
 

 

 

 

   Originally published as: 

 

 

 

 

 

Koethur, P., Sips, M., Unger, A., Kuhlmann, J., Dransch, D. (2014): Interactive visual summaries for 

detection and assessment of spatiotemporal patterns in geospatial time series. ‐ Information 

Visualization, 13, 3, 283‐298 

 

DOI: http://doi.org/10.1177/1473871613481692 



Interactive visual summaries for detection and 
assessment of spatiotemporal patterns in geospatial 
time series 

Patrick Köthur 
German	Research	Center	for	GeoSciences	GFZ,	Potsdam,	Germany	

Mike Sips 
German	Research	Center	for	GeoSciences	GFZ,	Potsdam,	Germany	

Andrea Unger 
German	Research	Center	for	GeoSciences	GFZ,	Potsdam,	Germany	

Julian Kuhlmann 
German	Research	Center	for	GeoSciences	GFZ,	Potsdam,	Germany	

Doris Dransch 
German	Research	Center	for	GeoSciences	GFZ,	Potsdam,	Germany	

	

Corresponding author 
Patrick	Köthur,	German	Research	Center	for	GeoSciences	GFZ,	14473	Potsdam,	Germany	
Email:	patrick.koethur@gfz‐potsdam.de	



Interactive visual summaries for detection and 
assessment of spatiotemporal patterns in geospatial 
time series 

Abstract 
Numerous	 measurement	 devices	 and	 computer	 simulations	 produce	 geospatial	 time	 series	 that	
describe	a	wide	variety	of	processes	of	System	Earth.	A	major	challenge	in	the	analysis	of	such	data	
is	 the	 complexity	 of	 the	 described	 processes,	 which	 requires	 a	 simultaneous	 assessment	 of	 the	
data's	 spatial	 and	 temporal	 variability.	 To	 address	 this	 task,	 geoscientists	 often	 use	 automated	
analyses	 to	 compute	 a	 compact	 description	 of	 the	 data,	 ideally	 comprising	 characteristic	 spatial	
states	of	 the	process	under	study	and	 their	occurrence	over	 time.	The	results	of	 such	automated	
methods	 depend	 on	 the	 parameterization,	 especially	 the	 number	 of	 extracted	 spatial	 states.	 A	
particular	number	of	spatial	states,	however,	may	only	reflect	certain	spatial	or	temporal	aspects.	
We	 introduce	 a	 visual	 analytics	 approach	 that	 overcomes	 this	 limitation	 by	 allowing	 users	 to	
extract	and	explore	various	sets	of	spatial	states	 to	detect	characteristic	spatiotemporal	patterns.	
To	this	end,	we	use	the	results	of	hierarchical	clustering	as	a	starting	point.	It	groups	all	time	steps	
of	a	geospatial	time	series	into	a	hierarchy	of	clusters.	Users	can	interactively	explore	this	hierarchy	
to	derive	various	sets	of	spatial	states.	To	facilitate	detailed	inspection	of	these	sets,	we	employ	the	
concept	of	interactive	visual	summaries.	A	visual	summary	is	the	depiction	of	a	set	of	spatial	states	
and	their	associated	time	steps	or	intervals.	It	includes	interactive	means	that	allow	users	to	assess	
how	 well	 the	 depicted	 patterns	 characterize	 the	 original	 data.	 Our	 visual	 interface	 comprises	 a	
system	of	visualization	components	to	facilitate	both	the	extraction	of	sets	of	spatial	states	from	the	
hierarchical	 clustering	 output	 and	 their	 detailed	 inspection	 using	 interactive	 visual	 summaries.	
This	 work	 results	 from	 a	 close	 collaboration	 with	 geoscientists.	 In	 an	 exemplary	 analysis	 of	
observational	 ocean	 data,	 we	 show	 how	 our	 approach	 can	 help	 geoscientists	 gain	 a	 better	
understanding	of	geospatial	time	series.	
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Introduction 

Geospatial	 time	series	describe	a	broad	range	of	processes	of	System	Earth,	 such	as	atmospheric	
circulation,	animal	migration,	or	river	runoff,	 just	to	name	a	few.	Typically,	these	data	either	stem	
from	measurement	devices,	 e.g.,	 satellite	 sensors,	 tide	 gauges,	 or	GPS	 sensors,	 or	 from	computer	
simulations,	 such	 as	 environmental	 simulation	 models.	 In	 numerous	 applications	 such	 as	 risk	
assessment	or	civil	engineering,	 it	 is	crucial	to	understand	the	processes	described	by	these	data.	
Gaining	this	understanding	is	a	challenging	task	because	scientists	need	to	assess	the	data's	spatial	
and	temporal	variability	simultaneously.	

In	 this	 paper,	 we	 focus	 on	 time	 series	 where	 each	 time	 step	 represents	 a	 regular	 two‐
dimensional	 spatial	 distribution	 of	 scalar	 values,	which	we	 call	 a	 spatial	 situation.	 An	 important	
objective	is	to	find	spatiotemporal	patterns	that	capture	the	data’s	variability.	To	this	end,	scientists	



often	apply	automated	analyses	to,	first,	extract	the	characteristic	spatial	situations	and,	second,	to	
assign	 the	 individual	 time	 steps	 to	 these	 situations.	 The	 result	 of	 this	 analytical	 procedure	 –	 a	
limited	 number	 of	 characteristic	 spatial	 situations	 and	 their	 occurrence	 over	 time	 –	 is	 used	 as	 a	
compact	description	of	the	time	series.	It	allows	scientists	to	assess	the	data's	spatial	and	temporal	
variability	by	focusing	on	the	most	important	spatiotemporal	information.	

The	 outcome	 of	 such	 automated	 analyses	 depends	 on	 the	 applied	 algorithm	 and	 its	
parameterization.	An	 important	parameter	 is	 the	number	of	spatial	situations	to	extract	 from	the	
data.	 A	 particular	 number	 of	 spatial	 situations,	 however,	 may	 only	 reflect	 certain	 spatial	 or	
temporal	aspects	of	a	geospatial	time	series.	Hence,	any	analytical	result	should	only	be	regarded	as	
a	proposal	of	characteristic	spatial	situations;	a	proposal	that	needs	assessment	by	domain	experts.	
They	 must	 be	 given	 the	 means	 to	 decide,	 based	 on	 their	 expert	 knowledge	 about	 real‐world	
processes,	whether	the	analytical	result	contains	patterns	that	are	 important	to	the	analysis	 task,	
and	which	aspects	need	further	refinement.	

In	this	paper,	we	introduce	a	visual	analytics	approach	that	allows	scientists	to	extract	and	
explore	 various	 sets	 of	 spatial	 situations	 to	 detect	 characteristic	 spatiotemporal	 patterns	 in	 the	
data.	For	this	purpose,	our	approach	uses	hierarchical	clustering	to	aggregate	all	spatial	situations	
in	a	time	series	into	a	hierarchy	of	clusters;	a	cluster	is	a	set	of	similar	spatial	situations.	For	each	
cluster,	 we	 compute	 a	 representative	 spatial	 situation.	 Users	 can	 interactively	 explore	 this	
hierarchy	 to	 derive	 different	 sets	 of	 representative	 spatial	 situations.	 To	 facilitate	 detailed	
assessment	of	these	sets,	we	employ	the	concept	of	interactive	visual	summaries.	A	visual	summary	
is	the	depiction	of	a	set	of	spatial	situations	and	their	associated	time	steps	or	intervals.	It	includes	
interactive	 means	 that	 allow	 users	 to	 assess	 how	 well	 the	 depicted	 patterns	 characterize	 the	
original	data.	This	approach	results	from	close	collaboration	with	geoscientists	and	a	thorough	task	
and	requirement	analysis.	

We	present	a	visual	interface	that	facilitates	both,	the	extraction	of	sets	of	spatial	situations	
from	 the	 hierarchical	 clustering	 output	 and	 their	 detailed	 inspection	 using	 interactive	 visual	
summaries.	Users	can	interactively	select	clusters	from	the	hierarchy	and	assess	the	corresponding	
spatiotemporal	patterns	in	a	visual	summary.	Exploiting	the	hierarchical	structure	of	the	clustering	
output,	users	can	interactively	split	or	merge	any	cluster	in	a	visual	summary	and	easily	assess	the	
resulting	changes.	We	provide	visualization	components	that	let	users	decide	whether	a	particular	
pattern	 in	 a	 visual	 summary	 represents	 important	 information,	 and	 which	 clusters	 should	 be	
refined	 via	 split	 or	 merge	 operations.	 This	 exploration	 process	 enables	 scientists	 to	 detect	
spatiotemporal	patterns	that	they	consider	characteristic.	

In	particular,	the	contributions	of	this	paper	are	the	following:	
	

1. We	present	a	design	study	that	is	the	result	of	a	close	collaboration	with	users	and	a	thorough	
task	and	requirement	analysis.	

2. We	introduce	an	analytical	approach	that	allows	users	to	explore	and	summarize	a	geospatial	
time	series	by	extracting	and	refining	different	sets	of	spatial	situations	from	the	data.	

3. We	show	that	the	exploration	of	visual	summaries	enables	users	to	identify	spatial	situations	
that	they	consider	characteristic.	

4. We	 show	 that	 the	 exploration	 of	 visual	 summaries	 can	 lead	 to	 a	 better	 understanding	 of	
geospatial	time	series.	
	

The	rest	of	this	paper	is	organized	as	follows:	After	reviewing	related	work,	we	provide	an	
overview	 of	 our	 concept	 and	 explain	 the	 design	 requirements	 for	 a	 visual	 exploration	 tool	 that	
facilitates	extraction	and	exploration	of	spatiotemporal	patterns	in	geospatial	time	series.	Next,	we	



provide	a	detailed	description	of	the	applied	clustering	algorithm,	as	well	as	the	visual	exploration	
tool	and	its	visual	encoding.	We	further	demonstrate	and	discuss	the	utility	of	our	approach	in	an	
exemplary	 analysis	 of	 observational	 ocean	 data.	 We	 conclude	 with	 a	 short	 summary	 and	 with	
potential	future	research	directions.	

Related work 

In	 this	 section,	we	briefly	 discuss	 examples	 from	 the	 geosciences	 for	 the	 automated	detection	of	
spatiotemporal	 patterns	 and	 explain	 why	 we	 chose	 hierarchical	 clustering.	 	 We	 further	 review	
works	 on	 interactive	 visualization	 for	 spatiotemporal	 data	 analysis,	 because	 visualization	 has	
proven	to	be	valuable	for	incorporating	users'	domain	knowledge	and	for	gaining	insight	into	time	
series	 [1].	 Since	 we	 use	 hierarchical	 clustering	 as	 an	 automated	 analysis	 step,	 we	 also	 discuss	
approaches	 that	 facilitate	 interactive	 visual	 exploration	 of	 clustering	 parameters	 and	 cluster	
hierarchies.	

Analytical methods for detecting spatiotemporal patterns – Examples from the geosciences 

Geoscientists	 apply,	 and	 often	 combine,	 various	 computational	 methods	 to	 detect	 prominent	
spatiotemporal	 patterns	 in	 environmental	 time	 series.	 FEM‐K‐trends	 [2]	 and	 T‐mode	 principal	
component	analysis	 [3]	 transform	or	 reduce	 the	number	of	dimensions	of	geospatial	 time	series.	
The	 basic	 assumption	 is	 that	 a	 limited	 number	 of	 principal	 components	 express	 enough	 of	 the	
spatiotemporal	structure	of	 the	data.	Gaussian	mixture	models	and	expectation	maximization	[4],	
as	well	as	clustering	algorithms	such	as	k‐means	or	hierarchical	clustering	[5,	6]	sort	observations	
into	k	groups	such	that	the	similarity	is	high	among	members	of	the	same	group	and	low	between	
members	 of	 different	 groups.	 The	 identified	 clusters	 provide	 a	 condensed	 description	 of	 the	
original	data	(for	further	readings,	please	refer	to	[7],	[8],	or	[9]).	Another	popular	clustering	and	
dimensionality	reduction	technique	in	the	geosciences	is	self‐organizing	maps	[10,	11].	

A	substantial	problem	with	all	these	methods	is	the	parameterization	of	the	algorithms.	A	
good	parameterization	should	result	in	a	few	spatial	situations	that	represent	characteristic	states	
of	 the	 process	 under	 study.	 An	 important	 parameter	 is	 the	 number	 of	 clusters.	 Choosing	 the	
number	of	clusters	is	a	conceptual	difficulty	in	clustering.	This	parameter	is	often	specified	a	priori	
by	users	or	determined	with	the	help	of	statistical	measures,	such	as	the	silhouette	coefficient	[12]	
or	the	Bayesian	information	criterion	[13].	

We	 chose	 agglomerative	 hierarchical	 clustering	 as	 the	 computational	 method	 for	 the	
automated	analysis	because	it	does	not	require	specifying	the	number	of	clusters	in	advance.	In	our	
approach,	 the	 hierarchy	 of	 clusters	 is	 a	 starting	 point	 for	 exploring	 different	 sets	 of	 spatial	
situations	extracted	from	the	data.	In	a	recent	publication	[14],	we	demonstrated	that	hierarchical	
clustering	can	capture	characteristic	patterns	in	geospatial	time	series.	

Interactive visualization for spatial time series analysis 

Established	techniques	for	visualizing	spatiotemporal	data	are	small	multiples	and	map	animation	
[15–17].	While	these	techniques	are	effective	for	small	time	series,	they	do	not	scale	well	to	larger	
time	 series	 due	 to	 limited	 screen	 space	 or	 perceptual	 and	 cognitive	 limitations	 such	 as	 change	
blindness	[18,	19].	

Interactive	 visualization	 allows	 for	 analyzing	 large	 time	 series	 by	 facilitating	 the	
information	 seeking	 mantra:	 “Overview	 first,	 zoom	 and	 filter,	 then	 details	 on	 demand”	 [20].	



Typically,	 one	 or	 several	 overview	 visualizations	 present	 the	 data	 in	 aggregated	 form,	 while	
multiple	coordinated	views	allow	users	to	formulate	queries	against	the	data	and	assess	the	results	
in	detail.	Clustering	is	a	common	means	of	creating	a	compact	description	of	data	and	can	serve	as	a	
starting	 point	 for	 interactive	 exploration.	 Many	 successful	 approaches	 combine	 clustering	 and	
interactive	visualization	to	facilitate	analysis	of,	e.g.,	non‐spatial	time	series	data	[21–23]	or	time‐
varying	vector	fields	[24,	25].	

Approaches	 focussing	 on	 geospatial	 time	 series	 are	 less	 numerous.	 Bruckner	 and	Möller	
[26]	use	density‐based	clustering	 to	 interactively	 explore	 spatiotemporal	data.	Their	 approach	 is	
tailored	to	visual	effects	design,	a	different	application	problem	requiring	other	visualization	and	
interaction	techniques.	Frey	and	colleagues	[27]	extract	similarity	lines	from	similarity	matrices	to	
assess	and	compare	temporal	behavior	 in	(geo)spatial	 time	series.	They	focus	on	the	detection	of	
recurring	patterns,	while	we	 allow	users	 to	detect	 various	 types	 of	 characteristic	 patterns.	More	
closely	 related	 to	 our	 research	 is	work	by	Andrienko	 et	 al.	 [28].	 The	 authors	 use	 self‐organizing	
maps	 to	 cluster	 the	 spatial	 situations	 of	 a	 geospatial	 time	 series,	 and	 link	 the	 results	 with	
interactive	 displays	 that	 visualize	 the	 extracted	 spatial	 patterns	 and	 their	 occurrence	 over	 time.	
Their	concept	 facilitates	exploration	of	spatiotemporal	patterns	 in	a	single	clustering	result,	 i.e.,	a	
single	 partitioning	 of	 the	 data	 into	 clusters.	 In	 contrast,	 our	 goal	 is	 to	 support	 exploration	 and	
assessment	 of	 many	 different	 partitionings	 of	 the	 data.	 We	 seek	 to	 help	 scientists	 arrive	 at	 an	
appropriate	partitioning	of	 the	data	 into	clusters	 that	 captures	 those	patterns	 that	 they	 consider	
characteristic	and	 important	to	the	analysis	 task.	This	requires	a	different	clustering	approach	as	
well	as	a	different	visualization	and	interaction	concept.	

Interactive exploration of cluster hierarchies 

Depicting	a	hierarchy	of	clusters	(dendrogram)	is	essentially	a	tree	visualization	problem.	Herman	
et	 al.	 [29]	 provide	 a	 comprehensive	 survey	 of	 typical	 application	 areas	 and	 key	 issues	 from	 an	
information	visualization	perspective.	

Many	 works	 facilitate	 exploration	 of	 hierarchical	 clustering	 results.	 The	 Hierarchical	
Clustering	Explorer	[30,	31]	 integrates	a	dendrogram	with	color	mosaics	and	2D	scattergrams	 for	
analyzing	 genomic	 microarray	 data.	 Kreuseler	 and	 Schumann	 [32]	 introduce	 an	 algorithm	 for	
computing	an	abstraction	of	a	dendrogram.	They	also	propose	Magic	Eye	View	as	a	 focus+context	
technique	to	map	the	resulting	hierarchy	graph	onto	the	surface	of	a	hemisphere.	Chen	et	al.	[33]	
combine	 an	 abstract	 overview	 dendrogram	 with	 detail‐view	 dendrograms	 and	 reorderable	
matrices	 to	 facilitate	 exploration	of	multivariate	 data.	SpectraMiner	 [34]	 combines	 an	 interactive	
radial	 dendrogram	 with	 other	 linked	 views	 to	 analyze	 high‐dimensional,	 non‐spatial	 data.	 This	
approach	is	later	extended	in	the	ClusterSculptor	[35]	system	to	allow	for	interactive	refinement	of	
cluster	 hierarchies.	MultiClusterTree	 [36]	 visualizes	 a	 cluster	 hierarchy	 in	 a	 2D	 radial	 layout	 and	
combines	it	with	circular	parallel	coordinates	and	other	views.	

The	 described	 techniques	 address	 non‐spatial	 and/or	 non‐temporal	 data.	 Analyzing	
hierarchical	clustering	results	for	geospatial	time	series,	however,	requires	a	combined	assessment	
of	the	data's	spatial	and	temporal	domain.	To	facilitate	this	combined	assessment,	our	visualization	
design	 integrates	 techniques	 from	 geovisualization,	 time	 series	 visualization,	 and	 graph	
visualization.	We	use	the	dendrogram	to	let	users	derive	different	sets	of	spatial	situations	from	the	
data,	but	 the	primary	 focus	 is	on	exploring	and	visualizing	 the	spatiotemporal	 information	 in	 the	
corresponding	visual	summaries.	



Concept and design requirements 

In	this	section	we	present	a	visual	analytics	concept	that	is	the	result	of	a	close	collaboration	with	
Earth	system	modelers,	hydrologists,	and	ocean	modelers.	We	adopted	a	user‐	and	task‐centered	
approach	[37]	to	derive	a	thorough	understanding	of	the	challenges	that	scientists	face	when	they	
are	 studying	 geospatial	 time	 series.	 From	 the	 findings	 of	 our	 analyses,	we	 derived	 the	 following	
twofold	concept:	

	
1. Hierarchical	clustering.	We	use	agglomerative	hierarchical	clustering	to	construct	a	binary	tree	

that	aggregates	 the	spatial	situations	associated	with	 individual	 time	steps	 into	a	hierarchy	of	
clusters.	 Users	 do	 not	 have	 to	 specify	 the	 number	 of	 clusters	 in	 advance	 but	 rather	 use	 the	
hierarchy	as	a	means	to	extract	and	explore	spatial	situations	from	the	data.	

2. Interactive	exploration.	A	visual	exploration	tool	allows	users	to	traverse	the	dendrogram	from	
top	to	bottom	to	progressively	extract	varying	sets	of	spatial	situations	from	the	geospatial	time	
series,	 and	 explore	 the	 associated	 spatiotemporal	 patterns	 using	 visual	 summaries.	 Since	 the	
dendrogram	 represents	 a	 hierarchy	 of	 clusters,	 a	 top‐down	 traversal	 enables	 users	 to	 assess	
spatiotemporal	 patterns	 at	 different	 levels	 of	 detail.	 The	 interactive	 visual	 summaries	 allow	
users	to	identify	clusters	that	represent	characteristic	spatiotemporal	patterns.	

We	further	identified	the	following	design	requirements	for	a	visual	exploration	tool	that	
facilitates	 interactive	 extraction	 and	 exploration	 of	 spatiotemporal	 patterns	 in	 geospatial	 time	
series:	

	
DR1	 For	 a	 specific	 selection	 of	 clusters	 from	 the	 dendrogram,	 present	 the	 corresponding	 visual	

summary	to	users.	 To	 assess	 the	 spatiotemporal	 context	 of	 patterns,	 scientists	must	 know	
what	extracted	spatial	situations	look	like	and	when	these	situations	occur	in	the	time	series.	

DR2	 Enable	users	to	gradually	 increase	the	 level	of	detail	of	spatiotemporal	patterns	presented	to	
them.	Scientists	do	not	have	a	complete	understanding	about	which	patterns	are	hidden	in	
geospatial	time	series.	Therefore,	they	prefer	to	gradually	explore	the	spatial	situations	and	
their	occurrence	over	time,	starting	with	a	rather	coarse	visual	summary,	and	refining	this	
summary	in	a	stepwise	manner.	

DR3	 Provide	information	about	the	level	of	detail.	To	give	scientists	orientation	in	the	exploration	
process,	they	need	to	be	aware	of	the	current	degree	of	refinement.	

DR4	 Allow	 users	 to	 assess	 the	 quality	 of	 a	 visual	 summary.	 Users	 want	 to	 know	 how	 well	 the	
clusters	represent	the	original	time	series	data,	and	refine	clusters	where	necessary.	

DR5	 Allow	users	to	visually	detect	periodic	or	quasi‐periodic	patterns.	Recurring	patterns	can	be	an	
important	aspect	of	geospatial	time	series.	Scientists	want	to	be	able	to	visually	detect	and	
assess	such	recurrences	in	a	visual	summary.	

	
In	 the	 following,	 we	 will	 describe	 the	 hierarchical	 clustering	 algorithm	 and	 our	 visual	

exploration	tool.	

Hierarchical clustering 

In	this	section,	we	describe	our	experience	with	applying	hierarchical	clustering	to	geospatial	time	
series,	explain	our	choice	of	the	linkage	method,	and	discuss	feedback	from	geoscientists.	



Algorithm 

Hierarchical	clustering	groups	data	objects	into	a	tree	of	clusters.	This	grouping	can	be	performed	
either	by	 iteratively	dividing	 the	 set	of	data	objects	or	by	 agglomerating	 the	data	objects.	 In	our	
approach,	 we	 apply	 agglomerative	 hierarchical	 clustering.	 It	 considers	 each	 item	 of	 a	 data	 set	 a	
single	cluster.	In	each	iteration	of	the	clustering	process,	the	two	clusters	p	and	q	with	the	highest	
similarity	are	agglomerated	into	a	new	cluster	݄ ൌ ݌ ∪ 	there	if	terminates	process	clustering	The	.ݍ
is	 only	 one	 cluster	 left	 containing	 the	 entire	 data	 set.	 The	 input	 to	 agglomerative	 hierarchical	

clustering	is	a	list	of	ቀ
݊
2ቁ	dissimilarities	of	n	data	items.	The	output	is	a	binary	tree	representing	the	

cluster	hierarchy	(see	also	[38]	for	a	recent	survey	on	agglomerative	hierarchical	clustering).	The	
structure	of	 the	resulting	cluster	hierarchy	depends	strongly	on	 the	measure	of	dissimilarity	and	
the	agglomeration	method.	

In	our	scenario,	the	dissimilarity	between	time	steps	is	based	on	the	dissimilarity	of	their	
associated	 spatial	 situations.	We	 conducted	 several	 experiments	 to	 assess	 different	 dissimilarity	
measures	and	obtained	the	best	results	with	the	sum	of	squared	errors	[39].	Let	i	and	j	be	two	time	
steps,	and	let	ܦ௜	and	ܦ௝		be	their	associated	two‐dimensional	distributions	of	scalar	values.	Without	
loss	 of	 generality,	 we	 consider	ܦ௜ 	and	ܦ௝ 	as	ܰ ൈܯ	matrices,	 and	 compute	 the	 dissimilarity	݀ሺ݅, ݆ሻ	

between	time	step	i	and	j	with	݀ሺ݅, ݆ሻ ൌ ∑ ∑ ൫ܦ௜ሾ݇, ݈ሿ െ ,ሾ݇	௝ܦ ݈ሿ൯
ଶெ

௟ୀଵ
ே
௞ୀଵ .	The	computational	effort	to	

construct	 the	 list	of	dissimilarities	depends	on	 the	 resolution	of	 the	spatial	 situations	and	on	 the	
number	of	time	steps.		

In	collaboration	with	geoscientists,	we	tested	various	agglomeration	methods	with	respect	
to	 their	 applicability	 to	 geospatial	 time	 series.	The	 test	data	 sets	differed	 in	 terms	of	 spatial	 and	
temporal	resolution,	phenomenon	described,	and	geographic	area	examined.	On	the	one	hand,	we	
applied	 the	Lance‐Williams	 sorting	 strategy	 [40]	 to	 these	data	 to	 realize	 single	 linkage,	 complete	
linkage,	 average	 linkage,	 and	 minimum	 variance	 agglomeration.	 As	 an	 alternative	 to	 Lance‐
Williams,	 we	 used	 the	 Chameleon	 algorithm	 [41]	 as	 a	 representative	 for	 graph‐based	
agglomeration	strategies.	 It	 includes	a	pre‐clustering	similarity	search	that	constructs	a	k‐nearest	
neighbor	 graph	 and	 partitions	 this	 graph	 into	 initial	 clusters.	 The	 agglomeration	 stage	 of	 this	
algorithm	 is	 based	 on	 the	 connectedness	 of	 cluster	 members	 and	 on	 the	 proximity	 of	 clusters	
within	the	k‐nearest	neighbor	graph.	

Based	 on	 the	 assessment	 by	 domain	 experts,	 we	 decided	 to	 use	 the	 average	 linkage	
method.	We	implemented	the	nearest	neighbor	chain	algorithm	[42]	because	it	is	time‐optimal	for	
average	linkage	agglomeration.	To	find	the	closest	pair	of	clusters,	the	algorithm	constructs	a	chain	
of	nearest	neighbors	(NN‐chain).	Starting	with	an	arbitrary	time	step	i,	an	NN‐chain	is	the	sequence	
ܰܰሺ݅ሻ ൌ ݆,ܰܰሺ݆ሻ ൌ ݇,… ,ܰܰሺݍሻ ൌ ሻ݌ሺܰܰ,݌ ൌ 	where	ݍ j	has	 the	smallest	dissimilarity	 to	 i	among	
all	 time	steps;	according	to	 the	dissimilarity	between	 their	associated	spatial	 situations	ܦ௜ 	and	ܦ௝.	
The	inter‐cluster	dissimilarity	within	an	NN‐chain	decreases	in	a	monotonic	manner.	A	closest	pair	
p	 and	 q	 of	 clusters	 is	 detected	 if	 the	 NN‐chain	 arrives	 at	 a	 situation	 where		ܰܰሺ݌ሻ ൌ 	and		ݍ
ܰܰሺݍሻ ൌ 	,clusters	of	pair	closest	new	a	determine	To	.݌ the	algorithm	computes	a	new	NN‐chain	
from	the	cluster	that	preceded	p	and	q,	or	from	an	arbitrary	cluster	if	the	NN‐chain	is	empty.	The	
time	and	space	complexity	of	the	algorithm	for	average	linkage	agglomeration	is	ܱሺ݊ଶሻ.	

Discussion 

Our	 collaborators	 clearly	 favored	 the	 average	 linkage	 method	 because	 it	 yielded	 easily	
interpretable	results	and	was	able	to	capture	characteristic	patterns	in	geospatial	time	series;	the	
output	of	the	other	methods	was	often	non‐intuitive	and	difficult	to	interpret.	In	their	daily	work,	



however,	 they	noticed	that	clusters	 that	they	consider	as	similar	are	sometimes	placed	 in	distant	
parts	 of	 the	 hierarchy.	 After	 discussing	 this	 issue	 with	 the	 users,	 we	 identified	 two	 potential	
reasons.	When	domain	experts	visually	compare	two	clusters,	they	sometimes	do	not	consider	the	
entire	 geographic	 and	 data	 domain,	 but	 focus	 on	 specific	 geographic	 regions	 and/or	 data	 value	
ranges.	Since	our	measure	of	dissimilarity	considers	the	entire	geographic	space	and	data	domain,	
the	computed	dissimilarity	may	differ	from	expert	judgment	in	such	cases.	We	also	noted	that	the	
experts’	 criteria	 for	 comparing	 any	 two	 clusters	 may	 change	 during	 the	 exploration	 process.	
Therefore,	we	cannot	adjust	the	measure	of	dissimilarity	to	these	criteria	a	priori.	Another	potential	
reason	could	lie	in	the	strict	nature	of	merge	decisions	during	the	agglomeration	phase.	However,	
our	 experiments	 with	 more	 flexible	 multi‐phase	 hierarchical	 clustering	 methods,	 such	 as	
Chameleon,	have	not	 led	to	better	results.	Our	experience	suggests	that	the	reason	for	this	 lies	 in	
the	 complexity	 of	 the	data.	 Geospatial	 time	 series	may	 describe	many	different,	 often	 non‐linear	
processes,	 singular	 events,	 or	 recurring	 patterns.	 Each	 parameterization	 of	 the	 clustering	
introduces	additional	assumptions	about	the	data	and	often	emphasizes	only	a	particular	aspect.	

To	address	this	issue,	our	visual	interface	allows	users	to	interactively	rearrange	clusters	in	
the	 dendrogram.	 This	 provides	 domain	 experts	with	 the	 flexibility	 to	 bring	 the	 depicted	 cluster	
structure	in	the	hierarchy	in	accordance	with	their	expert	judgment.	The	rebalancing	of	the	cluster	
hierarchy	 can	 be	 achieved	 using	 standard	 tree	 sorting	 algorithms	 [43].	 Figure	 1	 illustrates	 this	
process	and	the	resulting	changes	to	the	dendrogram.	

	

	
Figure 1. Simplified example of a rebalancing of the cluster hierarchy. If users choose to merge clusters 
C4 and C7, a new agglomerative cluster C8 – with C4 and C7 as its children – will be created to replace C4. 
Meanwhile, cluster C3 is removed and replaced by C6. 

Interactive exploration 

We	 propose	 five	 tightly	 coupled,	 interactive	 visualization	 components	 –	 hierarchy	 explorer,	
sequence	view,	 sequence	explorer,	periodicity	explorer,	 and	 spatial	gallery.	 The	 specific	 coupling	 of	
the	visual	components	facilitates	extraction	of	various	sets	of	spatial	situations	from	the	data	and	
detailed	 inspection	 of	 the	 corresponding	 spatiotemporal	 patterns	 using	 interactive	 visual	
summaries.	 In	 this	section,	we	will	 first	give	an	overview	of	 the	components	(Figure	2)	and	their	
visual	and	interactive	coupling,	before	explaining	the	visual	encoding	in	more	detail.	



Overview 

	
Figure 2. Overview of the five visualization components that are integrated into our exploration tool, and 
the supported tasks. The components are visually linked through a consistent color coding of the cluster 
affiliation of time steps and of the cluster representatives. 

The	hierarchy	explorer	allows	users	to	extract	different	sets	of	spatial	situations	from	the	data	via	
drill‐down,	 roll‐up,	 and	 rearrangement	 operations	 on	 the	 cluster	 hierarchy.	 It	 depicts	 the	
representative	 spatial	 situations	 of	 the	 clusters	 (DR1)	 and	 indicates	 their	 position	 in	 the	
dendrogram	 (DR3).	 Users	 can	 select	 individual	 clusters	 to	 inspect	 the	 representative	 spatial	
situations	of	its	two	child	clusters	and	decide	whether	they	would	like	to	split	the	selected	cluster,	
merge	it	with	its	sibling,	or	focus	on	a	different	cluster	(DR2).	In	addition,	users	can	merge	any	two	
clusters	 and,	 thus,	manually	 rearrange	 the	hierarchy.	 It	 also	provides	 statistical	 information	 that	
gives	 hints	 on	 the	 overall	 quality	 of	 the	 cluster	 representatives	 (DR4).	 The	 hierarchy	 explorer	
allows	users	to	focus	on	specific	patterns	of	interest	in	the	current	visual	summary	by	selecting	a	
subset	of	the	extracted	clusters.	This	subset	will	be	forwarded	to	the	spatial	gallery,	the	periodicity	
explorer,	and	the	sequence	view.	

The	 sequence	 view	 concisely	 depicts	 the	 temporal	 information	 of	 a	 visual	 summary.	 It	
shows	at	which	time	steps	the	currently	extracted	spatial	situations	occur	(DR1)	and	provides	hints	
on	 how	 well	 they	 represent	 these	 time	 steps	 (DR4).	 When	 users	 select	 a	 specific	 cluster,	 the	



sequence	view	presents	a	preview	of	 the	potential	 changes	 in	 the	cluster	affiliation	of	 time	steps	
that	would	result	from	splitting	this	particular	cluster	(DR2).	Additionally,	users	can	select	any	time	
step	or	time	period	in	the	sequence	view	for	further	inspection	in	the	sequence	explorer.	

The	sequence	explorer	facilitates	a	more	detailed	assessment	of	spatiotemporal	dynamics	in	
the	data.	Users	can	inspect	the	temporal	order	of	clusters	in	a	visual	summary	(DR1)	and	compare	
the	 spatial	 situations	 associated	with	 each	 time	 step	with	 their	 respective	 cluster	 representative	
(DR4).		

The	periodicity	explorer	 focuses	on	recurrences	 in	a	visual	summary	by	supporting	visual	
detection	of	(quasi‐)periodic	patterns	(DR5).	

The	 spatial	gallery,	 in	 combination	with	 the	 sequence	view,	 is	 an	 effective	mechanism	of	
presenting	 the	 (intermediate)	results	of	 the	exploration	process	 (DR1).	 It	exclusively	 focusses	on	
the	cluster	representatives	in	the	current	visual	summary,	summarizing	the	spatial	information	and	
facilitating	comparison	of	spatial	patterns.	

To	establish	a	visual	 link	between	all	five	views,	we	use	a	color	scheme	that	 is	consistent	
across	 all	 five	 visualization	 components	 to	 encode	 cluster	 affiliation	 of	 time	 steps	 and	 of	
representative	spatial	situations.	

We	 provide	 a	 flexible	 framework	 that	 allows	 free	 arrangement	 of	 the	 five	 visualization	
components.	Depending	on	the	available	screen	space	or	number	of	displays,	users	can	choose	to	
arrange	the	views	in	single	windows,	 in	a	flexible	matrix	 layout,	 in	tabs,	or	 in	any	combination	of	
these	modes.	

Visual encoding 

Hierarchy	 explorer.	 The	 hierarchy	 explorer	 consists	 of	 two	 main	 components	 (Figure	 3):	 an	
overview	dendrogram	presenting	the	hierarchy	of	clusters	at	a	user‐specified	level	of	detail	(DR3)	as	
well	as	providing	information	about	the	cluster	quality	(DR4),	and	a	spatial	preview,	allowing	users	
to	preview	the	spatial	information	in	the	child	clusters	(DR1).	Both	components	facilitate	merge	or	
split	operations	in	the	cluster	hierarchy	(DR2).	

	



	
Figure 3. The hierarchy explorer and its two main components: The overview dendrogram (A) and the 
spatial preview (B). 

The	overview	dendrogram	(Figure	3,	part	A)	 shows	all	 clusters	 in	 the	hierarchy,	 from	the	
root	down	 to	 a	 user‐chosen	 level.	We	do	not	 display	nodes	below	 this	 level	 to	 reduce	 the	 visual	
complexity	of	the	exploration	process.	The	leaves	in	the	resulting	dendrogram	visualization	show	
the	spatial	situations	that	are	representative	for	the	respective	clusters.	These	spatial	situations	are	
depicted	 as	 cartographic	maps	 that	 encode	 the	 data’s	 scalar	 values	with	 diverging	 or	 sequential	
color	schemes,	depending	on	the	data.	To	obtain	a	cluster	representative,	we	compute	an	average	
spatial	 situation	 from	 all	 spatial	 situations	 in	 a	 cluster.	 The	 representative	 	of	 cluster	 	is	 an	

	matrix	with	 	,	where	 	 	and	 	being	 the	 spatial	 situation	associated	 to	
time	 step	 i.	 To	 provide	 hints	 on	 how	well	 a	 cluster	 representative	 portrays	 the	 entire	 group	 of	
associated	 time	 steps,	 each	 cluster	 representative	has	 an	 associated	horizontal	bar	whose	 length	
encodes	the	average	dissimilarity	of	all	time	steps	in	a	cluster	to	its	representative	spatial	situation.	
Cluster	representatives	with	small	average	dissimilarities	are	usually	a	good	approximation	of	the	
underlying	time	steps.	The	vertical	alignment	of	leaves	and	their	associated	horizontal	bars	in	the	
proposed	visual	encoding	facilitate	inter‐cluster	comparison.	Scientists	may	use	this	information	to	
focus	 on	 cluster	 representatives,	 further	 refining	 them	 where	 necessary.	 To	 remove	 extracted	
clusters	 temporarily	 from	 the	 visual	 summary	 users	 can	 deselect	 leaves	 in	 the	 overview	
dendrogram.	This	reduces	their	size	to	thumbnail	 images.	Additionally,	deselected	clusters	do	not	



appear	in	the	spatial	gallery	and	are	grayed	out	in	the	sequence	view	and	the	periodicity	explorer.	
Domain	experts	can	further	manually	rearrange	the	hierarchy	if	they	consider	two	clusters	that	are	
located	in	distant	parts	of	the	dendrogram	as	similar.	They	can	easily	merge	two	such	clusters	via	
drag‐and‐drop.	The	subsequent	rebalancing	of	the	dendrogram	is	illustrated	in	Figure	1.	

For	any	cluster	selected	in	the	overview	dendrogram,	the	spatial	preview	(Figure	3,	part	B)	
allows	users	to	see	the	representatives	of	its	two	child	clusters.	After	assessing	the	spatial	patterns,	
users	can	drill	down	the	dendrogram	to	split	the	selected	cluster.	Alternatively,	they	can	either	roll	
up	the	dendrogram	and	merge	the	selected	cluster	with	its	sibling,	or	focus	on	a	different	cluster.	

The	overview	dendrogram	and	the	spatial	preview	are	vertically	scrollable	if	screen	space	
does	not	suffice.	

	
Figure 4. The sequence view (A) and the sequence explorer (B). 

Sequence	view.	The	sequence	view	comprises	the	following	three	parts	(Figure	4,	part	A):	a	cluster	
timeline	 that	 presents	 the	 temporal	 order	 of	 clusters	 in	 a	 visual	 summary	 (DR1),	 a	preview	 that	
supports	 gradual	 refinement	 of	 a	 user‐selected	 cluster	 by	 showing	 potential	 changes	 in	 the	
temporal	information	(DR2),	and	a	bar	chart	that	provides	hints	on	the	quality	of	a	visual	summary	
(DR4).	

The	cluster	timeline	 is	a	color‐coded	horizontal	bar	that	represents	the	entire	time	series.	
Cluster	affiliation	of	time	steps	is	mapped	to	color.	The	bar	chart	above	the	cluster	timeline	depicts	
for	 each	 time	 step	 its	dissimilarity	 to	 the	associated	 representative	 spatial	 situation.	To	 compute	
the	dissimilarity,	we	use	 the	 same	measure	 that	was	applied	 in	 the	hierarchical	 clustering.	 Small	
values	in	the	bar	chart	indicate	time	steps	where	the	visual	summary	fits	well;	high	values	point	to	
parts	where	a	cluster	representative	is	not	an	adequate	description	of	individual	time	steps.	Upon	



interactive	selection	of	a	cluster	in	the	cluster	timeline,	the	preview	appears	below	the	timeline.	It	
presents	a	smaller	masked	version	of	the	cluster	timeline	that	contains	only	time	steps	that	belong	
to	the	selected	cluster	and,	thus,	also	visually	marks	the	currently	selected	cluster.	The	time	steps	in	
the	preview	are	 color‐coded	as	 if	 the	 selected	cluster	was	split	 into	 its	 two	children.	 In	addition,	
horizontal	 sliders	 allow	 users	 to	 zoom	 in	 time.	 A	 time	 brush	 lets	 users	 select	 time	 periods	 of	
interest	for	further	inspection	in	the	sequence	explorer.	

	
Sequence	explorer.	 The	 sequence	 explorer	 (Figure	4,	 part	B)	 contains	 two	 components	 that,	 for	 a	
user	selected	time	period,	allow	scientists	to	assess	the	spatiotemporal	dynamics	in	the	data	(DR1)	
and	to	compare	the	original	data	with	the	cluster	representatives	(DR4).	

In	 the	 horizontally	 scrollable	 cluster	 sequence,	 the	 representative	 spatial	 situations	 of	
clusters	are	arranged	from	left	to	right	as	they	occur	in	the	sequence	view.	Colored	frames	around	
the	cluster	representatives	encode	cluster	affiliation.	The	animation	depicts	 the	original	data.	For	
small	 time	 periods,	 looking	 at	 the	 original	 data	 in	 an	 animation	 allows	 users	 to	 qualitatively	
evaluate	the	spatiotemporal	dynamics	in	the	data,	and	to	assess	the	representativeness	of	certain	
patterns	in	the	visual	summary.	We	provide	several	visual	aids	to	help	users	analyze	the	animated	
sequence.	 The	 cluster	 affiliation	 of	 the	 time	 step	 that	 is	 currently	 depicted	 in	 the	 animation	 is	
encoded	 in	 a	 colored	 frame	 around	 the	 animation	window.	 In	 addition,	 the	 animation	 is	 visually	
linked	to	the	sequence	view.	A	vertical	line	in	the	sequence	view	locates	the	current	time	step	and	a	
colored	rectangle	represents	the	selected	time	period.	

	
Figure 5. The periodicity explorer arranges the cluster timeline in a 2D array. Users can choose any 
interval length and interval start date to visually detect (quasi-)periodic behavior. This particular example 
shows the periodic winter-spring (red) / summer-fall (blue) cycle that can be observed in global sea-
surface height observations from 1992 to 2009. The outstanding green and orange clusters represent a 
very strong El Niño event in 1997/98. 

Periodicity	explorer.	The	periodicity	explorer	(Figure	5)	helps	scientists	to	visually	analyze	the	data	
for	various	types	of	recurring	behavior	(DR5).	 It	splits	 the	cluster	timeline	 into	 intervals	of	equal	
length.	These	intervals	are	then	chronologically	arranged	in	rows	from	top	to	bottom,	resulting	in	a	
2D	 array.	 Users	 can	 freely	 determine	 the	 interval	 length	 and	 interval	 start	 date.	 Since	 cluster	



affiliation	is	mapped	to	color,	recurring	phenomena	become	visible	when	the	same	color	appears	in	
multiple	rows	in	roughly	the	same	horizontal	position.	

	
Spatial	gallery.	To	present	the	(intermediate)	results	of	the	exploration	process	and	to	allow	users	
to	compare	the	extracted	spatial	patterns	(DR1),	the	spatial	gallery	provides	a	maximum	of	screen	
space	to	depict	the	cluster	representatives	(Figure	6).	It	arranges	the	spatial	situations	in	a	matrix	
layout.	Users	can	adjust	the	size	of	the	spatial	patterns	by	choosing	the	number	of	columns	in	the	
matrix.	The	gallery	is	vertically	scrollable	if	screen	space	does	not	suffice.	

	

	
Figure 6. The spatial gallery depicts the cluster representatives of the current visual summary in a matrix 
layout. The slider allows users to choose the number of columns in the matrix. 

Color coding 

In	our	tool,	the	different	views	are	visually	linked	by	a	consistent	color	coding	of	clusters.	We	assign	
a	 unique	 color	 to	 each	 cluster	 that	 users	 visit	 in	 the	 hierarchy.	 This	 approach	 requires	 a	 high	
number	 of	 distinguishable	 colors.	 To	 this	 end,	 we	 use	 of	 one	 of	 ColorBrewer's	 qualitative	 color	
schemes	[44]	as	well	as	colors	sampled	from	the	CIELAB	color	space	(please	see	[45]	for	a	suitable	
sampling	 strategy).	We	 chose	 the	ColorBrewer	 colors	 to	 provide	users	with	 a	 carefully	 designed	
and	easily	distinguishable	color	scheme.	 If	 the	exploration	process	requires	additional	colors,	we	
use	 the	 CIELAB	 samples.	 This	 strategy	 yields	 a	 sufficient	 number	 of	 distinguishable	 colors.	 In	
addition,	 users	 can	 change	 the	 colors	 manually	 to	 adjust	 the	 color	 coding	 according	 to	 their	
preference.	

Scalability 

Two	main	 factors	 influence	 the	scalability	of	our	 tool:	 the	number	of	 time	steps	 in	 the	geospatial	
time	series	and	the	number	of	clusters	extracted	from	the	cluster	hierarchy.	

Our	 tool	 can	 display	 a	 large	 number	 of	 time	 steps,	 as	 long	 as	 the	 cluster	 affiliation	 of	
subsequent	time	steps	yields	visually	coherent	blocks	in	the	sequence	view.	Regarding	the	number	
of	clusters	extracted	 from	the	cluster	hierarchy,	we	observed	that	geoscientists	 focus	on	a	rather	
small	subset	of	patterns	when	exploring	geospatial	time	series.	They	normally	analyze	between	ten	
and	 thirty	 clusters.	 Therefore,	we	 specifically	 designed	 the	 hierarchy	 explorer	 to	 support	 such	 a	
focused	exploration.	Technically,	the	hierarchy	explorer	can	depict	a	larger	number	of	clusters	due	
to	its	vertically	scrollable	components.	



Application example 

One	cornerstone	in	the	development	of	our	tool	was	the	intense	collaboration	with	ocean	modelers.	
The	goal	was	to	help	ocean	modelers	 in	the	analysis	of	observational	data	as	well	as	output	from	
model	simulations.	

We	have	 already	presented	 the	 initial	 results	 of	 our	 collaboration	 in	previous	work	 [14]	
where	 we	 demonstrated	 that	 a	 static	 visual	 summary	 can	 capture	 various	 characteristic	
spatiotemporal	patterns	 in	geospatial	 time	series.	A	static	version	of	a	visual	summary,	however,	
does	not	allow	scientists	to	gain	a	more	detailed	understanding	of	the	presented	patterns.	Scientists	
need	 to	 be	 able	 to	 extract	 different	 sets	 of	 spatial	 situations	 from	 the	 data	 and	 to	 assess	 the	
corresponding	 visual	 summaries	 interactively	 to	 focus	 on	 patterns	 of	 interest	 and	 to	 further	
differentiate	 these	 patterns	 into	 subtypes.	 Concurrently,	 they	 need	 to	 be	 able	 to	 eliminate	 other	
patterns	that	they	consider	insignificant	or	distracting.	

Here,	we	 present	 an	 example	 of	 how	 scientists	 used	 our	 interactive	 tool	 to	 identify	 and	
further	distinguish	different	types	of	El	Niño	events.	We	also	give	a	short	example	of	how	our	tool	
helped	scientists	generate	hypotheses	about	processes	in	the	ocean.	

Identification and differentiation of El Niño events 

To	evaluate	our	 tool,	one	of	our	collaborators	used	 it	 to	 identify	and	differentiate	known	El	Niño	
events	in	ocean	observational	data.	

The	data	used	were	daily	satellite	observations	of	sea	surface	temperatures	(SSTs)	 in	the	
Tropical	 Pacific,	 including	 smaller	 sections	 of	 the	 Caribbean	 and	 Southeast	Asia,	 covering	 a	 time	
period	 from	 2000	 to	 2010.	 Since	 the	 seasonal	 cycle	 dominates	 the	 variability	 of	 the	 time	 series	
without	 being	 of	 interest	 for	 the	 present	 study,	 we	 de‐seasonalized	 the	 data	 by	 subtracting	
climatological	monthly	means.	 To	 focus	on	 inter‐annual	 variability,	we	 further	 computed	weekly	
mean	SSTs.	The	result	of	 these	preprocessing	steps	was	a	 time	series	of	SST	anomalies	with	574	
time	steps	and	a	spatial	resolution	of	661 ൈ 240	grid	points.	

The	prominent	processes	in	the	described	region	are	El	Niño	and	La	Niña	events.	El	Niño	
events	are	irregularly	(about	every	2	to	7	years)	recurring	phases	of	anomalously	high	SSTs	in	the	
Tropical	 Pacific	 with	 implications	 on	weather	 patterns	worldwide.	 La	 Niña	 events,	 on	 the	 other	
hand,	 are	 characterized	 by	 cold	 SSTs	 in	 the	 Tropical	 Pacific.	 Two	 different	 El	Niño	 types	 can	 be	
observed:	 An	 Eastern	 Pacific	 El	 Niño	 shows	 maximum	 positive	 SST	 anomalies	 close	 to	 the	
Ecuadorian	 and	 Peruvian	 coast;	 a	 Central	 Pacific	 El	 Niño	 shows	 the	 strongest	 positive	 SST	
deviations	 close	 to	 the	 date	 line.	Occasionally,	 there	 are	 positive	 anomalies	 in	 both	 places,	 some	
authors	have	therefore	defined	a	third,	"mixed"	type	[46].	



	
Figure 7. Initial stage of the exploration of sea surface temperature anomalies. Splitting the data into two 
clusters reveals the two dominant processes in the region. The yellow cluster represents time steps that 
are somewhat influenced by La Niña, while the green cluster represents time steps that are more 
influenced by El Niño. 

Since	ocean	scientists	have	identified	three	Central	Pacific	El	Niños	and	one	Eastern	Pacific	
El	Niños	in	the	observed	region	between	2000	and	2010	[46],	the	task	was	to	correctly	locate	and	
distinguish	 these	events	 in	 the	SST	data.	Our	collaborator	used	our	 tool	 to	 create	a	 coarse	visual	
summary	 of	 the	 time	 series	 that	 describes	 the	 data	 with	 only	 two	 clusters.	 These	 two	 clusters	
already	revealed	the	two	dominant	processes	in	the	region	(Figure	7).	One	cluster	represented	time	
steps	that	were	somewhat	influenced	by	La	Niña,	while	the	other	represented	time	steps	that	were	
more	 influenced	by	El	Niño.	Further	exploration	 focused	on	the	 latter.	Relatively	high	SST	values	
along	the	Equator	 in	a	cluster	representative	hint	at	El	Niño	events	 in	this	cluster.	After	selecting	
such	a	 cluster	and	examining	 the	 spatiotemporal	patterns	of	 its	 two	children,	 the	ocean	modeler	
decided	whether	splitting	the	selected	cluster	would	reveal	relevant	information.	Decisions	to	split	
or	merge	particular	 clusters	were	 grounded	on	 the	 information	 that	 our	 tool	provides	 about	 the	
quality	of	 the	 visual	 summary	during	 the	 exploration	process,	 and	on	his	 knowledge	about	what	
typical	El	Niño	situations	look	like.	The	goal	was	to	separate	El	Niño	phases	from	adjacent,	rather	
neutral,	 phases	 that	 were	 assigned	 to	 the	 same	 cluster.	 After	 several	 split	 operations,	 our	
collaborator	was	able	 to	 identify	 all	 four	El	Niño	events;	 three	Central	Pacific	 types	and	 the	only	
Eastern	 Pacific	 El	 Niño	 (Figure	 8).	 To	 gain	 additional	 confidence	 in	 the	 result,	 he	 selected	 time	
periods	associated	with	these	events	 in	the	sequence	view,	and	examined	the	original	data	 in	the	
sequence	explorer.		



	
Figure 8. Result of the exploration of sea surface temperature anomalies. After several split operations, 
our collaborator was able to identify all four El Niños. Two out of the three Central Pacific El Niños are 
represented by the blue cluster, the other by the purple cluster. The only Eastern Pacific El Niño is 
depicted by the green cluster. 

Discussion 

In	 the	 described	 application	 example,	 the	 scientist	 was	 able	 to	 identify	 all	 three	 known	 Central	
Pacific	 El	Niño	 events	 and	 the	 only	 Eastern	 Pacific	 El	Niño.	 Although	one	would	 expect	 all	 three	
Central	Pacific	El	Niño	events	to	be	in	the	same	cluster,	Figure	8	shows	that	the	2004/05	event	is	
located	 in	a	 separate	cluster.	 It	 is	 represented	by	 the	purple	 cluster,	while	 the	other	 two	Central	
Pacific	El	Niño	events	are	represented	by	the	blue	cluster.	Our	collaborator	explained	this	with	the	
event’s	 extremely	 low	 intensity.	 Please	 note	 that	 our	 tool	 was	 not	 specifically	 tailored	 to	 the	
identification	and	differentiation	of	El	Niño	events.	Therefore,	 it	 is	encouraging	that	such	detailed	
patterns	 could	 be	 distinguished	 with	 our	 general	 purpose	 approach.	 Geoscientists	 normally	
combine	a	variety	of	methods	to	detect	these	events,	e.g.,	regression	analysis,	empirical	orthogonal	
functions,	and	wavelet	analysis	[6].	They	also	often	focus	 in	their	analysis	on	various	 indices	that	
describe	 particular	 geographic	 regions	with	 respect	 to	 a	 specific	 environmental	 process	 [46].	 In	
contrast,	our	approach	makes	very	few	assumptions	about	the	data	and	allows	scientists	to	analyze	
a	 variety	 of	 patterns	 for	 large	 geographic	 regions	without	 having	 to	 refer	 to	 specialized	 indices.	
Once	our	tool	has	pointed	experts	to	 interesting	patterns,	they	can	apply	established	quantitative	
methods	for	further	testing	and	inspection.	

Overall,	 our	 collaborators	 valued	 the	 intuitiveness	 of	 the	 interactive	 exploration.	 They	
appreciate	the	ability	to	progressively	increase	the	level	of	detail	of	spatiotemporal	patterns	in	the	
hierarchy	 explorer,	 and	 value	 the	 permanent	 link	 to	 the	 corresponding	 original	 data	 in	 the	



sequence	 explorer.	 They	 confirmed	 that	 the	 tool	 supports	 detection	 of	 characteristic	 patterns	 as	
well	as	differentiation	into	their	subtypes.	

After	applying	our	tool	to	different	data	in	their	daily	research,	scientists	pointed	out	that	it	
allows	them	to	produce	hypotheses.	 In	one	particular	example	regarding	satellite	observations	of	
sea	surface	heights,	our	tool	suggested	a	seasonal	cycle	 in	a	geographic	region	where	experts	did	
not	expect	it.	Our	tool	pointed	scientists	to	this	particular	feature	in	the	data	which	will	now	be	a	
starting	point	for	further	investigation.	

Our	 collaborators	 also	 shared	 their	 thoughts	 on	 potential	 limitations.	 Regarding	 the	
hierarchical	 clustering,	 it	 became	 apparent	 that	 sometimes	 a	 characteristic	 spatial	 situation	 is	
represented	by	several	clusters	on	different	branches	in	the	dendrogram.	This	leads	to	redundant	
spatial	situations	in	the	visual	summary.	Here,	our	collaborators	appreciated	the	ability	to	manually	
rearrange	 the	 hierarchy.	 The	 analysis	 of	 geospatial	 time	 series	 with	 very	 low	 temporal	
autocorrelation	can	be	quite	challenging	with	our	tool.	The	resulting	visual	summaries	are	difficult	
to	interpret	since	the	cluster	affiliation	of	subsequent	time	steps	changes	frequently	and,	thus,	the	
sequence	view	does	not	display	visually	coherent	blocks.	To	address	this	problem,	scientists	may	
use	the	periodicity	explorer	to	create	visually	coherent	blocks	by	rearranging	the	cluster	timeline	in	
a	2D	array.	This	distributes	the	cluster	timeline	across	multiple	rows,	providing	more	screen	space.	
In	addition,	visually	coherent	blocks	may	not	only	become	apparent	along	the	horizontal	axis,	but	
also	vertically.	Another	option	is	a	more	substantial	pre‐processing	of	the	data,	e.g.,	by	temporal	or	
spatial	 filtering,	 to	 remove	 processes	 that	 are	 not	 of	 interest	 and	 that	 can	 be	 theoretically	
estimated.	

Conclusion and future work 

Close	 collaboration	with	geoscientists	 enabled	us	 to	 identify	 and	 to	address	a	major	 challenge	 in	
geospatial	 time	 series	 analysis:	 the	 complexity	 of	 the	 processes	 described	 in	 the	 data	 which	
requires	a	simultaneous	assessment	of	the	data's	spatial	and	temporal	variability.	To	address	this	
challenge,	 our	 approach	 supports	 users	 in	 the	 analysis	 of	 geospatial	 time	 series	 by	 extracting	
different	sets	of	spatial	situations	from	the	data	and	exploring	the	corresponding	visual	summaries.	
We	 use	 the	 output	 of	 agglomerative	 hierarchical	 clustering	 of	 time	 steps	 as	 a	 starting	 point	 for	
interactive	 visual	 exploration.	 A	 thorough	 task	 analysis	 allowed	 us	 to	 elicit	 appropriate	 design	
requirements	for	the	visual	exploration	tool.	The	tool	comprises	five	visualization	components	that	
each	focus	on	different	aspects	of	the	interactive	analysis.	

We	received	detailed	user	feedback	at	every	stage	of	the	development	process,	refining	our	
approach	with	every	iteration.	Our	tool	is	currently	applied	by	geoscientists	in	their	daily	research.	
Their	feedback	suggests	that	it	allows	them	to	explore	the	data	for	a	great	variety	of	processes	and	
patterns,	leading	to	new	hypotheses	and	eventually	generating	new	scientific	insight.	

The	 next	 challenge	 is	 to	 evaluate	 our	 approach	 in	 a	 longitudinal	 user	 study	 to	 gain	 an	
understanding	 of	 the	 conceptual	 limitations	 of	 our	 approach,	 and	 to	 identify	 roads	 for	
improvements	in	the	visual	encoding	and	analytical	interaction.	

We	 have	 identified	 several	 research	 directions	 to	 extend	 our	 approach.	 Since	 the	
segmentation	of	the	data	by	means	of	clustering	can	be	regarded	as	a	symbolic	representation	of	
the	 time	 series,	 we	 plan	 to	 include	 motif	 mining	 techniques	 to	 facilitate	 automatic	 detection	 of	
periodicities,	 and	 to	 compute	 even	 more	 compact	 visual	 summaries	 of	 geospatial	 time	 series.	
Further,	we	want	 to	support	comparison	of	clustering	results	 for	different	geospatial	 time	series.	
Finally,	we	would	like	to	extend	our	approach	to	multi‐run	simulation	output.	This	is	a	challenging	



task	since	the	visual	encoding	of	multi‐run	data	is	an	open	research	question.	We	hope	that	building	
a	visual	exploration	tool	for	multi‐run	data	will	contribute	to	a	better	understanding	of	simulated	
processes	in	many	geoscientific	application	scenarios.	
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