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Abstract

Lake high-stand sediments are found in three onshore terraces at Lake Donggi Cona, north-eastern
Tibetan Plateau, and reveal characteristics of hydrological changes on lake shorelines triggered by
climate change, geomorphological processes, and neo-tectonic movements. The terraces consist of
fluvial, alluvial to littoral-lacustrine facies. End-member modeling of grain size distributions allowed
quantification of sediment transport processes and relative lake levels during times of deposition.
Radiocarbon dating revealed higher than modern lake levels during the early and mid-Holocene. Lake
levels follow the trend of Asian monsoon dynamics, and are modified by local non-climatic drivers.
Site-specific impacts explain fluctuations during the initial lake level rise ~11 cal ka BP. Maximum lake
extension reached ~9.2 cal ka BP, at ~16.5 m above present lake level (a.p.l.l.). Littoral and lacustrine
sediment deposition paused during a phase of fluvial activity and post-depositional cryoturbations at
~8.5 cal ka BP, when the lake level fell to ~¥8 m a.p.l.l. After a second maximum at ~7.5 cal ka BP, lake
level declined slightly at ~6.8 cal ka BP, probably due to a non-climatic pulse that caused lake
opening. The level remained high until a transition towards drier conditions of ~4.7 cal ka BP. Though

discontinuous, high-stand sediments provide a unique, high-resolution archive.

Keywords
Lake level fluctuations; Lake high-stand sediment; End-member modeling (EMMA); Grain size

distributions; Tibetan Plateau; Asian monsoon
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Introduction

The Tibetan Plateau (TP) provides water to billions of people in Asia and heavily influences the global
climate circulation (Qiu, 2008). Moisture availability on the TP is regulated by different circulation
systems — wet summer monsoons from the Indian and Pacific Oceans interact with the westerlies
and dry winter air masses from the Siberian anticyclone. However, the past interplay of these

systems is still under discussion (Chen et al., 2008, Wang et al., 2010).

One way to better understand moisture variability is to study lake level changes. Ancient lake stands
can record shifts in the precipitation-evaporation balance of a catchment (Cohen, 2003). Lake stands
respond to water supply from glaciers and thawing permafrost, but can also reflect modifications of
the basin and catchment configurations. Indications of lake high-stands have been observed on the
TP for a long time (e.g., De Terra and Hutchinson, 1934). More recently, shorelines and beach ridges
were dated with **C and OSL (Lee et al. 2009; Li et al., 2009). There are only a few studies from the
western TP (Gasse et al., 1991), Ladakh (Winnemann et al., 2010), and the northern foreland of the
TP (Madsen et al. 2008, Long et al., 2010) that consider lake high-stand sediment sequences in detail,

i.e., intercalations of lacustrine, littoral and terrestrial sediments deposited above present lake level
(a.p.LL.).

Using stratigraphy and granulometry, this study reconstructs sedimentological processes from
intercalations of terrestrial and lacustrine sediment deposited during high-stands of Lake Donggi
Cona. Because the Donggi Cona catchment is part of an active tectonic fault system, a major aim is to
distinguish climatic from non-climatic triggers of lake level changes using environmental

reconstructions of the lake and its vicinities.

Study area

Lake Donggi Cona fills a pull-apart basin at the Kunlun Fault (35°18’N, 98°32’E, lake area: ~230 km?,
maximum depth: ~92 m, catchment area: ~3200 km?; Figure 1), which has a mean slip rate of ~10.3
mm/a along the Donggi Cona segment (Van der Woerd et al., 2002). Seismic studies (Dietze et al.,
2010) and fluvial terraces (Van der Woerd et al., 2002) suggest that vertical motion has been of

minor importance in the lake and its catchment during the Holocene.

Climatic conditions in the vicinity of Donggi Cona are characterized by a total pan evaporation of
~1375 mm/year, mean air temperatures in January (July) of -16.8 (7.5) °C and mean annual
precipitation of ~300 mm (Madoi station, 4272 m a.s.l., ~50 km southwest, Chinese Central
Meteorological Office, 2008). Precipitation falls mainly in summer (~¥280 mm between May and
October) as intense as the torrential rain from local convection of the Asian summer monsoon air
masses, which reach their northern limit here (Domrés and Peng, 1988). Overland flows, reactivation
of ephemeral channels, and rivers transport the main suspension load to the lake. The lake is
normally frozen from late November until early April, when westerlies and the winter monsoon
prevail, and bring dry winds that mobilize aeolian sediments from dune fields, loess, and loess-like
sediments (Lehmkuhl, 1997; lJmker et al., 2012a). In addition, dust can be captured discontinuously
in the lake ice (Dietze et al., 2012). Several phases of aeolian activity and reworking of aeolian
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sediment were reconstructed for the Holocene (Stauch et al., 2012). Yak and sheep grazing on alpine
steppes and meadows also cause sediment mobilization (Schlitz and Lehmkuhl, 2009). Wet
hummocky land surfaces and small thermokarst depressions indicate that discontinuous permafrost

affects saturated sediments close to the lake and in local depressions.
Figure 1

The heterogeneous geological and geomorphological catchment configuration includes dissected
series of carbonates, limestones and sandstones faulted against quartzites and shales, all partly
overlain by conglomerates. In the upper catchment, lateral moraines and U-shaped valleys indicate
past glaciations, while fluvial incision formed V-shaped valleys in the middle reaches. Major perennial
inflow enters the lake from the east via a large alluvial plain. The only other perennial stream enters

the lake from a flat basin north of Lake Donggi Cona via a transverse valley (Figure 1).

The current lake level is at 4090 m a.s.l. Palaeo-shorelines and ancient onshore terraces that contain
lake sediments encircle the lake and indicate four higher lake stands at 3.5+0.4 m, 6.1 +1.0 m, 10.1
+0.9mand 16.7 + 1.2 m a.p.l.l. (T1 to T4, Lockot, 2010). Three lower Pleistocene lake stands at 24,
39 and 57 m below the present lake level were reconstructed using bathymetry and seismic
stratigraphy (Dietze et al., 2010). A deglaciation-related lake level rise with strong fluctuations
between 17.5 and 14 cal ka BP, was followed by a drop at 14 cal ka BP that produced saline
conditions (Mischke et al., 2010, Opitz et al., 2012), while higher levels prevailed between ~4.3 and
11.5 cal ka BP (Opitz et al., 2012). There is debate regarding when the lake switched to an open
system: at ~6.8 cal ka BP when a change in ostracod assemblages from euryhaline (brackish) to fresh-
water species occurred (Mischke et al., 2010); or at ~4.3 cal ka BP as suggested by changes in the

geochemical and mineralogical properties of lake sediments (Opitz et al., 2012).

Today, the lake drains through an artificial channel at the western margin, south of the active course
of the Kunlun fault. It merges with a perennial stream that originates from the north and then drains
towards the northwest (Figure 2A). A gauge station was set up during the 1970s to control the water

supply towards the endorheic Qaidam Basin.

Methods
Field methods

During May and September 2009, nine high-stand sediment sections at Lake Donggi Cona were
described at modern fluvial channel exposures, permafrost decay fronts, anthropogenic gravel pits or
were dug along terrace front slopes (Figs. 1, and 2). The highest elevation of the lake sediments was
determined using a differential GPS. Sedimentological structures and layering were described,
including major macroscopic characteristics such as sediment color , charcoal, and snail fragments.
Burrows and distorted sediment layers indicate post-depositional alteration of the sections.
Additionally, pedological description focused on features of redoximorphosis, clay and carbonate

relocation, and root penetration.

Laboratory methods
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The complete sections of P06 and P14, and the lake sediment parts of sections P15, P02 (undisturbed
parts) and P21 (including matrix material within gravel layers) were analysed. Prior to analysis, all
samples (taken in 2cm slices at different intervals) were sieved to <1mm. Larger grain fractions were
not considered, as only 26 samples had material >1mm. To account for the detrital components of
the grain-size distributions, 262 samples were pre-treated with 10% acetic acid to remove the
carbonate fraction, and 35% H,0, for at least 72 h to remove organic matter, before being placed on
an overhead shaker for at least 12 h, together with 10 mg of sodium pyrophosphate. Grain size
distributions were measured with a laser diffraction particle size analyser (Beckmann Coulter LS 200,
calculated with a Fraunhofer model). Volume percentages of 85 grain-size classes from 1000 to 0.38

pum were compiled in a data matrix.

Statistical methods

Single grain size parameters such as sand, silt, and clay contents, or the associated methods of
moments (e.g., mean, skewness, kurtosis), are biased when applied to multi-modal distributions
(Dietze et al., 2012), which is why such results were omitted here. Instead, the original grain size
distributions were unmixed using end-member modeling analysis (EMMA) — an eigenspace
decomposition with different scaling procedures that extract genetically meaningful end-member
grain size distributions (i.e., loadings) and their percentages in each sample (end-member
composition, i.e., scores; Dietze et al.,, 2012). End-members (EMs) can be interpreted in terms of
sediment transport processes, and thus, characterize typical depositional environments (following
e.g., Folk and Ward, 1957).

The 10" quantile (I = 0.1) was applied in the weight transformation after Dietze et al. (2012), which
yielded the best unmixing and modeling results compared to other model configurations. The
robustness of the resulting end-members was tested by different weight transformation and single
section EMMA runs (results not shown). A normalized difference between the finest and coarsest
end-members (i.e., EMys) was calculated as a proxy for relative lake level change — assuming that the
finest particles deposit in calm, deeper water, while fractions coarser than silt settle close to the

shore, shortly after entering the lake.

Radiocarbon dating

AMS dating of eight sediment sections was done at Poznan radiocarbon laboratory. Because pollen
dating failed due to poor preservation, 14 bulk lake sediment samples, two charcoal remains, and
three non-recrystallized (aragonite) Radix shells were dated. The potential hard-water error for TOC
was determined by dating the topmost samples of three lake cores, including their 2c-errors (Opitz
et al., 2012). The up-to-date absolute minimum and maximum hard-water errors for bulk sediment
(i.e., 1920 and 2360 years, respectively) were subtracted from all bulk and snail **C ages. Then, all
samples were calibrated with IntCal09 (Reimer et al., 2009) in Calib 6.1.0 (Stuiver and Reimer, 1993).
The absolute minimum and maximum in the 2o-ranges of the corrected and calibrated ages give a
larger uncertainty than usual after calibration, but represent a more realistic consideration of the
potential hard-water and reservoir effects. All mean ages mentioned in the text and figures refer to

corrected, cal ka BP.
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Results and interpretation

Sediment sections and radiocarbon dating

High-stand sediment sections were grouped according to relative elevation and location. They are
located at the outlet (P15, P04, P06), at the northern T3 shore (P02, P21, P14, P13) and at the eastern
alluvial plain (P16, P17; Figure 1 and 2; Table 1).

Figure 2
Table 1

Table 2 contains all dating results with 2c-errors. All high-stand sediments were deposited between
~11.4 and ~3.5 cal ka BP (Figure 3). There are two main age clusters in the early and mid-Holocene.
High-stand lake sediments accumulated at >8 m a.p.l.I. until ~7 cal ka BP in T4 (P15) and T3-terraces
(P04, P02, P21, P14, and P13), while mid-Holocene lake sediments dominate lower elevations and are
exposed in T2 (P06) and T1 terraces (P17). The highest section, P15, has an age of ~6.9 corr.cal ka BP,
which is ~1.5 ka younger than an OSL-age of the loess at its top (section P063 at the base: 8.5 + 0.8
ka, Stauch et al., 2012). The OSL-age coincides with a hiatus in lake sedimentation between 8.2 and

8.7 cal ka BP (Figure 3). There are also stratigraphically inverted ages in P06 and P16.
Table 2

Figure 3

Classification of depositional environments

All sections show several sedimentation unconformities (“U” in Figure 4), and have sub-catchment-
specific sedimentation rates and grain sizes. Figure 4 shows generalized section sketches with
depositional zones assigned to three sediment facies that represent different depositional
environments along the littoral zone (Figure 5). Sites are too heterogeneous to integrate them in one
“composite” section, but they can be preliminarily correlated using the elevation, ages, and

characteristics of deposited sediments and their post-depositional overprint.

Sediments of Facies | bear a platy structure, high clay and carbonate contents, grayish-green or
whitish-blue color with post-depositional oxidized spots. Radix and Gyraulus snails are common.
Facies | can be found in all sections except for P13 and P15 (Figure 4). A large part of PO6 contains
mm-thick, clayey and silty laminae. In P14, high amounts of carbonate tubes were found above and
below a unique thin, dark layer at ~67 cm depth. At sites P16 and P17 and at ~170 and ~210 cm
depth of P04, Facies | sediments show a more granular structure (Figures 4, 5). Facies | is interpreted
as lake sediment deposited in a deep water environment, below the wave-dominated zone (Figure
5). There, organic matter, carbonate precipitates, silt and clay can settle causing the typical platy
structure, or even laminations. The black, organic-rich layer in P14 could represent short-term

sapropel deposition.
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Facies Il sediments are generally loose, well-sorted, mainly sandy, coarser deposits that are found in
most sections. In section P21, for example, the fine sands at the base and the shingle bedding of
cobbles at ~165 cm depth are assigned to this Facies (Figure 4). Facies Il is interpreted as littoral

sediment (Figure 5); silts and clays are washed out and distributed by currents within the lake.
Figure 4

Depending on the site, sediments of Facies lll show a more heterogeneous structure with either: a)
cemented or loose, horizontally-bedded gravels (e.g., at the base of most sections, as well as at ~60,
140 and 190 cm depth in P21); b) unconsolidated sandy material with homogenous bedding or a
coarsening upwards sequence at ~265 cm depth of P02; or c) silty-sandy cross-laminations (e.g., 190-
230 cm depth in P14, Figure 4). Facies Il is interpreted as fluvial sediment, which is generally coarser
than lake sediment, even in the littoral zone. The heterogeneity of this Facies results from diverse
processes comprising confined (in-channel) and unconfined (out-of-channel, alluvial) sediment
transport (North and Davidson, 2012). Loose layers of soft, silty aeolian sediment cover most of the
sections. They were deposited on the slopes and reworked by unconfined overland flows during
intense summer precipitation. As there was no in-situ loess in or on top of the sections, the dominant

sedimentation process is assumed to be alluvial.

Post-depositional overprint by pedogenesis, bio-, and cryoturbation varies slightly between sites. The
topmost sequences always have a brownish or dark coloration, and sometimes translocated
carbonate and clay. These are interpreted as the initial stages of Kastanozem- or Cambisol-like soils
at dry, steppe sites (Miehe et al., 2008). Intense root penetration and animal burrows (e.g., Ochotona
spec.) indicate sediment mixing, throughout section P14 and at section P15. Ongoing active layer
mixing created a typical cryogenic granular structure in Facies |, especially at sites that are connected

to groundwater (e.g., sections P04, P16, and P17 (grain sizes not analysed)).
Figure 5

In section P02, intense post-depositional deformation and involution affect sediments of all Facies
between 48 and 180 cm depth, including the gravel layers (Figure 2B). Although it is possible that
these extensive involutions are seismites and their structures are related to liquefaction in formerly
near-shore, water-saturated sediments they are instead attributed to past periglacial mixing

(cryoturbations).

An ambiguous zone in P14 between 100 and 190 cm depth contains involutions of fine sediment,
burrows, and roots, with a distinct change from Facies Ill to Il at 130 cm depth. Neither past
cryoturbations, nor fluvial reworking (Figure 2F) can be excluded as deformation mechanisms for this

zone.

Detrital grain-size end-members

Unmixing of detrital grain size distributions yielded an optimal model with five end-members (EMs)
explaining 89.9% of the data variance (mean r? between the original and modelled data generally
>0.7 (p<0.01); Figure 6B/C), of which EMs 1 to 5 explain 6%, 24%, 26.3%, 16.5% and 27.2%,
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respectively. Except for a few strata, grain size end-members independently support the field

descriptions (see below, Figure 7).
Figure 6

EM 1 has a broad mode in the coarse and medium sands with a maximum at 715 um in its loadings
(Figure 6A). It contributes to the sample compositions (i.e., scores) mainly at the base of the sections
and in the coarse sediments of Facies Il (e.g., 10% in the matrix material of P21 gravel layers, 80% of
the P02 coarsening-upwards layer, Figure 7). EM 1 is interpreted to contain grain sizes that are
deposited by high-energy fluvial transport, though it is also found in littoral sediments that are

affected by high-energy wave activity.

EM 2 has a narrow peak in the very fine sand (mode at 76 um). It has high scores in the fine
sediments of Facies Ill (e.g., ~210 cm in P14, bases of P21, P06, and 20% of the coarsening-upwards
layer in P02). Hence, EM 2 represents sediment from low-energy unconfined alluvial flow, i.e., fine
sand is deposited when flow velocity reduces, while finer particles are washed farther down into the
lake. An aeolian origin for EM 2 is excluded, as it is too fine to represent dune sand, which would be
similarly narrow-peaked but in a coarser range (Sun et al., 2002). Furthermore, dunes are unlikely to

occur at the position of the included sections (IJmker et al., 2012a).

The coarse silt EM 3 has a narrow peak at 44 um, while EM 4 shows a broad mode in the fine silt
(maximum at 13 um). Both are present in most of the samples with fractions of 30 +24% and 31
119%, but it is found mainly at the top of the sections (Figure 7). EMs 3 and 4 are interpreted as
aeolian deposits. EM 3 has the same mode as loess from the TP (Sun et al., 2007), which is
transported in short-term suspension by near-surface, mainly winter monsoonal circulation (Sun et
al., 2002; lJmker et al., 2012b). EM 4 represents background sedimentation of remote dust. EM 3 and
EM 4 dust can be reworked along the slopes and reach the lake in fluvial suspension, but can also be

trapped in ice off-shore (Dietze et al., 2012).

The finest grain size end-member, EM 5, has a broad mode in the clay fraction at 3.5 um (Figure 6A).
EM 5 is generally high in the strata of lacustrine sediments and low in fluvial/alluvial sediments.
Hence, EM 5 is interpreted as the finest suspension that reaches deeper lake areas and accumulates
very slowly under calm water conditions (off the wave-dominated zone; Figure 5). EMs 4 and 5 are

the robust end-members in modern lake surface sediments (Dietze et al., 2012).

EMgit;, the normalized difference of the low-energy fluvial EM 2 and the suspension EM 5, shows a
similar but more pronounced pattern than EM 5, and can be readily interpreted as a proxy for lake
depth.

Figure 7

Lake level reconstruction from sediment facies

When lacustrine, littoral/near-shore, or fluvial/alluvial sediments are identified using field
observations and EMMA, phases of higher, similar, or lower lake levels are assigned relative to the

present elevation of sediment in sections (Figure 4 and 7). Furthermore, post-depositional

8
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pedogenesis, bioturbation, and cryoturbation point to a lower lake level after deposition. For
example, in section P02, cryoturbations distorted all sediments between 48 and 180 cm depth.
Permafrost deforms sediments, when sufficient water is available, especially at sites with imperfect
drainage (Van Vliet-Lanog, 1998). Below 180 cm depth, sediments consist of a high percentage of
sand (EM1 and 2), which would have allowed good drainage if the water level was much lower.
Hence, it is assumed that a lake level elevation close to 8 m a.p.l.l. triggered cryoturbations between
48 and 180 cm.

Discussion

Interpretation of Facies and depositional environments, as well as respective elevation is especially
difficult for the ambiguous, fine-grained strata marked with “?” in Figure 4. Some strata contain
sediments with platy structure, but high silt content and low amounts of suspension EM 5 (e.g., ~95
cm in P04, P14; Figure 7), as well as redoximorphic features (e.g., at ~80 and 110 cm depth of P02),
and gastropods (e.g., P14 at 140 cm). An explanation is that littoral and near-shore environments can
host fine-grained sediments of all Facies depending on the position along shore. Additionally, the
presence of gastropods generally indicates near-shore conditions, but Radix spec. can also develop in
small riverine and beach lagoons (Taft et al., 2012), independent of a large permanent lake.
Alternatively, some strata contained high amounts of suspension EM 5 but lacked other Facies |
features (e.g., P14 at 295 cm). However, wave action, fluvial deltas, and backshore configurations
vary strongly between sites in this heterogeneous setting (Dietze et al., 2010), and a littoral deposit
may lack typical, representative grain size end-members. Finally, other strata have been overprinted
post-depositionally, convoluting their original depositional characteristics (e.g., P02, P14 and the top
of P21). Hence, all of the ambiguous strata are tentatively assigned to the littoral zone or a deeper

lake environment and, therefore, lake level reconstruction is also tentative.

Inverted ages may result from reworking of older material during lake level change or from varying
hard-water contribution across time and space, which can only initially be considered here. High
percentages of limestone in the catchment, and probably old CO, from groundwater, bring dead
carbon into the system. The inverse ages in PO6 — a section close to a limestone ridge at the outlet —
may be related to hard-water effects, as there are no significant stratigraphic or granulometric
differences in this depth range. Another likely explanation considers random mixing by tectonic
shaking of saturated and unconsolidated sediments. However, no obvious signs for tectonic influence
(e.g., vertical faults, or (micro)kinks in the sediments, Van Vliet-Lanoég, 1998) were found in any of the

sediments.

An underestimation of bulk sediment ages may result from modern fine roots, bio- and/or
cryoturbation that contribute younger atmospheric carbon to the sediments (symbols in Figure 3).
Section P17 may suffer from all these effects. P16 has a similar intense cryogenic granular fabric and
is much younger than sections at the same elevation. Neither is considered in the discussion. The
ages of the root-rich, near-shore sediments in P15 and P02 might be ~2 ka older due to the age of the

overlying loess (Stauch et al., 2012), and correlation with lake sediments preserved at similar

9
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elevation and stratigraphic position (top of P14, no. 10; Figure 3), respectively. Only unbiased ages

and their large uncertainties were included in the following chronology (Figure 8).

Chronology of lake level changes

The high-stand sediments are in agreement with the lake-core stratigraphy of Opitz et al. (2012).
Their litho-unit 3 represents the time interval presented here, which can now be resolved in more
detail.

Early Holocene (~11.4 to 6.8 cal ka BP)

After the Younger Dryas, the lake level was fluctuating, but rising overall: at ~11 cal ka BP, littoral
sediments intercalated with lacustrine and fluvial/alluvial sediments, forming the base of P14 and
P02 at a minimum elevation of 7.1 m a.p.l.Il. (Figure 3: age no. 7, 12). A discontinuous rise in lake level
between ~10.5 and 9.8 cal ka BP is inferred from lacustrine and littoral sediments accumulated at the
base of all northern shore sections and P04 at the outlet. Strong fluctuations in lake level and
reworking of older sediment may be responsible for the inverted ages in P02. A prominent lake level
drop around 10 cal ka BP is indicated by a clear erosional surface followed by a zone of reddish
alluvial sediment at 180 cm depth of P02 (at 8.2 m a.p.l.l.). In PO4 and P14 a thin gravel layer at 140
and 240 cm depth (8.1 and 8.7 m a.p.l.l.), respectively, and the first gravel/shingle phase in P21 (130-

200 cm depth, ~8.5 m a.p.l.l) might coincide with this lower lake level.

Subsequently, lake level rose rapidly, with apparent fluctuations allowing deposition of near-shore
sediments intercalating with fluvial Facies at 9 to 10 m a.p.l.l. (e.g., PO2-sediments at 50-180 cm
depth, up to 20 cm in P21). Starting at ~9.8 cal ka BP, this rise probably lasted a few centuries until
~8.7 cal ka BP, as the small base-top age differences in P02 and P21 suggest (Figure 3: age no. 4-7, 8-
9). The highest lake levels (16.5 m a.p.l.l.) are tentatively assumed around 9.2 cal ka BP from
associated lake sediments found in the cryoturbated strata of PO2 (Figure 3: age no. 4) and from the
OSL-age of the loess on top of the highest section P15. An upper erosional boundary is prominent in
all northern shore sections (e.g., the thin pebble layer in P02 at 47 cm depth and a shift to cover
sediments in PO4 and P21). Hence, a significant lake level decline took place after this first lake

maximum.

In P14, a distinct boundary between lacustrine and low-energy floodplain sediments (high scores of
EM 2) occurs at 230 cm depth. The 1-m-thick floodplain sediments were deposited during a time of
lower lake levels. They may contain a phase of lacustrine sedimentation, as end-members suggest
(high EMg;ts between 110 and 150 cm, Figure 7). However, when the lake shifted to a lower level it is
possible that dynamic fluvial activity, coupled with a much larger catchment than at P02 and P21
(Figure 1), intensively eroded sediments of the previous high stand — leaving behind only the thin

lacustrine layer at ~235 cm below the floodplain sediments (i.e., at ~¥8.75 m a.p.L.L.).

A prominent lake level drop likely occurred at ~8.7 cal ka BP. So far no lacustrine sediments have
been dated that were deposited between ~8.7 and 8.2 cal ka BP (Figure 3). Instead, PO2-sediments
are intensively cryoturbated, supported by saturated sediments below, which provided the water for
frost action. Therefore, the lake level was probably at an elevation close to ~8 m a.p.l.l. Slightly cooler
conditions are suggested by a short-term reduction in offshore TOC and biological activity (Aichner et
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al., 2012). At the same time, the floodplain sediments in P14 may have accumulated (above 8.8 m
a.p.l.l), supporting the idea that the local river bed was slightly above 8 m a.p.l.l. However, as
discussed above, these sediments might be much older, and the distortions seen in the ambiguous
zone could be dominantly of cryogenic origin, similar to P02. Regardless, all explanations suggest a

lower lake level after the lake maximum.

After ~8.2 cal ka BP, another significant lake extension led to the accumulation of lake sediments that
overlie the distorted strata in PO2 and comprise the topmost lake sediment in P14. This lake stand at
~7.5 cal ka BP (Figure 3: age no. 10) reached far into the transverse valley, to a minimum of 10.6 m
a.p.l.l. in section P14. However, because there are no higher lake sediments at other sites with
unbiased ages or similarly clayey sediments, as found in P14, a secondary lake maximum likely
occurred at this time (Figure 8). The sapropel layer in P14 has probably formed during a slight lake
reduction (see EMyy, Figure 7) during times of high biological productivity at ~8 cal ka BP (offshore
TOC maximum, Aichner et al., 2012). Lacustrine sedimentation also commenced at the outlet at ~7.8
cal ka BP (P06 base, Figure 4).

Mid-Holocene (6.8 — 4.3 cal ka BP)

A further lake level decline to below 10 m a.p.l.l. caused the topmost transition from lake to alluvial
sediment in P02, P13 and P14. Compared to the lake decline at ~8.5 cal ka BP, this sequence has not
been overprinted post-depositionally by cryoturbation, suggesting either different climatic
conditions, or a decoupling of the topmost sediments from ascending water. To date, there are no
further recognized lake sediments in T3 or T4 terraces with unbiased ages younger than 7 cal ka BP.
Hence, this lake decline might coincide with the abrupt lake opening at ~6.8 cal ka BP, when
ostracods in offshore lake sediments changed from euryhaline to freshwater assemblages (Mischke
et al., 2010).

However, massive, finely laminated lake sediment accumulated at P06 in the T2 terrace (Figure 7),
even after this transition. The only sedimentological indication for a lake opening at this site might be
the reduction of EMy and an increase in aeolian activity (dust EMs) between 143 and 170 cm

depths.

Afterwards, EMgy; suggests a lake rise to a level slightly lower than before. The inverted ages in P06
after this transition may suggest either a change in the hard-water nature of the lake, or a reworking
of some older organic material. After ~5 cal ka BP the lake gradually reduced with some fluctuations
(unconformity overlain by a sandy layer at 100 cm depth, and silty alluvial sediment at 45 cm depth;
Figure 7). P06 top sediments still contain some detrital clay associated either with soil formation, or
near-shore conditions, but consist mainly of (reworked) dust marking the end of high-stand
sedimentation at a minimum elevation of 4.3 m a.p.L.l. This transition might coincide with the
suggested change in lake chemistry and stratification recorded at ~4.3 cal ka BP in offshore lake

sediments (Opitz et al., 2012).

Synthesis

Although a truly quantitative lake level reconstruction is restricted by the high spatial variability in
the accumulation, erosion, and post-depositional overprint of the different sites, and the importance
11
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of water contributions from local sources (i.e., melt and ground water) is difficult to assess, the
mechanisms involved in Lake Donggi Cona hydrological variations can now be discussed in a larger
context. The basin-wide correlation of facies and lake level assumptions (Figure S1) can be compared
to known patterns in Asian monsoon precipitation. Both the Indian and East Asian monsoons may
have dominated the site. However, in a comparison with several monsoon reconstructions (not
shown) the pattern of an Indian monsoon proxy record, i.e., the 60 of Oman speleothems from
Fleitmann et al. (2003) (Figure 8) showed trends similar to this study. Additionally, Wang et al. (2010)

found that the Indian monsoon was the dominant influence at the TP during the early Holocene.

The trend of rapidly rising lake level correlates well with the trend of increasingly warmer and wetter
conditions during the early Holocene. These resulted from stronger Asian monsoons and are related
to the Northern Hemisphere insolation maximum (e.g., Fleitmann et al., 2003; Dykoski et al., 2005).
As a result, lakes extended all over the TP during the early Holocene, fed also by melting glaciers,
permafrost (Mischke and Zhang, 2010), and increased fluvial activity (Schlitz and Lehmkuhl, 2009).
The ~16.5 m a.p.l.l. maximum of Lake Donggi Cona at ~9.2 cal ka BP correlates with this pattern.
However, the onset and timing of the ‘Holocene Optimum’ and maximum lake levels varied between
sites across Tibet (Mischke et al., 2009; Wang et al., 2010). Lake high-stands during the early
Holocene are reported, e.g., from Lake Qinghai (~200 km north-east of Donggi Cona, +8-12 m prior to
8.4 cal ka BP, Madsen et al., 2008), Selin Co (+48 m at ~9.2 ka, Li et al., 2009), and others (Lehmkuhl
and Haselein, 2000).

Lake Donggi Cona may have responded to the prominent centennial cooling and drying at ~8.5 cal ka
BP described at various sites around the world (e.g., Rohling and Pélike, 2005; Wanner et al., 2011).
Between ~8.2 and 8.7 cal ka BP, intense cryoturbations at site P02, probable floodplain deposition at
the second largest inflow (P14), and incision at many sites took place (e.g., probably formation of T4-
lake terrace). However, the cooling’s impact and timing on the TP are debated (Morrill et al., 2003;
Jin et al., 2007) and it is only recognized at some sites in Tibet between 8.7 and 8.2 cal ka BP (e.g., W-
Tibet: Gasse et al., 1991; central Tibet: Herzschuh et al., 2006; Lake Qinghai: Colman et al., 2007; E-

Tibet: Mischke et al., 2008), suggesting site-specific response times.

Donggi Cona again reached a level of ~¥11.5 m a.p.l.l. at ~7.5 cal ka BP, correlating with a maximum in
monsoon intensity (e.g., Fleitmann et al., 2003; Figure 8). Lake Kuhai, around 40 km to the east of
Lake Donggi Cona, reached its highest levels between 12.8 and 7.1 cal ka BP (Mischke et al., 2009).
Several other lakes reached their maximum extent during the Mid-Holocene (e.g., Lake Koucha ~230
km SW of Lake Donggi Cona, Mischke et al., 2008) in accordance with the dominance of the East
Asian monsoon on the TP (Wang et al., 2010), though this maximum is often attributed to local non-

climatic dynamics (Wiinneman et al., 2010).
Figure 8

After 7 cal ka BP Asian monsoon intensities gradually decreased (Fleitmann et al., 2003). This led to a
transition towards a cooler and drier late Holocene at around 4.5 cal ka BP that can be observed
globally (so-called “Neoglacial”, e.g., Wanner et al., 2011) and across the TP (e.g., Colman et al.,
2007; Mischke and Zhang, 2010, Wiinnemann et al., 2010). Similarly, this transition might be
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reflected by a basin-wide change that is prominent in most offshore lake sediment proxies between
3.9 and 4.7 cal ka BP (Opitz et al.,, 2012) and is associated with the gradual lake decline seen in
section PO6. Donggi Cona lake level fell permanently below 4.3 m a.p.l.l. after ~4.7 cal ka BP. This
climatic transition towards drier conditions could have allowed a deeper incision of the outflow,
probably associated with a reduction of alluvial aggradation there and the initiation of T2-terrace
formation. Incision probably stopped at the level of T1, which was formed prior to the artificial
extension of the outlet in the 1970s (Lockot, 2010).

However, as in other Tibetan lake catchments, the Donggi Cona area is affected by active tectonic
and geomorphological dynamics that can randomly intensify or weaken the sedimentological
response to climatic change significantly, possibly invalidating hydrological reconstructions. Two
main stratigraphic features may dominantly reflect these local processes. One is the fluctuation
during the early Holocene lake level rise. It can hardly be correlated between different high-stand
sections, and may instead be associated with varying melt-water contributions and distinct
adaptations of the sub-catchments to the changing climatic conditions (e.g., sediment mobilisation,
interaction with changing vegetation, and permafrost thawing). The site most sensitive to such
variations is the outlet spillway that could have randomly been eroded or blocked by the large

alluvial fan from the north (Figure 2A).

Another feature is the abrupt opening of Lake Donggi Cona as reflected by ostracod assemblages at
~6.8 cal ka BP (Mischke et al., 2010). A tectonic and/or geomorphological event is more likely
responsible for the change than hydrological and climatic drivers. On- and offshore lake sediment
cores show short-term excursions in sedimentological, mineralogical, and geochemical parameters at
this time that may be linked to a short-term decline of lake level, probably incising T3 terrace.
However, no consistent shift in stratification and geochemical processes took place (Opitz et al.,
2012). The lake remained at a high level afterwards (5 to 7 m a.p.l.l, i.e., T2-level after Lockot, 2010).
Furthermore, to date no significant lake level decline or moisture reduction has been reconstructed
for the north-eastern TP (Wang et al., 2010). A significant global cooling phase at ~6.3 ka rather

occurred after the opening (Wanner et al., 2011, Figure 8).

Conclusions

Complex geomorphological and sedimentological processes interact in the littoral zone that can be
recorded in onshore high-stand sediments. At Lake Donggi Cona, these sediments, while more
discontinuous, provide a unique, multi-process archive of past lake level variations and associated
sedimentological dynamics that are more diverse and detailed than profundal lake sediments.
Stratigraphy, end-member modeling of grain size distributions, and radiocarbon dating considering
hard-water uncertainty ranges, allowed quantification of sediment transport processes and relative

lake levels during times of deposition.

Lake levels generally follow the trend of Asian monsoon dynamics, and are modified by local non-
climatic drivers. During a warmer, wetter climate, Donggi Cona rose from its glacial low-stands to

above its present level (starting ~11 cal ka BP), reaching separate maximums during the early and
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mid-Holocene. A major cold and dry phase at ~8.5 cal ka BP caused a reduction in lake size and
significantly overprinted the high-stand sediments by cryoturbation. The end of high-stand

sedimentation correlates with the decline of monsoon dynamics at the transition to the Neoglacial.

However, Lake Donggi Cona is one of many lakes in an active tectonic setting. Its spillway can be
affected by small-scale tectonic and geomorphologic processes that could cause the lake to outflow,
incise, and erase information that is otherwise recorded. Such non-climatic dynamics may explain the
lake opening at ~6.8 cal ka BP, while sub-catchment specific processes may explain the spatial

variations between sites during lake level fluctuations at the beginning of the high-stand period.
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Figures

Figure 1: Donggi Cona lake basin and its catchment on the north-eastern TP [inset]. Main Kunlun fault
after Van der Woerd et al. (2002) and assumed in-lake continuation after Dietze et al. (2010).
Triangles indicate the locations of high-stand sediment sections (cf. Google Earth kmz-file).

Figure 2. Sites of onshore lake high-stand sediment sections at the outlet (A, view to north), at the
northern shore (B, E, F) and on the eastern alluvial plain (C, D). B shows the stratigraphy of section
P02, exemplarily. For locations see Figure 1.

Figure 3: Corrected and calibrated ages of high-stand sediments including error bars. Sections are
separated by bold lines. Dated sample numbers refer to Table 2 (left axis) and are sorted by depth in
each section. Remarks are added, when distinct sediment properties may bias the reliability of the
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age. The grey blocks in the background show the associated onshore terrace (right axis, Lockot,
2010). Red and blue crosses mark the median and mean ages. *OSL-age (+20) at base of loess section
P063 for comparison (Stauch et al., 2012)

Figure 4: Generalized stratigraphic descriptions of the Donggi Cona high-stand sediment sections,
including absolute position above sea level, Facies, interpreted lake level implications, and mean
corrected, calibrated radiocarbon ages (BP, cf. Table 2, Figure 3). They are sorted by location and
elevation of the section tops. Unspecified colors represent strata colors.

Figure 5: Examples for strata of different sediment facies and their association with a terrestrial,
littoral or lake depositional environment. The lower row shows strata that are overprinted by
pedogenesis, cryoturbation, and ongoing active layer mixing (left to right).

Figure 6: End-member loadings of all high-stand sediment grain size distributions (A). Mean total r? of
data modelled with five end-members versus original data in variable (B) and sample space (C), after
Dietze et al. (2012).

Figure 7: End-member scores, normalized difference of EM 2 and EM 5 (EMgis = (EM 2 — EM 5)/(EM 2
+ EM 5)), and their relation to field stratigraphy. Grey bars refer to sediment Facies and relative lake
level assumption (see Figure 4 for legend). P15 and P06 are sections at the outlet (A), and P02, P21
and P14 are sections at the northern shore (B).

Figure 8: Higher than present lake level phases at Lake Donggi Cona compared with the lake-core
proxies, ages of loess on top of onshore terraces, and Indian monsoon-dominated 60 of Oman
speleothems in the background (Fleitmann et al.,, 2003). * Opitz et al. (2012); ** Mischke et al.
(2010); *** OSL ages of loess sections on lake terraces, Stauch et al. (2012)

Figure S1: Higher than present lake level phases at Lake Donggi Cona compared with the lake-core
proxies, and ages of loess on top of onshore terraces (for separate use and future comparison). *
Opitz et al. (2012); ** Mischke et al. (2010); *** OSL ages of loess sections on lake terraces, Stauch et
al. (2012)
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