing variables,
e.g. contamination, are hardly quantifiable. Regression trees
as well as bagging decision trees can handle incomplete data:
if data is missing, predictions are based by considering only
the leaves that can be reached given the available data. How-
ever, depending on the data availability and the context of the
damage assessment, the gain in performance of multi-variate
models might be lost in real-world applications. For exam-
ple, for the estimation of the cumulative loss in a large area
with a large number of residential buildings simpler models
might be the better choice, since we expect that differences
between single buildings will play a smaller role for increas-
ing numbers of households. The predictor selection problem
is always a challenging one, and the “best” predictors in one
setting may not be the best predictors in another setting. Nev-
ertheless, as attention to flood damage prediction increases
considering regional pooling or variation in predictors may
be useful to provide for more robust predictor selection, es-
pecially where the predictors are generally correlated, and/or
the contribution of a particular predictor may be meaningful
only in a certain range of values of that predictor given the
other predictors available, as was demonstrated with the data
set considered in this paper.

The evaluation of model performance in this paper is based
on random samples which are not independent from the
data used for model development. Hence, our comparison
of model performance does not give information about the
transferability of the models. Future work will use indepen-
dent flood damage data and will use a different model build-
ing design, in order to test specifically, to which extent mod-
els of different types can be transferred in space (the same
flood event but different regions), in time (the same region
but different flood events) or in space and time (different re-
gions and different flood events). Further research focusing
on the improvement of flood damage modelling and devel-
opment of the damage model FLEMOps will analyse which
variables and model structures are most suitable for estimat-
ing flood damage to residential buildings in respect to the
transferability and applicability of different approaches.
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